
Zephyr Project Documentation
Release 3.6.99

The Zephyr Project Contributors
Mar 20, 2024

Table of contents

i

ii

Chapter 1

Introduction

The Zephyr OS is based on a small-footprint kernel designed for use on resource-constrained
and embedded systems: from simple embedded environmental sensors and LED wearables to
sophisticated embedded controllers, smart watches, and IoT wireless applications.

The Zephyr kernel supports multiple architectures, including:

• ARCv2 (EM and HS) and ARCv3 (HS6X)

• ARMv6-M, ARMv7-M, and ARMv8-M (Cortex-M)

• ARMv7-A and ARMv8-A (Cortex-A, 32- and 64-bit)

• ARMv7-R, ARMv8-R (Cortex-R, 32- and 64-bit)

• Intel x86 (32- and 64-bit)

• MIPS (MIPS32 Release 1 specification)

• NIOS II Gen 2

• RISC-V (32- and 64-bit)

• SPARC V8

• Tensilica Xtensa

The full list of supported boards based on these architectures can be found here.

1.1 Licensing

Zephyr is permissively licensed using the Apache 2.0 license (as found in the LICENSE file in the
project’s GitHub repo). There are some imported or reused components of the Zephyr project
that use other licensing, as described in Licensing of Zephyr Project components.

1.2 Distinguishing Features

Zephyr offers a large and ever growing number of features including:

Extensive suite of Kernel services
Zephyr offers a number of familiar services for development:

• Multi-threading Services for cooperative, priority-based, non-preemptive, and preemp-
tive threads with optional round robin time-slicing. Includes POSIX pthreads compat-
ible API support.

1

https://github.com/zephyrproject-rtos/zephyr/blob/main/LICENSE
https://github.com/zephyrproject-rtos/zephyr

Zephyr Project Documentation, Release 3.6.99

• Interrupt Services for compile-time registration of interrupt handlers.

• Memory Allocation Services for dynamic allocation and freeing of fixed-size or
variable-size memory blocks.

• Inter-thread Synchronization Services for binary semaphores, counting semaphores,
and mutex semaphores.

• Inter-thread Data Passing Services for basic message queues, enhanced message
queues, and byte streams.

• PowerManagement Services such as overarching, application or policy-defined, System
Power Management and fine-grained, driver-defined, Device Power Management.

Multiple Scheduling Algorithms
Zephyr provides a comprehensive set of thread scheduling choices:

• Cooperative and Preemptive Scheduling

• Earliest Deadline First (EDF)

• Meta IRQ scheduling implementing “interrupt bottom half” or “tasklet” behavior

• Timeslicing: Enables time slicing between preemptible threads of equal priority

• Multiple queuing strategies:

– Simple linked-list ready queue

– Red/black tree ready queue

– Traditional multi-queue ready queue

Highly configurable / Modular for flexibility
Allows an application to incorporate only the capabilities it needs as it needs them, and to
specify their quantity and size.

Cross Architecture
Supports a wide variety of supported boards with different CPU architectures and devel-
oper tools. Contributions have added support for an increasing number of SoCs, platforms,
and drivers.

Memory Protection
Implements configurable architecture-specific stack-overflow protection, kernel object and
device driver permission tracking, and thread isolation with thread-level memory protec-
tion on x86, ARC, and ARM architectures, userspace, and memory domains.

For platforms without MMU/MPU and memory constrained devices, supports combining
application-specific code with a custom kernel to create a monolithic image that gets loaded
and executed on a system’s hardware. Both the application code and kernel code execute
in a single shared address space.

Compile-time resource definition
Allows system resources to be defined at compile-time, which reduces code size and in-
creases performance for resource-limited systems.

Optimized Device Driver Model
Provides a consistent device model for configuring the drivers that are part of the plat-
form/system and a consistent model for initializing all the drivers configured into the sys-
tem and allows the reuse of drivers across platforms that have common devices/IP blocks.

Devicetree Support
Use of devicetree to describe hardware. Information from devicetree is used to create the
application image.

Native Networking Stack supporting multiple protocols
Networking support is fully featured and optimized, including LwM2M and BSD sockets
compatible support. OpenThread support (on Nordic chipsets) is also provided - a mesh
network designed to securely and reliably connect hundreds of products around the home.

2 Chapter 1. Introduction

Zephyr Project Documentation, Release 3.6.99

Bluetooth Low Energy 5.0 support
Bluetooth 5.0 compliant (ESR10) and Bluetooth Low Energy Controller support (LE Link
Layer). Includes Bluetooth Mesh and a Bluetooth qualification-ready Bluetooth controller.

• Generic Access Profile (GAP) with all possible LE roles

• Generic Attribute Profile (GATT)

• Pairing support, including the Secure Connections feature from Bluetooth 4.2

• Clean HCI driver abstraction

• Raw HCI interface to run Zephyr as a Controller instead of a full Host stack

• Verified with multiple popular controllers

• Highly configurable

Mesh Support:

• Relay, Friend Node, Low-Power Node (LPN) and GATT Proxy features

• Both Provisioning bearers supported (PB-ADV & PB-GATT)

• Highly configurable, fitting in devices with at least 16k RAM

Native Linux, macOS, and Windows Development
A command-line CMake build environment runs on popular developer OS systems. A native
port (native_sim) lets you build and run Zephyr as a native application on Linux, aiding
development and testing.

Virtual File System Interface with ext2, FatFs, and LittleFS Support
ext2, LittleFS and FatFS support; FCB (Flash Circular Buffer) for memory constrained appli-
cations.

Powerful multi-backend logging Framework
Support for log filtering, object dumping, panic mode, multiple backends (memory, net-
working, filesystem, console, …) and integration with the shell subsystem.

User friendly and full-featured Shell interface
A multi-instance shell subsystem with user-friendly features such as autocompletion, wild-
cards, coloring, metakeys (arrows, backspace, ctrl+u, etc.) and history. Support for static
commands and dynamic sub-commands.

Settings on non-volatile storage
The settings subsystem gives modules a way to store persistent per-device configuration
and runtime state. Settings items are stored as key-value pair strings.

Non-volatile storage (NVS)
NVS allows storage of binary blobs, strings, integers, longs, and any combination of these.

Native port
Native sim allows running Zephyr as a Linux application with support for various subsys-
tems and networking.

1.3 Community Support

Community support is provided via mailing lists and Discord; see the Resources below for details.

1.4 Resources

Here’s a quick summary of resources to help you find your way around:

1.3. Community Support 3

Zephyr Project Documentation, Release 3.6.99

1.4.1 Getting Started

� Zephyr Documentation
� Getting Started Guide
�� Tips when asking for help
� Code samples

1.4.2 Code and Development

� Source Code Repository
� Releases
� Contribution Guide

1.4.3 Community and Support

� Discord Server for real-time community discussions
� User mailing list (users@lists.zephyrproject.org)
� Developer mailing list (devel@lists.zephyrproject.org)
� Other project mailing lists
� Project Wiki

1.4.4 Issue Tracking and Security

� GitHub Issues
� Security documentation
� Security Advisories Repository
� Report security vulnerabilities at vulnerabilities@zephyrproject.org

1.4.5 Additional Resources

� Zephyr Project Website
� Zephyr Tech Talks

1.5 Fundamental Terms and Concepts

See Glossary of Terms

4 Chapter 1. Introduction

https://docs.zephyrproject.org
https://docs.zephyrproject.org/latest/develop/getting_started/index.html
https://docs.zephyrproject.org/latest/develop/getting_started/index.html#asking-for-help
https://docs.zephyrproject.org/latest/samples/index.html
https://github.com/zephyrproject-rtos/zephyr
https://github.com/zephyrproject-rtos/zephyr/releases
https://docs.zephyrproject.org/latest/contribute/index.html
https://chat.zephyrproject.org
https://lists.zephyrproject.org/g/users
https://lists.zephyrproject.org/g/devel
https://lists.zephyrproject.org/g/main/subgroups
https://github.com/zephyrproject-rtos/zephyr/wiki
https://github.com/zephyrproject-rtos/zephyr/issues
https://docs.zephyrproject.org/latest/security/index.html
https://github.com/zephyrproject-rtos/zephyr/security
mailto:vulnerabilities@zephyrproject.org
https://www.zephyrproject.org
https://www.zephyrproject.org/tech-talks

Chapter 2

Developing with Zephyr

2.1 Getting Started Guide

Follow this guide to:

• Set up a command-line Zephyr development environment on Ubuntu, macOS, or Windows
(instructions for other Linux distributions are discussed in Install Linux Host Dependencies)

• Get the source code

• Build, flash, and run a sample application

2.1.1 Select and Update OS

Click the operating system you are using.

Ubuntu

This guide covers Ubuntu version 20.04 LTS and later.

sudo apt update
sudo apt upgrade

macOS

On macOS Mojave or later, select System Preferences > Software Update. Click Update Now if
necessary.

On other versions, see this Apple support topic.

Windows

Select Start > Settings > Update & Security > Windows Update. Click Check for updates and install
any that are available.

2.1.2 Install dependencies

Next, you’ll install some host dependencies using your package manager.

The current minimum required version for the main dependencies are:

5

https://support.apple.com/en-us/HT201541

Zephyr Project Documentation, Release 3.6.99

Tool Min. Version
CMake 3.20.5
Python 3.8
Devicetree compiler 1.4.6

Ubuntu

1. If using an Ubuntu version older than 22.04, it is necessary to add extra repositories to
meet the minimum required versions for the main dependencies listed above. In that case,
download, inspect and execute the Kitware archive script to add the Kitware APT reposi-
tory to your sources list. A detailed explanation of kitware-archive.sh can be found here
kitware third-party apt repository:

wget https://apt.kitware.com/kitware-archive.sh
sudo bash kitware-archive.sh

2. Use apt to install the required dependencies:

sudo apt install --no-install-recommends git cmake ninja-build gperf \
ccache dfu-util device-tree-compiler wget \
python3-dev python3-pip python3-setuptools python3-tk python3-wheel xz-utils file \
make gcc gcc-multilib g++-multilib libsdl2-dev libmagic1

3. Verify the versions of the main dependencies installed on your system by entering:

cmake --version
python3 --version
dtc --version

Check those against the versions in the table in the beginning of this section. Refer to the
Install Linux Host Dependencies page for additional information on updating the dependen-
cies manually.

macOS

1. Install Homebrew:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/
↪→install.sh)"

2. After the Homebrew installation script completes, follow the on-screen instructions to add
the Homebrew installation to the path.

• On macOS running on Apple Silicon, this is achieved with:

(echo; echo 'eval "$(/opt/homebrew/bin/brew shellenv)"') >> ~/.zprofile
source ~/.zprofile

• On macOS running on Intel, use the command for Apple Silicon, but replace /opt/
homebrew/ with /usr/local/.

3. Use brew to install the required dependencies:

brew install cmake ninja gperf python3 ccache qemu dtc libmagic wget

4. Add the Homebrew Python folder to the path, in order to be able to execute python and pip
as well python3 and pip3.

(echo; echo 'export PATH="'$(brew --prefix)'/opt/python/libexec/bin:$PATH"')␣
↪→>> ~/.zprofile
source ~/.zprofile

6 Chapter 2. Developing with Zephyr

https://cmake.org/
https://www.python.org/
https://www.devicetree.org/
https://apt.kitware.com/
https://brew.sh/

Zephyr Project Documentation, Release 3.6.99

Windows

Note: Due to issues finding executables, the Zephyr Project doesn’t currently support applica-
tion flashing using the Windows Subsystem for Linux (WSL) (WSL).

Therefore, we don’t recommend using WSL when getting started.

These instructions must be run in a cmd.exe command prompt terminal window. In modern ver-
sion of Windows (10 and later) it is recommended to install the Windows Terminal application
from the Microsoft Store. The required commands differ on PowerShell.

These instructions rely on Chocolatey. If Chocolatey isn’t an option, you can install dependencies
from their respective websites and ensure the command line tools are on your PATH environment
variable.

1. Install chocolatey.

2. Open a cmd.exe terminal window as Administrator. To do so, press the Windows key, type
cmd.exe, right-click the Command Prompt search result, and choose Run as Administrator.

3. Disable global confirmation to avoid having to confirm the installation of individual pro-
grams:

choco feature enable -n allowGlobalConfirmation

4. Use choco to install the required dependencies:

choco install cmake --installargs 'ADD_CMAKE_TO_PATH=System'
choco install ninja gperf python311 git dtc-msys2 wget 7zip

Warning: As of November 2023, Python 3.12 is not recommended for Zephyr develop-
ment on Windows, as some required Python dependencies may be difficult to install.

5. Close the terminal window.

2.1.3 Get Zephyr and install Python dependencies

Next, clone Zephyr and its modules into a new west workspace named zephyrproject. You’ll also
install Zephyr’s additional Python dependencies.

Note: It is easy to run into Python package incompatibilities when installing dependencies at
a system or user level. This situation can happen, for example, if working on multiple Zephyr
versions or other projects using Python on the same machine.

For this reason it is suggested to use Python virtual environments.

Ubuntu

Install within virtual environment

1. Use apt to install Python venv package:

sudo apt install python3-venv

2. Create a new virtual environment:

2.1. Getting Started Guide 7

https://msdn.microsoft.com/en-us/commandline/wsl/install_guide
https://chocolatey.org/
https://chocolatey.org/install
https://docs.python.org/3/library/venv.html

Zephyr Project Documentation, Release 3.6.99

python3 -m venv ~/zephyrproject/.venv

3. Activate the virtual environment:

source ~/zephyrproject/.venv/bin/activate

Once activated your shell will be prefixed with (.venv). The virtual environment can be
deactivated at any time by running deactivate.

Note: Remember to activate the virtual environment every time you start working.

4. Install west:

pip install west

5. Get the Zephyr source code:

west init ~/zephyrproject
cd ~/zephyrproject
west update

6. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code
required for building Zephyr applications.

west zephyr-export

7. Zephyr’s scripts/requirements.txt file declares additional Python dependencies. Install
them with pip.

pip install -r ~/zephyrproject/zephyr/scripts/requirements.txt

Install globally

1. Install west, and make sure ~/.local/bin is on your PATH environment variable:

pip3 install --user -U west
echo 'export PATH=~/.local/bin:"$PATH"' >> ~/.bashrc
source ~/.bashrc

2. Get the Zephyr source code:

west init ~/zephyrproject
cd ~/zephyrproject
west update

3. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code
required for building Zephyr applications.

west zephyr-export

4. Zephyr’s scripts/requirements.txt file declares additional Python dependencies. Install
them with pip3.

pip3 install --user -r ~/zephyrproject/zephyr/scripts/requirements.txt

macOS

Install within virtual environment

1. Create a new virtual environment:

8 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

python3 -m venv ~/zephyrproject/.venv

2. Activate the virtual environment:

source ~/zephyrproject/.venv/bin/activate

Once activated your shell will be prefixed with (.venv). The virtual environment can be
deactivated at any time by running deactivate.

Note: Remember to activate the virtual environment every time you start working.

3. Install west:

pip install west

4. Get the Zephyr source code:

west init ~/zephyrproject
cd ~/zephyrproject
west update

5. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code
required for building Zephyr applications.

west zephyr-export

6. Zephyr’s scripts/requirements.txt file declares additional Python dependencies. Install
them with pip.

pip install -r ~/zephyrproject/zephyr/scripts/requirements.txt

Install globally

1. Install west:

pip3 install -U west

2. Get the Zephyr source code:

west init ~/zephyrproject
cd ~/zephyrproject
west update

3. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code
required for building Zephyr applications.

west zephyr-export

4. Zephyr’s scripts/requirements.txt file declares additional Python dependencies. Install
them with pip3.

pip3 install -r ~/zephyrproject/zephyr/scripts/requirements.txt

Windows

Install within virtual environment

1. Open a cmd.exe terminal window as a regular user
2. Create a new virtual environment:

2.1. Getting Started Guide 9

Zephyr Project Documentation, Release 3.6.99

cd %HOMEPATH%
python -m venv zephyrproject\.venv

3. Activate the virtual environment:

zephyrproject\.venv\Scripts\activate.bat

Once activated your shell will be prefixed with (.venv). The virtual environment can be
deactivated at any time by running deactivate.

Note: Remember to activate the virtual environment every time you start working.

4. Install west:

pip install west

5. Get the Zephyr source code:

west init zephyrproject
cd zephyrproject
west update

6. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code
required for building Zephyr applications.

west zephyr-export

7. Zephyr’s scripts\requirements.txt file declares additional Python dependencies. Install
them with pip.

pip install -r %HOMEPATH%\zephyrproject\zephyr\scripts\requirements.txt

Install globally

1. Open a cmd.exe terminal window as a regular user
2. Install west:

pip3 install -U west

3. Get the Zephyr source code:

cd %HOMEPATH%
west init zephyrproject
cd zephyrproject
west update

4. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code
required for building Zephyr applications.

west zephyr-export

5. Zephyr’s scripts\requirements.txt file declares additional Python dependencies. Install
them with pip3.

pip3 install -r %HOMEPATH%\zephyrproject\zephyr\scripts\requirements.txt

10 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

2.1.4 Install the Zephyr SDK

The Zephyr Software Development Kit (SDK) contains toolchains for each of Zephyr’s supported
architectures, which include a compiler, assembler, linker and other programs required to build
Zephyr applications.

It also contains additional host tools, such as custom QEMU and OpenOCD builds that are used
to emulate, flash and debug Zephyr applications.

Note: You can change 0.16.5-1 to another version in the instructions below if needed; the
Zephyr SDK Releases page contains all available SDK releases.

Note: If you want to uninstall the SDK, you may simply remove the directory where you installed
it.

Ubuntu

1. Download and verify the Zephyr SDK bundle:

cd ~
wget https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.16.5-1/
↪→zephyr-sdk-0.16.5-1_linux-x86_64.tar.xz
wget -O - https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.
↪→16.5-1/sha256.sum | shasum --check --ignore-missing

If your host architecture is 64-bit ARM (for example, Raspberry Pi), replace x86_64 with
aarch64 in order to download the 64-bit ARM Linux SDK.

2. Extract the Zephyr SDK bundle archive:

tar xvf zephyr-sdk-0.16.5-1_linux-x86_64.tar.xz

Note: It is recommended to extract the Zephyr SDK bundle at one of the following loca-
tions:

• $HOME
• $HOME/.local
• $HOME/.local/opt
• $HOME/bin
• /opt
• /usr/local

The Zephyr SDK bundle archive contains the zephyr-sdk-<version> directory and, when
extracted under $HOME, the resulting installation path will be $HOME/zephyr-sdk-<version>.

3. Run the Zephyr SDK bundle setup script:

cd zephyr-sdk-0.16.5-1
./setup.sh

Note: You only need to run the setup script once after extracting the Zephyr SDK bundle.

You must rerun the setup script if you relocate the Zephyr SDK bundle directory after the
initial setup.

4. Install udev rules, which allow you to flash most Zephyr boards as a regular user:

2.1. Getting Started Guide 11

https://github.com/zephyrproject-rtos/sdk-ng/tags
https://github.com/zephyrproject-rtos/sdk-ng/releases/tag/v0.16.5-1
https://en.wikipedia.org/wiki/Udev

Zephyr Project Documentation, Release 3.6.99

sudo cp ~/zephyr-sdk-0.16.5-1/sysroots/x86_64-pokysdk-linux/usr/share/openocd/
↪→contrib/60-openocd.rules /etc/udev/rules.d
sudo udevadm control --reload

macOS

1. Download and verify the Zephyr SDK bundle:

cd ~
curl -L -O https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.
↪→16.5-1/zephyr-sdk-0.16.5-1_macos-x86_64.tar.xz
curl -L https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.16.
↪→5-1/sha256.sum | shasum --check --ignore-missing

If your host architecture is 64-bit ARM (Apple Silicon, also known as M1), replace x86_64
with aarch64 in order to download the 64-bit ARM macOS SDK.

2. Extract the Zephyr SDK bundle archive:

tar xvf zephyr-sdk-0.16.5-1_macos-x86_64.tar.xz

Note: It is recommended to extract the Zephyr SDK bundle at one of the following loca-
tions:

• $HOME
• $HOME/.local
• $HOME/.local/opt
• $HOME/bin
• /opt
• /usr/local

The Zephyr SDK bundle archive contains the zephyr-sdk-<version> directory and, when
extracted under $HOME, the resulting installation path will be $HOME/zephyr-sdk-<version>.

3. Run the Zephyr SDK bundle setup script:

cd zephyr-sdk-0.16.5-1
./setup.sh

Note: You only need to run the setup script once after extracting the Zephyr SDK bundle.

You must rerun the setup script if you relocate the Zephyr SDK bundle directory after the
initial setup.

Windows

1. Open a cmd.exe terminal window as a regular user
2. Download the Zephyr SDK bundle:

cd %HOMEPATH%
wget https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.16.5-1/
↪→zephyr-sdk-0.16.5-1_windows-x86_64.7z

3. Extract the Zephyr SDK bundle archive:

7z x zephyr-sdk-0.16.5-1_windows-x86_64.7z

Note: It is recommended to extract the Zephyr SDK bundle at one of the following loca-
tions:

12 Chapter 2. Developing with Zephyr

https://github.com/zephyrproject-rtos/sdk-ng/releases/tag/v0.16.5-1
https://github.com/zephyrproject-rtos/sdk-ng/releases/tag/v0.16.5-1

Zephyr Project Documentation, Release 3.6.99

• %HOMEPATH%
• %PROGRAMFILES%

The Zephyr SDK bundle archive contains the zephyr-sdk-<version> directory and,
when extracted under %HOMEPATH%, the resulting installation path will be %HOMEPATH%\
zephyr-sdk-<version>.

4. Run the Zephyr SDK bundle setup script:

cd zephyr-sdk-0.16.5-1
setup.cmd

Note: You only need to run the setup script once after extracting the Zephyr SDK bundle.

You must rerun the setup script if you relocate the Zephyr SDK bundle directory after the
initial setup.

2.1.5 Build the Blinky Sample

Note: blinky is compatible with most, but not all, boards. If your board does not meet Blinky’s
blinky-sample-requirements, then hello_world is a good alternative.

If you are unsure what name west uses for your board, west boards can be used to obtain a list
of all boards Zephyr supports.

Build the blinky with west build, changing <your-board-name> appropriately for your board:

Ubuntu

cd ~/zephyrproject/zephyr
west build -p always -b <your-board-name> samples/basic/blinky

macOS

cd ~/zephyrproject/zephyr
west build -p always -b <your-board-name> samples/basic/blinky

Windows

cd %HOMEPATH%\zephyrproject\zephyr
west build -p always -b <your-board-name> samples\basic\blinky

The -p always option forces a pristine build, and is recommended for new users. Users may
also use the -p auto option, which will use heuristics to determine if a pristine build is required,
such as when building another sample.

Note: A board may contain one or multiple SoCs, Also, each SoC may contain one or more CPU
clusters. When building for such boards it is necessary to specify the SoC or CPU cluster for which
the sample must be built. For example to build blinky for the cpuapp core on the nRF5340DK the
board must be provided as: nrf5340dk/nrf5340/cpuapp. Also read Board and board identifiers
for more details.

2.1. Getting Started Guide 13

Zephyr Project Documentation, Release 3.6.99

2.1.6 Flash the Sample

Connect your board, usually via USB, and turn it on if there’s a power switch. If in doubt about
what to do, check your board’s page in boards.

Then flash the sample using west flash:

west flash

You may need to install additional host tools required by your board. The west flash command
will print an error if any required dependencies are missing.

If you’re using blinky, the LED will start to blink as shown in this figure:

Fig. 1: Phytec reel_board running blinky

2.1.7 Next Steps

Here are some next steps for exploring Zephyr:

• Try other samples-and-demos

• Learn about Application Development and the west tool

• Find out about west’s flashing and debugging features, or more about Flashing and Hard-
ware Debugging in general

• Check out Beyond the Getting Started Guide for additional setup alternatives and ideas

• Discover Resources for getting help from the Zephyr community

2.1.8 Troubleshooting Installation

Here are some tips for fixing some issues related to the installation process.

Double Check the Zephyr SDK Variables When Updating

When updating Zephyr SDK, check whether the ZEPHYR_TOOLCHAIN_VARIANT or
ZEPHYR_SDK_INSTALL_DIR environment variables are already set. See Updating the Zephyr
SDK toolchain for more information.

14 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

For more information about these environment variables in Zephyr, see Important Environment
Variables.

2.1.9 Asking for Help

You can ask for help on a mailing list or on Discord. Please send bug reports and feature requests
to GitHub.

• Mailing Lists: users@lists.zephyrproject.org is usually the right list to ask for help. Search
archives and sign up here.

• Discord: You can join with this Discord invite.

• GitHub: Use GitHub issues for bugs and feature requests.

How to Ask

Important: Please search this documentation and the mailing list archives first. Your question
may have an answer there.

Don’t just say “this isn’t working” or ask “is this working?”. Include as much detail as you can
about:

1. What you want to do

2. What you tried (commands you typed, etc.)

3. What happened (output of each command, etc.)

Use Copy/Paste

Please copy/paste text instead of taking a picture or a screenshot of it. Text includes source code,
terminal commands, and their output.

Doing this makes it easier for people to help you, and also helps other users search the archives.
Unnecessary screenshots exclude vision impaired developers; some are major Zephyr contribu-
tors. Accessibility has been recognized as a basic human right by the United Nations.

When copy/pasting more than 5 lines of computer text into Discord or Github, create a snippet
using three backticks to delimit the snippet.

2.2 Beyond the Getting Started Guide

TheGetting Started Guide gives a straight-forward path to set up your Linux, macOS, or Windows
environment for Zephyr development. In this document, we delve deeper into Zephyr develop-
ment setup issues and alternatives.

2.2.1 Python and pip

Python 3 and its package manager, pip1, are used extensively by Zephyr to install and run scripts
required to compile and run Zephyr applications, set up and maintain the Zephyr development

1 pip is Python’s package installer. Its install command first tries to reuse packages and package dependencies al-
ready installed on your computer. If that is not possible, pip install downloads them from the Python Package Index
(PyPI) on the Internet.

2.2. Beyond the Getting Started Guide 15

mailto:users@lists.zephyrproject.org
https://lists.zephyrproject.org/g/users
https://lists.zephyrproject.org/g/users
https://chat.zephyrproject.org
https://github.com/zephyrproject-rtos/zephyr/issues
https://www.w3.org/standards/webdesign/accessibility

Zephyr Project Documentation, Release 3.6.99

environment, and build project documentation.

Depending on your operating system, you may need to provide the --user flag to the pip3 com-
mand when installing new packages. This is documented throughout the instructions. See In-
stalling Packages in the Python Packaging User Guide for more information about pip?, including
information on -\-user.

• On Linux, make sure ~/.local/bin is at the front of your PATH environment variable, or pro-
grams installed with --userwon’t be found. Installing with --user avoids conflicts between
pip and the system package manager, and is the default on Debian-based distributions.

• On macOS, Homebrew disables -\-user.

• On Windows, see the Installing Packages information on --user if you require using this
option.

On all operating systems, pip’s -U flag installs or updates the package if the package is already
installed locally but a more recent version is available. It is good practice to use this flag if the
latest version of a package is required. (Check the scripts/requirements.txt file to see if a specific
Python package version is expected.)

2.2.2 Advanced Platform Setup

Here are some alternative instructions for more advanced platform setup configurations for
supported development platforms:

Install Linux Host Dependencies

Documentation is available for these Linux distributions:

• Ubuntu

• Fedora

• Clear Linux

• Arch Linux

For distributions that are not based on rolling releases, some of the requirements and depen-
dencies may not be met by your package manager. In that case please follow the additional
instructions that are provided to find software from sources other than the package manager.

Note: If you’re working behind a corporate firewall, you’ll likely need to configure a proxy for
accessing the internet, if you haven’t done so already. While some tools use the environment
variables http_proxy and https_proxy to get their proxy settings, some use their own configu-
ration files, most notably apt and git.

Update Your Operating System Ensure your host system is up to date.

Ubuntu

sudo apt-get update
sudo apt-get upgrade

Fedora

The package versions requested by Zephyr’s requirements.txt may conflict with other requirements on your system,
in which case you may want to set up a virtualenv for Zephyr development.

16 Chapter 2. Developing with Zephyr

https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/#installing-to-the-user-site
https://docs.brew.sh/Homebrew-and-Python#note-on-pip-install---user
https://packaging.python.org/tutorials/installing-packages/
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/requirements.txt

Zephyr Project Documentation, Release 3.6.99

sudo dnf upgrade

Clear Linux

sudo swupd update

Arch Linux

sudo pacman -Syu

Install Requirements and Dependencies Note that both Ninja and Make are installed with
these instructions; you only need one.

Ubuntu

sudo apt-get install --no-install-recommends git cmake ninja-build gperf \
ccache dfu-util device-tree-compiler wget \
python3-dev python3-pip python3-setuptools python3-tk python3-wheel xz-utils file \
make gcc gcc-multilib g++-multilib libsdl2-dev libmagic1

Fedora

sudo dnf group install "Development Tools" "C Development Tools and Libraries"
sudo dnf install cmake ninja-build gperf dfu-util dtc wget which \
python3-pip python3-tkinter xz file python3-devel SDL2-devel

Clear Linux

sudo swupd bundle-add c-basic dev-utils dfu-util dtc \
os-core-dev python-basic python3-basic python3-tcl

The Clear Linux focus is on native performance and security and not cross-compilation. For that
reason it uniquely exports by default to the environment of all users a list of compiler and linker
flags. Zephyr’s CMake build system will either warn or fail because of these. To clear the C/C++
flags among these and fix the Zephyr build, run the following command as root then log out and
back in:

echo 'unset CFLAGS CXXFLAGS' >> /etc/profile.d/unset_cflags.sh

Note this command unsets the C/C++ flags for all users on the system. Each Linux distribution
has a unique, relatively complex and potentially evolving sequence of bash initialization files
sourcing each other and Clear Linux is no exception. If you need a more flexible solution, start
by looking at the logic in /usr/share/defaults/etc/profile.

Arch Linux

sudo pacman -S git cmake ninja gperf ccache dfu-util dtc wget \
python-pip python-setuptools python-wheel tk xz file make

CMake A recent CMake version is required. Check what version you have by using cmake
--version. If you have an older version, there are several ways of obtaining a more recent one:

• On Ubuntu, you can follow the instructions for adding the kitware third-party apt reposi-
tory to get an updated version of cmake using apt.

• Download and install a packaged cmake from the CMake project site. (Note this won’t unin-
stall the previous version of cmake.)

2.2. Beyond the Getting Started Guide 17

https://apt.kitware.com/
https://apt.kitware.com/

Zephyr Project Documentation, Release 3.6.99

cd ~
wget https://github.com/Kitware/CMake/releases/download/v3.21.1/cmake-3.21.1-Linux-x86_
↪→64.sh
chmod +x cmake-3.21.1-Linux-x86_64.sh
sudo ./cmake-3.21.1-Linux-x86_64.sh --skip-license --prefix=/usr/local
hash -r

The hash -r command may be necessary if the installation script put cmake into a new
location on your PATH.

• Download and install from the pre-built binaries provided by the CMake project itself in
the CMake Downloads page. For example, to install version 3.21.1 in ~/bin/cmake:

mkdir $HOME/bin/cmake && cd $HOME/bin/cmake
wget https://github.com/Kitware/CMake/releases/download/v3.21.1/cmake-3.21.1-Linux-x86_
↪→64.sh
yes | sh cmake-3.21.1-Linux-x86_64.sh | cat
echo "export PATH=$PWD/cmake-3.21.1-Linux-x86_64/bin:\$PATH" >> $HOME/.zephyrrc

• Use pip3:

pip3 install --user cmake

Note this won’t uninstall the previous version of cmake and will install the new cmake into
your ~/.local/bin folder so you’ll need to add ~/.local/bin to your PATH. (See Python and pip
for details.)

• Check your distribution’s beta or unstable release package library for an update.

• On Ubuntu you can also use snap to get the latest version available:

sudo snap install cmake

After updating cmake, verify that the newly installed cmake is found using cmake --version. You
might also want to uninstall the CMake provided by your package manager to avoid conflicts.
(Use whereis cmake to find other installed versions.)

DTC (Device Tree Compiler) A recent DTC version is required. Check what version you have
by using dtc --version. If you have an older version, either install a more recent one by building
from source, or use the one that is bundled in the Zephyr SDK by installing it.

Python A modern Python 3 version is required. Check what version you have by using python3
--version.

If you have an older version, you will need to install a more recent Python 3. You can build from
source, or use a backport from your distribution’s package manager channels if one is available.
Isolating this Python in a virtual environment is recommended to avoid interfering with your
system Python.

Install the Zephyr Software Development Kit (SDK) The Zephyr Software Development Kit
(SDK) contains toolchains for each of Zephyr’s supported architectures. It also includes addi-
tional host tools, such as custom QEMU and OpenOCD.

Use of the Zephyr SDK is highly recommended and may even be required under certain condi-
tions (for example, running tests in QEMU for some architectures).

The Zephyr SDK supports the following target architectures:

• ARC (32-bit and 64-bit; ARCv1, ARCv2, ARCv3)

• ARM (32-bit and 64-bit; ARMv6, ARMv7, ARMv8; A/R/M Profiles)

18 Chapter 2. Developing with Zephyr

https://cmake.org/download

Zephyr Project Documentation, Release 3.6.99

• MIPS (32-bit and 64-bit)

• Nios II

• RISC-V (32-bit and 64-bit; RV32I, RV32E, RV64I)

• x86 (32-bit and 64-bit)

• Xtensa

Follow these steps to install the Zephyr SDK:

1. Download and verify the Zephyr SDK bundle:

wget https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.16.5-1/
↪→zephyr-sdk-0.16.5-1_linux-x86_64.tar.xz
wget -O - https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.
↪→16.5-1/sha256.sum | shasum --check --ignore-missing

You can change 0.16.5-1 to another version if needed; the Zephyr SDK Releases page con-
tains all available SDK releases.

If your host architecture is 64-bit ARM (for example, Raspberry Pi), replace x86_64 with
aarch64 in order to download the 64-bit ARM Linux SDK.

2. Extract the Zephyr SDK bundle archive:

cd <sdk download directory>
tar xvf zephyr-sdk-0.16.5-1_linux-x86_64.tar.xz

3. Run the Zephyr SDK bundle setup script:

cd zephyr-sdk-0.16.5-1
./setup.sh
If this fails, make sure Zephyr’s dependencies were installed as described in Install Require-
ments and Dependencies.

If you want to uninstall the SDK, remove the directory where you installed it. If you relocate the
SDK directory, you need to re-run the setup script.

Note: It is recommended to extract the Zephyr SDK bundle at one of the following locations:

• $HOME
• $HOME/.local
• $HOME/.local/opt
• $HOME/bin
• /opt
• /usr/local

The Zephyr SDK bundle archive contains the zephyr-sdk-<version> directory and, when ex-
tracted under $HOME, the resulting installation path will be $HOME/zephyr-sdk-<version>.

If you install the Zephyr SDK outside any of these locations, you must register the Zephyr SDK in
the CMake package registry by running the setup script, or set ZEPHYR_SDK_INSTALL_DIR to point
to the Zephyr SDK installation directory.

You can also use ZEPHYR_SDK_INSTALL_DIR for pointing to a directory containing multiple Zephyr
SDKs, allowing for automatic toolchain selection. For example, ZEPHYR_SDK_INSTALL_DIR=/
company/tools, where the company/tools folder contains the following subfolders:

• /company/tools/zephyr-sdk-0.13.2
• /company/tools/zephyr-sdk-a.b.c
• /company/tools/zephyr-sdk-x.y.z

2.2. Beyond the Getting Started Guide 19

https://github.com/zephyrproject-rtos/sdk-ng/releases/tag/v0.16.5-1
https://github.com/zephyrproject-rtos/sdk-ng/tags

Zephyr Project Documentation, Release 3.6.99

This allows the Zephyr build system to choose the correct version of the SDK, while allowing
multiple Zephyr SDKs to be grouped together at a specific path.

Building on Linux without the Zephyr SDK The Zephyr SDK is provided for convenience
and ease of use. It provides toolchains for all Zephyr target architectures, and does not require
any extra flags when building applications or running tests. In addition to cross-compilers, the
Zephyr SDK also provides prebuilt host tools. It is, however, possible to build without the SDK’s
toolchain by using another toolchain as described in the Toolchains section.

As already noted above, the SDK also includes prebuilt host tools. To use the SDK’s prebuilt
host tools with a toolchain from another source, you must set the ZEPHYR_SDK_INSTALL_DIR en-
vironment variable to the Zephyr SDK installation directory. To build without the Zephyr SDK’s
prebuilt host tools, the ZEPHYR_SDK_INSTALL_DIR environment variable must be unset.

To make sure this variable is unset, run:

unset ZEPHYR_SDK_INSTALL_DIR

macOS alternative setup instructions

Important note about Gatekeeper Starting with macOS 10.15 Catalina, applications launched
from the macOS Terminal application (or any other terminal emulator) are subject to the same
system security policies that are applied to applications launched from the Dock. This means
that if you download executable binaries using a web browser, macOS will not let you execute
those from the Terminal by default. In order to get around this issue you can take two different
approaches:

• Run xattr -r -d com.apple.quarantine /path/to/folder where path/to/folder is the
path to the enclosing folder where the executables you want to run are located.

• Open System Preferences ‣ Security and Privacy ‣ Privacy and then scroll down to “Devel-
oper Tools”. Then unlock the lock to be able to make changes and check the checkbox cor-
responding to your terminal emulator of choice. This will apply to any executable being
launched from such terminal program.

Note that this section does not apply to executables installed with Homebrew, since those are
automatically un-quarantined by brew itself. This is however relevant for most Toolchains.

Additional notes for MacPorts users While MacPorts is not officially supported in this guide,
it is possible to use MacPorts instead of Homebrew to get all the required dependencies on ma-
cOS. Note also that you may need to install rust and cargo for the Python dependencies to install
correctly.

Windows alternative setup instructions

Windows 10 WSL (Windows Subsystem for Linux) If you are running a recent version of
Windows 10 you can make use of the built-in functionality to natively run Ubuntu binaries di-
rectly on a standard command-prompt. This allows you to use software such as the Zephyr SDK
without setting up a virtual machine.

Warning: Windows 10 version 1803 has an issue that will cause CMake to not work properly
and is fixed in version 1809 (and later). More information can be found in Zephyr Issue 10420.

20 Chapter 2. Developing with Zephyr

https://github.com/zephyrproject-rtos/zephyr/issues/10420

Zephyr Project Documentation, Release 3.6.99

1. Install the Windows Subsystem for Linux (WSL).

Note: For the Zephyr SDK to function properly you will need Windows 10 build 15002 or
greater. You can check which Windows 10 build you are running in the “About your PC”
section of the System Settings. If you are running an older Windows 10 build you might
need to install the Creator’s Update.

2. Follow the Ubuntu instructions in the Install Linux Host Dependencies document.

2.2.3 Install a Toolchain

Zephyr binaries are compiled and linked by a toolchain comprised of a cross-compiler and re-
lated tools which are different from the compiler and tools used for developing software that
runs natively on your host operating system.

You can install the Zephyr SDK to get toolchains for all supported architectures, or install an
alternate toolchain recommended by the SoC vendor or a specific board (check your specific
board-level documentation).

You can configure the Zephyr build system to use a specific toolchain by setting environment vari-
ables such as ZEPHYR_TOOLCHAIN_VARIANT to a supported value, along with additional variable(s)
specific to the toolchain variant.

2.2.4 Updating the Zephyr SDK toolchain

When updating Zephyr SDK, check whether the ZEPHYR_TOOLCHAIN_VARIANT or
ZEPHYR_SDK_INSTALL_DIR environment variables are already set.

• If the variables are not set, the latest compatible version of Zephyr SDK will be selected by
default. Proceed to next step without making any changes.

• If ZEPHYR_TOOLCHAIN_VARIANT is set, the corresponding toolchain will be selected at build
time. Zephyr SDK is identified by the value zephyr. If the ZEPHYR_TOOLCHAIN_VARIANT envi-
ronment variable is not zephyr, then either unset it or change its value to zephyr to make
sure Zephyr SDK is selected.

• If the ZEPHYR_SDK_INSTALL_DIR environment variable is set, it will override the default
lookup location for Zephyr SDK. If you install Zephyr SDK to one of the recommended lo-
cations, you can unset this variable. Otherwise, set it to your chosen install location.

For more information about these environment variables in Zephyr, see Important Environment
Variables.

2.2.5 Cloning the Zephyr Repositories

The Zephyr project source is maintained in the GitHub zephyr repo. External modules used
by Zephyr are found in the parent GitHub Zephyr project. Because of these dependencies, it’s
convenient to use the Zephyr-created west tool to fetch and manage the Zephyr and external
module source code. See Basics for more details.

Once your development tools are installed, use West (Zephyr’s meta-tool) to create, initialize, and
download sources from the zephyr and external module repos. We’ll use the name zephyrpro-
ject, but you can choose any name that does not contain a space anywhere in the path.

west init zephyrproject
cd zephyrproject
west update

2.2. Beyond the Getting Started Guide 21

https://msdn.microsoft.com/en-us/commandline/wsl/install_guide
https://github.com/zephyrproject-rtos/zephyr
https://github.com/zephyrproject-rtos/

Zephyr Project Documentation, Release 3.6.99

The west update command fetches and keeps Modules (External projects) in the zephyrproject
folder in sync with the code in the local zephyr repo.

Warning: You must run west update any time the zephyr/west.yml changes, caused, for
example, when you pull the zephyr repository, switch branches in it, or perform a git bisect
inside of it.

Keeping Zephyr updated

To update the Zephyr project source code, you need to get the latest changes via git. Afterwards,
run west update as mentioned in the previous paragraph.

replace zephyrproject with the path you gave west init
cd zephyrproject/zephyr
git pull
west update

2.2.6 Export Zephyr CMake package

The Zephyr CMake Package can be exported to CMake’s user package registry if it has not already
been done as part of Getting Started Guide.

2.2.7 Board Aliases

Developers who work with multiple boards may find explicit board names cumbersome and
want to use aliases for common targets. This is supported by a CMake file with content like this:

Variable foo_BOARD_ALIAS=bar replaces BOARD=foo with BOARD=bar and
sets BOARD_ALIAS=foo in the CMake cache.
set(pca10028_BOARD_ALIAS nrf51dk/nrf51822)
set(pca10056_BOARD_ALIAS nrf52840dk/nrf52840)
set(k64f_BOARD_ALIAS frdm_k64f)
set(sltb004a_BOARD_ALIAS efr32mg_sltb004a)

and specifying its location in ZEPHYR_BOARD_ALIASES. This enables use of aliases pca10028 in con-
texts like cmake -DBOARD=pca10028 and west -b pca10028.

2.2.8 Build and Run an Application

You can build, flash, and run Zephyr applications on real hardware using a supported host sys-
tem. Depending on your operating system, you can also run it in emulation with QEMU, or as a
native application with native_sim. Additional information about building applications can be
found in the Building an Application section.

Build Blinky

Let’s build the blinky sample application.

22 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Zephyr applications are built to run on specific hardware, called a “board”2. We’ll use the Phytec
reel_board here, but you can change the reel_board build target to another value if you have
a different board. See boards or run west boards from anywhere inside the zephyrproject
directory for a list of supported boards.

1. Go to the zephyr repository:

cd zephyrproject/zephyr

2. Build the blinky sample for the reel_board:

west build -b reel_board samples/basic/blinky

The main build products will be in build/zephyr; build/zephyr/zephyr.elf is the blinky appli-
cation binary in ELF format. Other binary formats, disassembly, and map files may be present
depending on your board.

The other sample applications in the samples folder are documented in samples-and-demos.

Note: If you want to reuse an existing build directory for another board or application, you
need to add the parameter -p=auto to west build to clean out settings and artifacts from the
previous build.

Run the Application by Flashing to a Board

Most hardware boards supported by Zephyr can be flashed by running west flash. This may
require board-specific tool installation and configuration to work properly.

See Run an Application and your specific board’s documentation in boards for additional details.

Setting udev rules

Flashing a board requires permission to directly access the board hardware, usually managed
by installation of the flashing tools. On Linux systems, if the west flash command fails, you
likely need to define udev rules to grant the needed access permission.

Udev is a device manager for the Linux kernel and the udev daemon handles all user space
events raised when a hardware device is added (or removed) from the system. We can add a
rules file to grant access permission by non-root users to certain USB-connected devices.

The OpenOCD (On-Chip Debugger) project conveniently provides a rules file that defined board-
specific rules for most Zephyr-supported arm-based boards, so we recommend installing this
rules file by downloading it from their sourceforge repo, or if you’ve installed the Zephyr SDK
there is a copy of this rules file in the SDK folder:

• Either download the OpenOCD rules file and copy it to the right location:

wget -O 60-openocd.rules https://sf.net/p/openocd/code/ci/master/tree/contrib/60-
↪→openocd.rules?format=raw
sudo cp 60-openocd.rules /etc/udev/rules.d

• or copy the rules file from the Zephyr SDK folder:
2 This has become something of a misnomer over time. While the target can be, and often is, a microprocessor running

on its own dedicated hardware board, Zephyr also supports using QEMU to run targets built for other architectures in
emulation, targets which produce native host system binaries that implement Zephyr’s driver interfaces with POSIX
APIs, and even running different Zephyr-based binaries on CPU cores of differing architectures on the same physical
chip. Each of these hardware configurations is called a “board,” even though that doesn’t always make perfect sense in
context.

2.2. Beyond the Getting Started Guide 23

https://github.com/zephyrproject-rtos/zephyr/blob/main/samples

Zephyr Project Documentation, Release 3.6.99

sudo cp ${ZEPHYR_SDK_INSTALL_DIR}/sysroots/x86_64-pokysdk-linux/usr/share/openocd/
↪→contrib/60-openocd.rules /etc/udev/rules.d

Then, in either case, ask the udev daemon to reload these rules:

sudo udevadm control --reload

Unplug and plug in the USB connection to your board, and you should have permission to access
the board hardware for flashing. Check your board-specific documentation (boards) for further
information if needed.

Run the Application in QEMU

On Linux and macOS, you can run Zephyr applications via emulation on your host system using
QEMU when targeting either the x86 or ARM Cortex-M3 architectures. (QEMU is included with
the Zephyr SDK installation.)

On Windows, you need to install QEMU manually from Download QEMU. After installation, add
path to QEMU installation folder to PATH environment variable. To enable QEMU in Test Runner
(Twister) on Windows, set the environment variable QEMU_BIN_PATH to the path of QEMU instal-
lation folder.

For example, you can build and run the hello_world sample using the x86 emulation board con-
figuration (qemu_x86), with:

From the root of the zephyr repository
west build -b qemu_x86 samples/hello_world
west build -t run

To exit QEMU, type Ctrl-a, then x.

Use qemu_cortex_m3 to target an emulated Arm Cortex-M3 sample.

Run a Sample Application natively (Linux)

You can compile some samples to run as host programs on Linux. See native_sim for more infor-
mation. On 64-bit host operating systems, you need to install a 32-bit C library, or build targeting
native_sim/native/64.

First, build Hello World for native_sim.

From the root of the zephyr repository
west build -b native_sim samples/hello_world

Next, run the application.

west build -t run
or just run zephyr.exe directly:
./build/zephyr/zephyr.exe

Press Ctrl-C to exit.

You can run ./build/zephyr/zephyr.exe --help to get a list of available options.

This executable can be instrumented using standard tools, such as gdb or valgrind.

24 Chapter 2. Developing with Zephyr

https://www.qemu.org/
https://www.qemu.org/download/#windows

Zephyr Project Documentation, Release 3.6.99

2.3 Environment Variables

Various pages in this documentation refer to setting Zephyr-specific environment variables. This
page describes how.

2.3.1 Setting Variables

Option 1: Just Once

To set the environment variable MY_VARIABLE to foo for the lifetime of your current terminal
window:

Linux/macOS

export MY_VARIABLE=foo

Windows

set MY_VARIABLE=foo

Warning: This is best for experimentation. If you close your terminal window, use another
terminal window or tab, restart your computer, etc., this setting will be lost forever.

Using options 2 or 3 is recommended if you want to keep using the setting.

Option 2: In all Terminals

Linux/macOS

Add the export MY_VARIABLE=foo line to your shell’s startup script in your home directory. For
Bash, this is usually ~/.bashrc on Linux or ~/.bash_profile on macOS. Changes in these startup
scripts don’t affect shell instances already started; try opening a new terminal window to get the
new settings.

Windows

You can use the setx program in cmd.exe or the third-party RapidEE program.

To use setx, type this command, then close the terminal window. Any new cmd.exe windows
will have MY_VARIABLE set to foo.

setx MY_VARIABLE foo

To install RapidEE, a freeware graphical environment variable editor, using Chocolatey in an
Administrator command prompt:

choco install rapidee

You can then run rapidee from your terminal to launch the program and set environment vari-
ables. Make sure to use the “User” environment variables area – otherwise, you have to run
RapidEE as administrator. Also make sure to save your changes by clicking the Save button at
top left before exiting. Settings you make in RapidEE will be available whenever you open a new
terminal window.

2.3. Environment Variables 25

https://chocolatey.org/packages/RapidEE

Zephyr Project Documentation, Release 3.6.99

Option 3: Using zephyrrc files

Choose this option if you don’t want to make the variable’s setting available to all of your ter-
minals, but still want to save the value for loading into your environment when you are using
Zephyr.

Linux/macOS

Create a file named ~/.zephyrrc if it doesn’t exist, then add this line to it:

export MY_VARIABLE=foo

To get this value back into your current terminal environment, you must run source
zephyr-env.sh from the main zephyr repository. Among other things, this script sources ~/.
zephyrrc.

The value will be lost if you close the window, etc.; run source zephyr-env.sh again to get it
back.

Windows

Add the line set MY_VARIABLE=foo to the file %userprofile%\zephyrrc.cmd using a text editor
such as Notepad to save the value.

To get this value back into your current terminal environment, youmust run zephyr-env.cmd in
a cmd.exe window after changing directory to the main zephyr repository. Among other things,
this script runs %userprofile%\zephyrrc.cmd.

The value will be lost if you close the window, etc.; run zephyr-env.cmd again to get it back.

These scripts:

• set ZEPHYR_BASE to the location of the zephyr repository

• adds some Zephyr-specific locations (such as zephyr’s scripts directory) to your PATH en-
vironment variable

• loads any settings from the zephyrrc files described above in Option 3: Using zephyrrc files.

You can thus use them any time you need any of these settings.

2.3.2 Zephyr Environment Scripts

You can use the zephyr repository scripts zephyr-env.sh (for macOS and Linux) and zephyr-env.
cmd (for Windows) to load Zephyr-specific settings into your current terminal’s environment. To
do so, run this command from the zephyr repository:

Linux/macOS

source zephyr-env.sh

Windows

zephyr-env.cmd

These scripts:

• set ZEPHYR_BASE to the location of the zephyr repository

• adds some Zephyr-specific locations (such as zephyr’s scripts directory) to your PATH en-
vironment variable

• loads any settings from the zephyrrc files described above in Option 3: Using zephyrrc files.

You can thus use them any time you need any of these settings.

26 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

2.3.3 Important Environment Variables

Some Important Build System Variables can also be set in the environment. Here is a description
of some of these important environment variables. This is not a comprehensive list.

BOARD
See Important Build System Variables.

CONF_FILE
See Important Build System Variables.

SHIELD
See Shields.

ZEPHYR_BASE
See Important Build System Variables.

EXTRA_ZEPHYR_MODULES
See Important Build System Variables.

ZEPHYR_MODULES
See Important Build System Variables.

ZEPHYR_BOARD_ALIASES
See Board Aliases

The following additional environment variables are significant when configuring the toolchain
used to build Zephyr applications.

ZEPHYR_SDK_INSTALL_DIR
Path where Zephyr SDK is installed.

ZEPHYR_TOOLCHAIN_VARIANT
The name of the toolchain to use.

{TOOLCHAIN}_TOOLCHAIN_PATH
Path to the toolchain specified by ZEPHYR_TOOLCHAIN_VARIANT. For example, if
ZEPHYR_TOOLCHAIN_VARIANT=llvm, use LLVM_TOOLCHAIN_PATH. (Note the capitalization
when forming the environment variable name.)

You might need to update some of these variables when you update the Zephyr SDK toolchain.

Emulators and boards may also depend on additional programs. The build system will try to lo-
cate those programs automatically, but may rely on additional CMake or environment variables
to do so. Please consult your emulator’s or board’s documentation for more information. The
following environment variables may be useful in such situations:

PATH
PATH is an environment variable used on Unix-like or Microsoft Windows operating systems
to specify a set of directories where executable programs are located.

2.4 Application Development

Note: In this document, we’ll assume:

• your application directory, <app>, is something like <home>/zephyrproject/app
• its build directory is <app>/build

2.4. Application Development 27

Zephyr Project Documentation, Release 3.6.99

These terms are defined below. On Linux/macOS, <home> is equivalent to ~. On Windows, it’s
%userprofile%.

Keeping your application inside the workspace (<home>/zephyrproject) makes it easier to use
west build and other commands with it. (You can put your application anywhere as long as
ZEPHYR_BASE is set appropriately, though.)

2.4.1 Overview

Zephyr’s build system is based on CMake.

The build system is application-centric, and requires Zephyr-based applications to initiate build-
ing the Zephyr source code. The application build controls the configuration and build process
of both the application and Zephyr itself, compiling them into a single binary.

The main zephyr repository contains Zephyr’s source code, configuration files, and build system.
You also likely have installed variousModules (External projects) alongside the zephyr repository,
which provide third party source code integration.

The files in the application directory link Zephyr and any modules with the application. This
directory contains all application-specific files, such as application-specific configuration files
and source code.

Here are the files in a simple Zephyr application:

<app>
├── CMakeLists.txt
├── app.overlay
├── prj.conf
├── VERSION
└── src

└── main.c

These contents are:

• CMakeLists.txt: This file tells the build system where to find the other application files,
and links the application directory with Zephyr’s CMake build system. This link provides
features supported by Zephyr’s build system, such as board-specific configuration files, the
ability to run and debug compiled binaries on real or emulated hardware, and more.

• app.overlay: This is a devicetree overlay file that specifies application-specific changes
which should be applied to the base devicetree for any board you build for. The purpose
of devicetree overlays is usually to configure something about the hardware used by the
application.

The build system looks for app.overlay by default, but you can add more devicetree over-
lays, and other default files are also searched for.

See Devicetree for more information about devicetree.

• prj.conf: This is a Kconfig fragment that specifies application-specific values for one or
more Kconfig options. These application settings are merged with other settings to pro-
duce the final configuration. The purpose of Kconfig fragments is usually to configure the
software features used by the application.

The build system looks for prj.conf by default, but you can add more Kconfig fragments,
and other default files are also searched for.

See Kconfig Configuration below for more information.

• VERSION: A text file that contains several version information fields. These fields let you
manage the lifecycle of the application and automate providing the application version
when signing application images.

28 Chapter 2. Developing with Zephyr

https://www.cmake.org

Zephyr Project Documentation, Release 3.6.99

See Application version management for more information about this file and how to use it.

• main.c: A source code file. Applications typically contain source files written in C, C++,
or assembly language. The Zephyr convention is to place them in a subdirectory of <app>
named src.

Once an application has been defined, you will use CMake to generate a build directory, which
contains the files you need to build the application and Zephyr, then link them together into a
final binary you can run on your board. The easiest way to do this is with west build, but you
can use CMake directly also. Application build artifacts are always generated in a separate build
directory: Zephyr does not support “in-tree” builds.

The following sections describe how to create, build, and run Zephyr applications, followed by
more detailed reference material.

2.4.2 Application types

We distinguish three basic types of Zephyr application based on where <app> is located:

Application type <app> location
repository zephyr repository
workspace west workspace where Zephyr is installed
freestanding other locations

We’ll discuss these more below. To learn how the build system supports each type, see Zephyr
CMake Package.

Zephyr repository application

An application located within the zephyr source code repository in a Zephyr west workspace is
referred to as a Zephyr repository application. In the following example, the hello_world sample
is a Zephyr repository application:

zephyrproject/
├─── .west/
│ └─── config
└─── zephyr/

├── arch/
├── boards/
├── cmake/
├── samples/
│ ├── hello_world/
│ └── ...
├── tests/
└── ...

Zephyr workspace application

An application located within a workspace, but outside the zephyr repository itself, is referred
to as a Zephyr workspace application. In the following example, app is a Zephyr workspace
application:

zephyrproject/
├─── .west/
│ └─── config
├─── zephyr/

(continues on next page)

2.4. Application Development 29

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
├─── bootloader/
├─── modules/
├─── tools/
├─── <vendor/private-repositories>/
└─── applications/

└── app/

Zephyr freestanding application

A Zephyr application located outside of a Zephyr workspace is referred to as a Zephyr freestand-
ing application. In the following example, app is a Zephyr freestanding application:

<home>/
├─── zephyrproject/
│ ├─── .west/
│ │ └─── config
│ ├── zephyr/
│ ├── bootloader/
│ ├── modules/
│ └── ...
│
└─── app/

├── CMakeLists.txt
├── prj.conf
└── src/

└── main.c

2.4.3 Creating an Application

In Zephyr, you can either use a reference workspace application or create your application by
hand.

Using a Reference Workspace Application

The example-application Git repository contains a reference workspace application. It is recom-
mended to use it as a reference when creating your own application as described in the following
sections.

The example-application repository demonstrates how to use several commonly-used features,
such as:

• Custom board ports

• Custom devicetree bindings

• Custom device drivers

• Continuous Integration (CI) setup, including using twister

• A custom west extension command

Basic example-application Usage The easiest way to get started with the example-application
repository within an existing Zephyr workspace is to follow these steps:

cd <home>/zephyrproject
git clone https://github.com/zephyrproject-rtos/example-application my-app

30 Chapter 2. Developing with Zephyr

https://github.com/zephyrproject-rtos/example-application

Zephyr Project Documentation, Release 3.6.99

The directory name my-app above is arbitrary: change it as needed. You can now go into this
directory and adapt its contents to suit your needs. Since you are using an existing Zephyr
workspace, you can use west build or any other west commands to build, flash, and debug.

Advanced example-application Usage You can also use the example-application repository
as a starting point for building your own customized Zephyr-based software distribution. This
lets you do things like:

• remove Zephyr modules you don’t need

• add additional custom repositories of your own

• override repositories provided by Zephyr with your own versions

• share the results with others and collaborate further

The example-application repository contains a west.ymlfile and is therefore also a westmanifest
repository. Use this to create a new, customized workspace by following these steps:

cd <home>
mkdir my-workspace
cd my-workspace
git clone https://github.com/zephyrproject-rtos/example-application my-manifest-repo
west init -l my-manifest-repo

This will create a new workspace with the T2 topology, with my-manifest-repo as the mani-
fest repository. The my-workspace and my-manifest-repo names are arbitrary: change them as
needed.

Next, customize the manifest repository. The initial contents of this repository will match the
example-application’s contents when you clone it. You can then edit my-manifest-repo/west.
yml to your liking, changing the set of repositories in it as you wish. See Manifest Imports for
many examples of how to add or remove different repositories from your workspace as needed.
Make any other changes you need to other files.

When you are satisfied, you can run:

west update

and your workspace will be ready for use.

If you push the resulting my-manifest-repo repository somewhere else, you can share your
work with others. For example, let’s say you push the repository to https://git.example.com/
my-manifest-repo. Other people can then set up a matching workspace by running:

west init -m https://git.example.com/my-manifest-repo my-workspace
cd my-workspace
west update

From now on, you can collaborate on the shared software by pushing changes to the repositories
you are using and updating my-manifest-repo/west.yml as needed to add and remove reposito-
ries, or change their contents.

Creating an Application by Hand

You can follow these steps to create a basic application directory from scratch. However, using
the example-application repository or one of Zephyr’s samples-and-demos as a starting point is
likely to be easier.

1. Create an application directory.

For example, in a Unix shell or Windows cmd.exe prompt:

2.4. Application Development 31

https://github.com/zephyrproject-rtos/example-application

Zephyr Project Documentation, Release 3.6.99

mkdir app

Warning: Building Zephyr or creating an application in a directory with spaces any-
where on the path is not supported. So the Windows path C:\Users\YourName\app will
work, but C:\Users\Your Name\app will not.

2. Create your source code files.

It’s recommended to place all application source code in a subdirectory named src. This
makes it easier to distinguish between project files and sources.

Continuing the previous example, enter:

cd app
mkdir src

3. Place your application source code in the src sub-directory. For this example, we’ll assume
you created a file named src/main.c.

4. Create a file named CMakeLists.txt in the app directory with the following contents:

cmake_minimum_required(VERSION 3.20.0)

find_package(Zephyr)
project(my_zephyr_app)

target_sources(app PRIVATE src/main.c)

Notes:

• The cmake_minimum_required() call is required by CMake. It is also invoked by the
Zephyr package on the next line. CMake will error out if its version is older than either
the version in your CMakeLists.txt or the version number in the Zephyr package.

• find_package(Zephyr) pulls in the Zephyr build system, which creates a CMake tar-
get named app (see Zephyr CMake Package). Adding sources to this target is how you
include them in the build. The Zephyr package will define Zephyr-Kernel as a CMake
project and enable support for the C, CXX, ASM languages.

• project(my_zephyr_app) defines your application’s CMake project. This must
be called after find_package(Zephyr) to avoid interference with Zephyr’s
project(Zephyr-Kernel).

• target_sources(app PRIVATE src/main.c) is to add your source file to the app target.
This must come after find_package(Zephyr) which defines the target. You can add as
many files as you want with target_sources().

5. Create at least one Kconfig fragment for your application (usually named prj.conf) and set
Kconfig option values needed by your application there. See Kconfig Configuration. If no
Kconfig options need to be set, create an empty file.

6. Configure any devicetree overlays needed by your application, usually in a file named app.
overlay. See Set devicetree overlays.

7. Set up any other files you may need, such as twister configuration files, continuous integra-
tion files, documentation, etc.

2.4.4 Important Build System Variables

You can control the Zephyr build system using many variables. This section describes the most
important ones that every Zephyr developer should know about.

32 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Note: The variables BOARD, CONF_FILE, and DTC_OVERLAY_FILE can be supplied to the build sys-
tem in 3 ways (in order of precedence):

• As a parameter to the west build or cmake invocation via the -D command-line switch.
If you have multiple overlay files, you should use quotations, "file1.overlay;file2.
overlay"

• As Environment Variables.

• As a set(<VARIABLE> <VALUE>) statement in your CMakeLists.txt

• ZEPHYR_BASE: Zephyr base variable used by the build system. find_package(Zephyr) will
automatically set this as a cached CMake variable. But ZEPHYR_BASE can also be set as an
environment variable in order to force CMake to use a specific Zephyr installation.

• BOARD: Selects the board that the application’s build will use for the default configuration.
See boards for built-in boards, and Board Porting Guide for information on adding board
support.

• CONF_FILE: Indicates the name of one or more Kconfig configuration fragment files. Multi-
ple filenames can be separated with either spaces or semicolons. Each file includes Kconfig
configuration values that override the default configuration values.

See The Initial Configuration for more information.

• EXTRA_CONF_FILE: Additional Kconfig configuration fragment files. Multiple filenames can
be separated with either spaces or semicolons. This can be useful in order to leave
CONF_FILE at its default value, but “mix in” some additional configuration options.

• DTC_OVERLAY_FILE: One or more devicetree overlay files to use. Multiple files can be sepa-
rated with semicolons. See Set devicetree overlays for examples and Introduction to device-
tree for information about devicetree and Zephyr.

• EXTRA_DTC_OVERLAY_FILE: Additional devicetree overlay files to use. Multiple files can be
separated with semicolons. This can be useful to leave DTC_OVERLAY_FILE at its default
value, but “mix in” some additional overlay files.

• SHIELD: see Shields

• ZEPHYR_MODULES: A CMake list containing absolute paths of additional directories with
source code, Kconfig, etc. that should be used in the application build. See Modules (Ex-
ternal projects) for details. If you set this variable, it must be a complete list of all modules
to use, as the build system will not automatically pick up any modules from west.

• EXTRA_ZEPHYR_MODULES: Like ZEPHYR_MODULES, except these will be added to the list of mod-
ules found via west, instead of replacing it.

• FILE_SUFFIX: Optional suffix for filenames that will be added to Kconfig fragments and
devicetree overlays (if these files exists, otherwise will fallback to the name without the
prefix). See File Suffixes for details.

Note: You can use a Zephyr Build Configuration CMake packages to share common settings for
these variables.

2.4.5 Application CMakeLists.txt

Every application must have a CMakeLists.txt file. This file is the entry point, or top level, of the
build system. The final zephyr.elf image contains both the application and the kernel libraries.

This section describes some of what you can do in your CMakeLists.txt. Make sure to follow
these steps in order.

2.4. Application Development 33

https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#lists

Zephyr Project Documentation, Release 3.6.99

1. If you only want to build for one board, add the name of the board configuration for your
application on a new line. For example:

set(BOARD qemu_x86)

Refer to boards for more information on available boards.

The Zephyr build system determines a value for BOARD by checking the following, in order
(when a BOARD value is found, CMake stops looking further down the list):

• Any previously used value as determined by the CMake cache takes highest prece-
dence. This ensures you don’t try to run a build with a different BOARD value than
you set during the build configuration step.

• Any value given on the CMake command line (directly or indirectly via west build)
using -DBOARD=YOUR_BOARD will be checked for and used next.

• If an environment variable BOARD is set, its value will then be used.

• Finally, if you set BOARD in your application CMakeLists.txt as described in this step,
this value will be used.

2. If your application uses a configuration file or files other than the usual prj.conf (or
prj_YOUR_BOARD.conf, where YOUR_BOARD is a board name), add lines setting the CONF_FILE
variable to these files appropriately. If multiple filenames are given, separate them by a
single space or semicolon. CMake lists can be used to build up configuration fragment files
in a modular way when you want to avoid setting CONF_FILE in a single place. For example:

set(CONF_FILE "fragment_file1.conf")
list(APPEND CONF_FILE "fragment_file2.conf")

See The Initial Configuration for more information.

3. If your application uses devicetree overlays, you may need to set DTC_OVERLAY_FILE. See
Set devicetree overlays.

4. If your application has its own kernel configuration options, create a Kconfig file in the
same directory as your application’s CMakeLists.txt.

See the Kconfig section of the manual for detailed Kconfig documentation.

An (unlikely) advanced use case would be if your application has its own unique configu-
ration options that are set differently depending on the build configuration.

If you just want to set application specific values for existing Zephyr configuration options,
refer to the CONF_FILE description above.

Structure your Kconfig file like this:

SPDX-License-Identifier: Apache-2.0

mainmenu "Your Application Name"

Your application configuration options go here

Sources Kconfig.zephyr in the Zephyr root directory.
#
Note: All 'source' statements work relative to the Zephyr root directory (due
to the $srctree environment variable being set to $ZEPHYR_BASE). If you want
to 'source' relative to the current Kconfig file instead, use 'rsource' (or a
path relative to the Zephyr root).
source "Kconfig.zephyr"

Note: Environment variables in source statements are expanded directly, so you do not
need to define an option env="ZEPHYR_BASE" Kconfig “bounce” symbol. If you use such a

34 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

symbol, it must have the same name as the environment variable.

See Kconfig extensions for more information.

The Kconfig file is automatically detected when placed in the application directory, but it
is also possible for it to be found elsewhere if the CMake variable KCONFIG_ROOT is set with
an absolute path.

5. Specify that the application requires Zephyr on a new line, after any lines added from the
steps above:

find_package(Zephyr)
project(my_zephyr_app)

Note: find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE}) can be used if enforc-
ing a specific Zephyr installation by explicitly setting the ZEPHYR_BASE environment vari-
able should be supported. All samples in Zephyr supports the ZEPHYR_BASE environment
variable.

6. Now add any application source files to the ‘app’ target library, each on their own line, like
so:

target_sources(app PRIVATE src/main.c)

Below is a simple example CMakeList.txt:

set(BOARD qemu_x86)

find_package(Zephyr)
project(my_zephyr_app)

target_sources(app PRIVATE src/main.c)

The Cmake property HEX_FILES_TO_MERGE leverages the application configuration provided by
Kconfig and CMake to let you merge externally built hex files with the hex file generated when
building the Zephyr application. For example:

set_property(GLOBAL APPEND PROPERTY HEX_FILES_TO_MERGE
${app_bootloader_hex}
${PROJECT_BINARY_DIR}/${KERNEL_HEX_NAME}
${app_provision_hex})

2.4.6 CMakeCache.txt

CMake uses a CMakeCache.txt file as persistent key/value string storage used to cache values
between runs, including compile and build options and paths to library dependencies. This cache
file is created when CMake is run in an empty build folder.

For more details about the CMakeCache.txt file see the official CMake documentation runningc-
make .

2.4.7 Application Configuration

2.4. Application Development 35

http://cmake.org/runningcmake/
http://cmake.org/runningcmake/

Zephyr Project Documentation, Release 3.6.99

Application Configuration Directory

Zephyr will use configuration files from the application’s configuration directory except for files
with an absolute path provided by the arguments described earlier, for example CONF_FILE, EX-
TRA_CONF_FILE, DTC_OVERLAY_FILE, and EXTRA_DTC_OVERLAY_FILE.

The application configuration directory is defined by the APPLICATION_CONFIG_DIR variable.

APPLICATION_CONFIG_DIR will be set by one of the sources below with the highest priority listed
first.

1. If APPLICATION_CONFIG_DIR is specified by the user with
-DAPPLICATION_CONFIG_DIR=<path> or in a CMake file before find_package(Zephyr)
then this folder is used a the application’s configuration directory.

2. The application’s source directory.

Kconfig Configuration

Application configuration options are usually set in prj.conf in the application directory. For
example, C++ support could be enabled with this assignment:

CONFIG_CPP=y

Looking at existing samples is a good way to get started.

See Setting Kconfig configuration values for detailed documentation on setting Kconfig configu-
ration values. The The Initial Configuration section on the same page explains how the initial
configuration is derived. See kconfig-search for a complete list of configuration options. See
Hardening Tool for security information related with Kconfig options.

The other pages in the Kconfig section of the manual are also worth going through, especially if
you planning to add new configuration options.

Experimental features Zephyr is a project under constant development and thus there are
features that are still in early stages of their development cycle. Such features will be marked
[EXPERIMENTAL] in their Kconfig title.

The CONFIG_WARN_EXPERIMENTAL setting can be used to enable warnings at CMake configure time
if any experimental feature is enabled.

CONFIG_WARN_EXPERIMENTAL=y

For example, if option CONFIG_FOO is experimental, then enabling it and CON-
FIG_WARN_EXPERIMENTAL will print the following warning at CMake configure time when
you build an application:

warning: Experimental symbol FOO is enabled.

Devicetree Overlays

See Set devicetree overlays.

File Suffixes

Zephyr applications might want to have a single code base with multiple configurations for dif-
ferent build/product variants which would necessitate different Kconfig options and devicetree
configuration. In order to better configure this, Zephyr provides a FILE_SUFFIX option when

36 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

configuring applications that can be automatically appended to filenames. This is applied to
Kconfig fragments and board overlays but with a fallback so that if such files do not exist, the
files without these suffixes will be used instead.

Given the following example project layout:

<app>
├── CMakeLists.txt
├── prj.conf
├── prj_mouse.conf
├── boards
│ ├── native_posix.overlay
│ └── qemu_cortex_m3_mouse.overlay
└── src

└── main.c

• If this is built normally without FILE_SUFFIX being defined for native_posix then prj.conf
and boards/native_posix.overlay will be used.

• If this is build normally without FILE_SUFFIX being defined for qemu_cortex_m3 then prj.
conf will be used, no application devicetree overlay will be used.

• If this is built with FILE_SUFFIX set to mouse for native_posix then prj_mouse.conf and
boards/native_posix.overlay will be used (there is no native_posix_mouse.overlay file
so it falls back to native_posix.overlay).

• If this is build with FILE_SUFFIX set to mouse for qemu_cortex_m3 then prj_mouse.conf will
be used and boards/qemu_cortex_m3_mouse.overlay will be used.

Note: When CONF_FILE is set in the form of prj_X.conf then the X will be used as the build type.
If this is combined with FILE_SUFFIX then the file suffix option will take priority over the build
type.

2.4.8 Application-Specific Code

Application-specific source code files are normally added to the application’s src directory. If
the application adds a large number of files the developer can group them into sub-directories
under src, to whatever depth is needed.

Application-specific source code should not use symbol name prefixes that have been reserved
by the kernel for its own use. For more information, see Naming Conventions.

Third-party Library Code

It is possible to build library code outside the application’s src directory but it is important that
both application and library code targets the same Application Binary Interface (ABI). On most
architectures there are compiler flags that control the ABI targeted, making it important that
both libraries and applications have certain compiler flags in common. It may also be useful for
glue code to have access to Zephyr kernel header files.

To make it easier to integrate third-party components, the Zephyr build system has defined
CMake functions that give application build scripts access to the zephyr compiler options. The
functions are documented and defined in cmake/modules/extensions.cmake and follow the nam-
ing convention zephyr_get_<type>_<format>.

The following variables will often need to be exported to the third-party build system.

• CMAKE_C_COMPILER, CMAKE_AR.

• ARCH and BOARD, together with several variables that identify the Zephyr kernel version.

2.4. Application Development 37

https://github.com/zephyrproject-rtos/zephyr/wiki/Naming-Conventions
https://github.com/zephyrproject-rtos/zephyr/blob/main/cmake/modules/extensions.cmake

Zephyr Project Documentation, Release 3.6.99

samples/application_development/external_lib is a sample project that demonstrates some of
these features.

2.4.9 Building an Application

The Zephyr build system compiles and links all components of an application into a single appli-
cation image that can be run on simulated hardware or real hardware.

Like any other CMake-based system, the build process takes place in two stages. First, build files
(also known as a buildsystem) are generated using the cmake command-line tool while specifying
a generator. This generator determines the native build tool the buildsystem will use in the
second stage. The second stage runs the native build tool to actually build the source files and
generate an image. To learn more about these concepts refer to the CMake introduction in the
official CMake documentation.

Although the default build tool in Zephyr is west, Zephyr’s meta-tool, which invokes cmake and
the underlying build tool (ninja or make) behind the scenes, you can also choose to invoke cmake
directly if you prefer. On Linux and macOS you can choose between the make and ninja gener-
ators (i.e. build tools), whereas on Windows you need to use ninja, since make is not supported
on this platform. For simplicity we will use ninja throughout this guide, and if you choose to use
west build to build your application know that it will default to ninja under the hood.

As an example, let’s build the Hello World sample for the reel_board:

Using west:

west build -b reel_board samples/hello_world

Using CMake and ninja:

Use cmake to configure a Ninja-based buildsystem:
cmake -Bbuild -GNinja -DBOARD=reel_board samples/hello_world

Now run the build tool on the generated build system:
ninja -Cbuild

On Linux and macOS, you can also build with make instead of ninja:

Using west:

• to use make just once, add -- -G"Unix Makefiles" to the west build command line; see the
west build documentation for an example.

• to use make by default from now on, run west config build.generator "Unix Makefiles".

Using CMake directly:

Use cmake to configure a Make-based buildsystem:
cmake -Bbuild -DBOARD=reel_board samples/hello_world

Now run the build tool on the generated build system:
make -Cbuild

Basics

1. Navigate to the application directory <app>.

2. Enter the following commands to build the application’s zephyr.elf image for the board
specified in the command-line parameters:

Using west:

38 Chapter 2. Developing with Zephyr

https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/application_development/external_lib
https://cmake.org/cmake/help/latest/manual/cmake.1.html#description

Zephyr Project Documentation, Release 3.6.99

west build -b <board>

Using CMake and ninja:

mkdir build && cd build

Use cmake to configure a Ninja-based buildsystem:
cmake -GNinja -DBOARD=<board> ..

Now run the build tool on the generated build system:
ninja

If desired, you can build the application using the configuration settings specified in an
alternate .conf file using the CONF_FILE parameter. These settings will override the settings
in the application’s .config file or its default .conf file. For example:

Using west:

west build -b <board> -- -DCONF_FILE=prj.alternate.conf

Using CMake and ninja:

mkdir build && cd build
cmake -GNinja -DBOARD=<board> -DCONF_FILE=prj.alternate.conf ..
ninja

As described in the previous section, you can instead choose to permanently set the board
and configuration settings by either exporting BOARD and CONF_FILE environment variables
or by setting their values in your CMakeLists.txt using set() statements. Additionally,
west allows you to set a default board.

Build Directory Contents

When using the Ninja generator a build directory looks like this:

<app>/build
├── build.ninja
├── CMakeCache.txt
├── CMakeFiles
├── cmake_install.cmake
├── rules.ninja
└── zephyr

The most notable files in the build directory are:

• build.ninja, which can be invoked to build the application.

• A zephyrdirectory, which is the working directory of the generated build system, and where
most generated files are created and stored.

After running ninja, the following build output files will be written to the zephyr sub-directory
of the build directory. (This is not the Zephyr base directory, which contains the Zephyr source
code etc. and is described above.)

• .config, which contains the configuration settings used to build the application.

Note: The previous version of .config is saved to .config.oldwhenever the configuration
is updated. This is for convenience, as comparing the old and new versions can be handy.

• Various object files (.o files and .a files) containing compiled kernel and application code.

2.4. Application Development 39

Zephyr Project Documentation, Release 3.6.99

• zephyr.elf, which contains the final combined application and kernel binary. Other binary
output formats, such as .hex and .bin, are also supported.

Rebuilding an Application

Application development is usually fastest when changes are continually tested. Frequently re-
building your application makes debugging less painful as the application becomes more com-
plex. It’s usually a good idea to rebuild and test after any major changes to the application’s
source files, CMakeLists.txt files, or configuration settings.

Important: The Zephyr build system rebuilds only the parts of the application image potentially
affected by the changes. Consequently, rebuilding an application is often significantly faster than
building it the first time.

Sometimes the build system doesn’t rebuild the application correctly because it fails to recompile
one or more necessary files. You can force the build system to rebuild the entire application from
scratch with the following procedure:

1. Open a terminal console on your host computer, and navigate to the build directory <app>/
build.

2. Enter one of the following commands, depending on whether you want to use west or cmake
directly to delete the application’s generated files, except for the .config file that contains
the application’s current configuration information.

west build -t clean

or

ninja clean

Alternatively, enter one of the following commands to delete all generated files, including
the .config files that contain the application’s current configuration information for those
board types.

west build -t pristine

or

ninja pristine

If you use west, you can take advantage of its capability to automatically make the build
folder pristine whenever it is required.

3. Rebuild the application normally following the steps specified in Building an Application
above.

Building for a board revision

The Zephyr build system has support for specifying multiple hardware revisions of a single board
with small variations. Using revisions allows the board support files to make minor adjustments
to a board configuration without duplicating all the files described in Create your board directory
for each revision.

To build for a particular revision, use <board>@<revision> instead of plain <board>. For example:

Using west:

40 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

west build -b <board>@<revision>

Using CMake and ninja:

mkdir build && cd build
cmake -GNinja -DBOARD=<board>@<revision> ..
ninja

Check your board’s documentation for details on whether it has multiple revisions, and what
revisions are supported.

When targeting a board revision, the active revision will be printed at CMake configure time,
like this:

-- Board: plank, Revision: 1.5.0

2.4.10 Run an Application

An application image can be run on a real board or emulated hardware.

Running on a Board

Most boards supported by Zephyr let you flash a compiled binary using the flash target to copy
the binary to the board and run it. Follow these instructions to flash and run an application on
real hardware:

1. Build your application, as described in Building an Application.

2. Make sure your board is attached to your host computer. Usually, you’ll do this via USB.

3. Run one of these console commands from the build directory, <app>/build, to flash the
compiled Zephyr image and run it on your board:

west flash

or

ninja flash

The Zephyr build system integrates with the board support files to use hardware-specific tools
to flash the Zephyr binary to your hardware, then run it.

Each time you run the flash command, your application is rebuilt and flashed again.

In cases where board support is incomplete, flashing via the Zephyr build system may not be
supported. If you receive an error message about flash support being unavailable, consult your
board’s documentation for additional information on how to flash your board.

Note: When developing on Linux, it’s common to need to install board-specific udev rules to
enable USB device access to your board as a non-root user. If flashing fails, consult your board’s
documentation to see if this is necessary.

Running in an Emulator

Zephyr has built-in emulator support for QEMU. It allows you to run and test an application
virtually, before (or in lieu of) loading and running it on actual target hardware.

2.4. Application Development 41

Zephyr Project Documentation, Release 3.6.99

Check out Beyond the Getting Started Guide for additional steps needed on Windows.

Follow these instructions to run an application via QEMU:

1. Build your application for one of the QEMU boards, as described in Building an Application.

For example, you could set BOARD to:

• qemu_x86 to emulate running on an x86-based board

• qemu_cortex_m3 to emulate running on an ARM Cortex M3-based board

2. Run one of these console commands from the build directory, <app>/build, to run the
Zephyr binary in QEMU:

west build -t run

or

ninja run

3. Press Ctrl A, X to stop the application from running in QEMU.

The application stops running and the terminal console prompt redisplays.

Each time you execute the run command, your application is rebuilt and run again.

Note: If the (Linux only) Zephyr SDK is installed, the run target will use the SDK’s QEMU binary
by default. To use another version of QEMU, set the environment variable QEMU_BIN_PATH to the
path of the QEMU binary you want to use instead.

Note: You can choose a specific emulator by appending _<emulator> to your target name, for
example west build -t run_qemu or ninja run_qemu for QEMU.

2.4.11 Custom Board, Devicetree and SOC Definitions

In cases where the board or platform you are developing for is not yet supported by Zephyr, you
can add board, Devicetree and SOC definitions to your application without having to add them
to the Zephyr tree.

The structure needed to support out-of-tree board and SOC development is similar to how boards
and SOCs are maintained in the Zephyr tree. By using this structure, it will be much easier to
upstream your platform related work into the Zephyr tree after your initial development is done.

Add the custom board to your application or a dedicated repository using the following structure:

boards/
soc/
CMakeLists.txt
prj.conf
README.rst
src/

where the boards directory hosts the board you are building for:

.
├── boards
│ └── x86
│ └── my_custom_board
│ ├── doc

(continues on next page)

42 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
│ │ └── img
│ └── support
└── src

and the soc directory hosts any SOC code. You can also have boards that are supported by a SOC
that is available in the Zephyr tree.

Boards

Use the proper architecture folder name (e.g., x86, arm, etc.) under boards for my_custom_board.
(See boards for a list of board architectures.)

Documentation (under doc/) and support files (under support/) are optional, but will be needed
when submitting to Zephyr.

The contents of my_custom_board should follow the same guidelines for any Zephyr board, and
provide the following files:

my_custom_board_defconfig
my_custom_board.dts
my_custom_board.yaml
board.cmake
board.h
CMakeLists.txt
doc/
Kconfig.board
Kconfig.defconfig
pinmux.c
support/

Once the board structure is in place, you can build your application targeting this board by spec-
ifying the location of your custom board information with the -DBOARD_ROOT parameter to the
CMake build system:

Using west:

west build -b <board name> -- -DBOARD_ROOT=<path to boards>

Using CMake and ninja:

cmake -Bbuild -GNinja -DBOARD=<board name> -DBOARD_ROOT=<path to boards> .
ninja -Cbuild

This will use your custom board configuration and will generate the Zephyr binary into your
application directory.

You can also define the BOARD_ROOT variable in the application CMakeLists.txt file. Make sure
to do so before pulling in the Zephyr boilerplate with find_package(Zephyr ...).

Note: When specifying BOARD_ROOT in a CMakeLists.txt, then an absolute path must be provided,
for example list(APPEND BOARD_ROOT ${CMAKE_CURRENT_SOURCE_DIR}/<extra-board-root>).
When using -DBOARD_ROOT=<board-root> both absolute and relative paths can be used. Rela-
tive paths are treated relatively to the application directory.

SOC Definitions

Similar to board support, the structure is similar to how SOCs are maintained in the Zephyr tree,
for example:

2.4. Application Development 43

Zephyr Project Documentation, Release 3.6.99

soc
└── arm

└── st_stm32
├── common
└── stm32l0

The file soc/Kconfig will create the top-level SoC/CPU/Configuration Selectionmenu in Kconfig.

Out of tree SoC definitions can be added to this menu using the SOC_ROOT CMake variable. This
variable contains a semicolon-separated list of directories which contain SoC support files.

Following the structure above, the following files can be added to load more SoCs into the menu.

soc
└── arm

└── st_stm32
├── Kconfig
├── Kconfig.soc
└── Kconfig.defconfig

The Kconfig files above may describe the SoC or load additional SoC Kconfig files.

An example of loading stm31l0 specific Kconfig files in this structure:

soc
└── arm

└── st_stm32
├── Kconfig.soc
└── stm32l0

└── Kconfig.series

can be done with the following content in st_stm32/Kconfig.soc:

rsource "*/Kconfig.series"

Once the SOC structure is in place, you can build your application targeting this platform by
specifying the location of your custom platform information with the -DSOC_ROOT parameter to
the CMake build system:

Using west:

west build -b <board name> -- -DSOC_ROOT=<path to soc> -DBOARD_ROOT=<path to boards>

Using CMake and ninja:

cmake -Bbuild -GNinja -DBOARD=<board name> -DSOC_ROOT=<path to soc> -DBOARD_ROOT=<path to␣
↪→boards> .
ninja -Cbuild

This will use your custom platform configurations and will generate the Zephyr binary into your
application directory.

See Build settings for information on setting SOC_ROOT in a module’s zephyr/module.yml file.

Or you can define the SOC_ROOT variable in the application CMakeLists.txt file. Make sure to do
so before pulling in the Zephyr boilerplate with find_package(Zephyr ...).

Note: When specifying SOC_ROOT in a CMakeLists.txt, then an absolute path must be provided,
for example list(APPEND SOC_ROOT ${CMAKE_CURRENT_SOURCE_DIR}/<extra-soc-root>. When
using -DSOC_ROOT=<soc-root> both absolute and relative paths can be used. Relative paths are
treated relatively to the application directory.

44 Chapter 2. Developing with Zephyr

https://github.com/zephyrproject-rtos/zephyr/blob/main/soc/Kconfig

Zephyr Project Documentation, Release 3.6.99

Devicetree Definitions

Devicetree directory trees are found in APPLICATION_SOURCE_DIR, BOARD_DIR, and ZEPHYR_BASE,
but additional trees, or DTS_ROOTs, can be added by creating this directory tree:

include/
dts/common/
dts/arm/
dts/
dts/bindings/

Where ‘arm’ is changed to the appropriate architecture. Each directory is optional. The binding
directory contains bindings and the other directories contain files that can be included from DT
sources.

Once the directory structure is in place, you can use it by specifying its location through the
DTS_ROOT CMake Cache variable:

Using west:

west build -b <board name> -- -DDTS_ROOT=<path to dts root>

Using CMake and ninja:

cmake -Bbuild -GNinja -DBOARD=<board name> -DDTS_ROOT=<path to dts root> .
ninja -Cbuild

You can also define the variable in the application CMakeLists.txtfile. Make sure to do sobefore
pulling in the Zephyr boilerplate with find_package(Zephyr ...).

Note: When specifying DTS_ROOT in a CMakeLists.txt, then an absolute path must be provided,
for example list(APPEND DTS_ROOT ${CMAKE_CURRENT_SOURCE_DIR}/<extra-dts-root>. When
using -DDTS_ROOT=<dts-root> both absolute and relative paths can be used. Relative paths are
treated relatively to the application directory.

Devicetree source are passed through the C preprocessor, so you can include files that can be
located in a DTS_ROOT directory. By convention devicetree include files have a .dtsi extension.

You can also use the preprocessor to control the content of a devicetree file, by specifying direc-
tives through the DTS_EXTRA_CPPFLAGS CMake Cache variable:

Using west:

west build -b <board name> -- -DDTS_EXTRA_CPPFLAGS=-DTEST_ENABLE_FEATURE

Using CMake and ninja:

cmake -Bbuild -GNinja -DBOARD=<board name> -DDTS_EXTRA_CPPFLAGS=-DTEST_ENABLE_FEATURE .
ninja -Cbuild

2.5 Debugging

2.5.1 Application Debugging

This section is a quick hands-on reference to start debugging your application with QEMU. Most
content in this section is already covered in QEMU and GNU_Debugger reference manuals.

In this quick reference, you’ll find shortcuts, specific environmental variables, and parameters
that can help you to quickly set up your debugging environment.

2.5. Debugging 45

http://wiki.qemu.org/Main_Page
http://www.gnu.org/software/gdb

Zephyr Project Documentation, Release 3.6.99

The simplest way to debug an application running in QEMU is using the GNU Debugger and
setting a local GDB server in your development system through QEMU.

You will need an ELF (Executable and Linkable Format) binary image for debugging purposes.
The build system generates the image in the build directory. By default, the kernel binary name
is zephyr.elf. The name can be changed using CONFIG_KERNEL_BIN_NAME.

GDB server

We will use the standard 1234 TCP port to open a GDB (GNU Debugger) server instance. This
port number can be changed for a port that best suits the development environment. There are
multiple ways to do this. Each way starts a QEMU instance with the processor halted at startup
and with a GDB server instance listening for a connection.

Running QEMU directly You can run QEMU to listen for a “gdb connection” before it starts
executing any code to debug it.

qemu -s -S <image>

will setup Qemu to listen on port 1234 and wait for a GDB connection to it.

The options used above have the following meaning:

• -S Do not start CPU at startup; rather, you must type ‘c’ in the monitor.

• -s Shorthand for -gdb tcp::1234: open a GDB server on TCP port 1234.

Running QEMU via ninja Run the following inside the build directory of an application:

ninja debugserver

QEMU will write the console output to the path specified in ${QEMU_PIPE} via CMake, typically
qemu-fifo within the build directory. You may monitor this file during the run with tail -f
qemu-fifo.

Running QEMU via west Run the following from your project root:

west build -t debugserver_qemu

QEMU will write the console output to the terminal from which you invoked west.

Configuring the gdbserver listening device The Kconfig option CON-
FIG_QEMU_GDBSERVER_LISTEN_DEV controls the listening device, which can be a TCP port
number or a path to a character device. GDB releases 9.0 and newer also support Unix domain
sockets.

If the option is unset, then the QEMU invocation will lack a -s or a -gdb parameter. You can
then use the QEMU_EXTRA_FLAGS shell environment variable to pass in your own listen device
configuration.

GDB client

Connect to the server by running gdb and giving these commands:

46 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

$ path/to/gdb path/to/zephyr.elf
(gdb) target remote localhost:1234
(gdb) dir ZEPHYR_BASE

Note: Substitute the correct ZEPHYR_BASE for your system.

You can use a local GDB configuration .gdbinit to initialize your GDB instance on every run.
Your home directory is a typical location for .gdbinit, but you can configure GDB to load from
other locations, including the directory from which you invoked gdb. This example file performs
the same configuration as above:

target remote localhost:1234
dir ZEPHYR_BASE

Alternate interfaces GDB provides a curses-based interface that runs in the terminal. Pass
the --tui option when invoking gdb or give the tui enable command within gdb.

Note: The GDB version on your development system might not support the --tui option. Please
make sure you use the GDB binary from the SDK which corresponds to the toolchain that has
been used to build the binary.

Finally, the command below connects to the GDB server using the DDD (Data Display Debugger), a
graphical frontend for GDB. The following command loads the symbol table from the ELF binary
file, in this instance, zephyr.elf.

ddd --gdb --debugger "gdb zephyr.elf"

Both commands execute gdb. The command name might change depending on the toolchain you
are using and your cross-development tools.

dddmay not be installed in your development system by default. Follow your system instructions
to install it. For example, use sudo apt-get install ddd on an Ubuntu system.

Debugging

As configured above, when you connect the GDB client, the application will be stopped at sys-
tem startup. You may set breakpoints, step through code, etc. as when running the application
directly within gdb.

Note: gdb will not print the system console output as the application runs, unlike when you
run a native application in GDB directly. If you just continue after connecting the client, the
application will run, but nothing will appear to happen. Check the console output as described
above.

2.5.2 Debug with Eclipse

Overview

CMake supports generating a project description file that can be imported into the Eclipse Inte-
grated Development Environment (IDE) and used for graphical debugging.

2.5. Debugging 47

Zephyr Project Documentation, Release 3.6.99

The GNU MCU Eclipse plug-ins provide a mechanism to debug ARM projects in Eclipse with py-
OCD, Segger J-Link, and OpenOCD debugging tools.

The following tutorial demonstrates how to debug a Zephyr application in Eclipse with pyOCD in
Windows. It assumes you have already installed the GCC ARM Embedded toolchain and pyOCD.

Set Up the Eclipse Development Environment

1. Download and install Eclipse IDE for C/C++ Developers.

2. In Eclipse, install the GNU MCU Eclipse plug-ins by opening the menu Window->Eclipse
Marketplace..., searching for GNU MCU Eclipse, and clicking Install on the matching
result.

3. Configure the path to the pyOCD GDB server by opening the menu Window->Preferences,
navigating to MCU, and setting the Global pyOCD Path.

Generate and Import an Eclipse Project

1. Set up a GNU Arm Embedded toolchain as described in GNU Arm Embedded.

2. Navigate to a folder outside of the Zephyr tree to build your application.

On Windows
cd %userprofile%

Note: If the build directory is a subdirectory of the source directory, as is usually done in
Zephyr, CMake will warn:

“The build directory is a subdirectory of the source directory.

This is not supported well by Eclipse. It is strongly recommended to use a build directory
which is a sibling of the source directory.”

3. Configure your application with CMake and build it with ninja. Note the different CMake
generator specified by the -G"Eclipse CDT4 - Ninja" argument. This will generate an
Eclipse project description file, .project, in addition to the usual ninja build files.

Using west:

west build -b frdm_k64f %ZEPHYR_BASE%\samples\synchronization -- -G"Eclipse CDT4 -␣
↪→Ninja"

Using CMake and ninja:

cmake -Bbuild -GNinja -DBOARD=frdm_k64f -G"Eclipse CDT4 - Ninja" %ZEPHYR_BASE%\samples\
↪→synchronization
ninja -Cbuild

4. In Eclipse, import your generated project by opening the menu File->Import... and se-
lecting the option Existing Projects into Workspace. Browse to your application build
directory in the choice, Select root directory:. Check the box for your project in the list
of projects found and click the Finish button.

Create a Debugger Configuration

1. Open the menu Run->Debug Configurations....

2. Select GDB PyOCD Debugging, click the New button, and configure the following options:

48 Chapter 2. Developing with Zephyr

https://gnu-mcu-eclipse.github.io/plugins/install/
https://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/oxygen2
https://gnu-mcu-eclipse.github.io/plugins/install/

Zephyr Project Documentation, Release 3.6.99

• In the Main tab:

– Project: my_zephyr_app@build
– C/C++ Application: zephyr/zephyr.elf

• In the Debugger tab:

– pyOCD Setup

* Executable path: $pyocd_path\$pyocd_executable

* Uncheck “Allocate console for semihosting”

– Board Setup

* Bus speed: 8000000 Hz

* Uncheck “Enable semihosting”

– GDB Client Setup

* Executable path example (use your GNUARMEMB_TOOLCHAIN_PATH): C:\
gcc-arm-none-eabi-6_2017-q2-update\bin\arm-none-eabi-gdb.exe

• In the SVD Path tab:

– File path: <workspace top>\modules\hal\nxp\mcux\devices\MK64F12\MK64F12.
xml

Note: This is optional. It provides the SoC’s memory-mapped register addresses and
bitfields to the debugger.

3. Click the Debug button to start debugging.

RTOS Awareness

Support for Zephyr RTOS awareness is implemented in pyOCD v0.11.0 and later. It is compatible
with GDB PyOCD Debugging in Eclipse, but you must enable CONFIG_DEBUG_THREAD_INFO=y
in your application.

2.5.3 Debugging I2C communication

There is a possibility to log all or some of the I2C transactions done by the application. This fea-
ture is enabled by the Kconfig option CONFIG_I2C_DUMP_MESSAGES, but it uses the LOG_DBG function
to print the contents so the CONFIG_I2C_LOG_LEVEL_DBG option must also be enabled.

The sample output of the dump looks like this:

D: I2C msg: io_i2c_ctrl7_port0, addr=50
D: W len=01: 00
D: R Sr P len=08:
D: contents:
D: 43 42 41 00 00 00 00 00 |CBA.....

The first line indicates the I2C controller and the target address of the transaction. In above
example, the I2C controller is named io_i2c_ctrl7_port0 and the target device address is 0x50

Note: the address, length and contents values are in hexadecimal, but lack the 0x prefix

2.5. Debugging 49

https://github.com/mbedmicro/pyOCD/releases/tag/v0.11.0

Zephyr Project Documentation, Release 3.6.99

Next lines contain messages, both sent and received. The contents of write messages is al-
ways shown, while the content of read messages is controlled by a parameter to the function
i2c_dump_msgs_rw. This function is available for use by user, but is also called internally by
i2c_transfer API function with read content dump enabled. Before the length parameter, the
header of the message is printed using abbreviations:

• W - write message

• R - read message

• Sr - restart bit

• P - stop bit

The above example shows one write message with byte 0x00 representing the address of register
to read from the I2C target. After that the log shows the length of received message and following
that, the bytes read from the target 43 42 41 00 00 00 00 00. The content dump consist of both
the hex and ASCII representation.

Filtering the I2C communication dump

By default, all I2C communication is logged between all I2C controllers and I2C targets. It may
litter the log with unrelated devices and make it difficult to effectively debug the communication
with a device of interest.

Enable the Kconfig option CONFIG_I2C_DUMP_MESSAGES_ALLOWLIST to create an allowlist of I2C
targets to log. The allowlist of devices is configured using the devicetree, for example:

/ {
i2c {

display0: some-display@a {
...

};
sensor3: some-sensor@b {

...
};

};

i2c-dump-allowlist {
compatible = "zephyr,i2c-dump-allowlist";
devices = < &display0 >, < &sensor3 >;

};
};

The filters nodes are identified by the compatible string with zephyr,i2c-dump-allowlist value.
The devices are selected using the devices property with phandles to the devices on the I2C bus.

In the above example, the communication with device display0 and sensor3 will be displayed
in the log.

2.6 API Status and Guidelines

2.6.1 API Overview

The table lists Zephyr’s APIs and information about them, including their current stabil-
ity level. More details about API changes between major releases are available in the
zephyr_release_notes.

The version column uses semantic version, and has the following expectations:

50 Chapter 2. Developing with Zephyr

https://semver.org/

Zephyr Project Documentation, Release 3.6.99

• Major version zero (0.y.z) is for initial development. Anything MAY change at any time. The
public API SHOULD NOT be considered stable.

– If minor version is up to one (0.1.z), API is considered experimental.

– If minor version is larger than one (0.y.z | y > 1), API is considered unstable.

• Version 1.0.0 defines the public API. The way in which the version number is incremented
after this release is dependent on this public API and how it changes.

– APIs with major versions equal or larger than one (x.y.z | x >= 1) are considered stable.

– All existing stable APIs in Zephyr will be start with version 1.0.0.

• Patch version Z (x.y.Z | x > 0) MUST be incremented if only backwards compatible bug fixes
are introduced. A bug fix is defined as an internal change that fixes incorrect behavior.

• Minor version Y (x.Y.z | x > 0) MUST be incremented if new, backwards compatible function-
ality is introduced to the public API. It MUST be incremented if any public API functionality
is marked as deprecated. It MAY be incremented if substantial new functionality or im-
provements are introduced within the private code. It MAY include patch level changes.
Patch version MUST be reset to 0 when minor version is incremented.

• Major version X (x.Y.z | x > 0) MUST be incremented if a compatibility breaking change was
made to the API.

Note: Version for existing APIs are initially set based on the current state of the APIs:

• 0.1.0 denotes an experimental API

• 0.8.0 denote an unstable API,

• and finally 1.0.0 indicates a stable APIs.

Changes to APIs in the future will require adapting the version following the guidelines above.

API Version Available in Zephyr Since
Audio

Audio Codec Interface 0.1.0 v1.13.0
Digital Microphone Interface 0.1.0 v1.13.0

Bindesc Define
Connectivity

Bluetooth APIs
AUDIO
Attribute Protocol (ATT)
Audio Input Control Service (AICS)
Battery Service (BAS)
Bluetooth Audio

Codec capability parsing APIs
Codec config parsing APIs

Bluetooth Basic Audio Profile
BAP Broadcast APIs

BAP Broadcast Sink APIs
BAP Broadcast Source APIs

BAP Broadcast Sink APIs
BAP Broadcast Source APIs
BAP Unicast Client APIs
BAP Unicast Server APIs

Bluetooth Controller
Bluetooth Gaming Audio Profile
Bluetooth Mesh

continues on next page

2.6. API Status and Guidelines 51

../../doxygen/html/group__audio__interface.html
../../doxygen/html/group__audio__codec__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.13.0
../../doxygen/html/group__audio__dmic__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.13.0
../../doxygen/html/group__bindesc__define.html
../../doxygen/html/group__connectivity.html
../../doxygen/html/group__bluetooth.html
../../doxygen/html/group__BT__AUDIO__CODEC__LC3.html
../../doxygen/html/group__bt__att.html
../../doxygen/html/group__bt__gatt__aics.html
../../doxygen/html/group__bt__bas.html
../../doxygen/html/group__bt__audio.html
../../doxygen/html/group__bt__audio__codec__cap.html
../../doxygen/html/group__bt__audio__codec__cfg.html
../../doxygen/html/group__bt__bap.html
../../doxygen/html/group__bt__bap__broadcast.html
../../doxygen/html/group__bt__bap__broadcast__sink.html
../../doxygen/html/group__bt__bap__broadcast__source.html
../../doxygen/html/group__bt__bap__broadcast__sink.html
../../doxygen/html/group__bt__bap__broadcast__source.html
../../doxygen/html/group__bt__bap__unicast__client.html
../../doxygen/html/group__bt__bap__unicast__server.html
../../doxygen/html/group__bt__ctrl.html
../../doxygen/html/group__bt__gmap.html
../../doxygen/html/group__bt__mesh.html

Zephyr Project Documentation, Release 3.6.99

Table 1 – continued from previous page
API Version Available in Zephyr Since

Access layer
Bluetooth Mesh BLOB Transfer Client model API
Bluetooth Mesh BLOB Transfer Server model API
Bluetooth Mesh BLOB flash stream
Bluetooth Mesh BLOB model API
Bluetooth Mesh Device Firmware Update

Bluetooth Mesh Device Firmware Update (DFU) metadata
Firmware Update Server model
Firmware Uppdate Client model

Bluetooth Mesh On-Demand Private GATT Proxy Client
Bluetooth Mesh On-Demand Private GATT Proxy Server
Bluetooth Mesh Private Beacon Client
Bluetooth Mesh Private Beacon Server
Bluetooth Mesh SAR Configuration Client Model
Bluetooth Mesh SAR Configuration Server Model
Bluetooth Mesh Solicitation PDU RPL Client
Bluetooth Mesh Solicitation PDU RPL Server
Configuration Client Model
Configuration Server Model
Firmware Distribution models

Firmware Distribution Server model
Health Client Model
Health Server Model
Health faults
Heartbeat
Large Composition Data Client model
Large Composition Data Server model
Message
Opcodes Aggregator Client model
Opcodes Aggregator Server model
Provisioning
Proxy
Remote Provisioning Client model
Remote Provisioning models
Remote provisioning server
Runtime Configuration

Application Configuration
Subnet Configuration

SAR Configuration common header
Statistic

Bluetooth testing callbacks
Byteorder
Common Audio Profile (CAP)
Connection management
Coordinated Set Identification Profile (CSIP)
Cryptography
Data buffers
Device Address
Encrypted Advertising Data (EAD)
Generic Access Profile (GAP) 1.0.0 v1.0.0

Defines and Assigned Numbers
Generic Attribute Profile (GATT)

GATT Client APIs
GATT Server APIs

HCI RAW channel
continues on next page

52 Chapter 2. Developing with Zephyr

../../doxygen/html/group__bt__mesh__access.html
../../doxygen/html/group__bt__mesh__blob__cli.html
../../doxygen/html/group__bt__mesh__blob__srv.html
../../doxygen/html/group__bt__mesh__blob__io__flash.html
../../doxygen/html/group__bt__mesh__blob.html
../../doxygen/html/group__bt__mesh__dfu.html
../../doxygen/html/group__bt__mesh__dfu__metadata.html
../../doxygen/html/group__bt__mesh__dfu__srv.html
../../doxygen/html/group__bt__mesh__dfu__cli.html
../../doxygen/html/group__bt__mesh__od__priv__proxy__cli.html
../../doxygen/html/group__bt__mesh__od__priv__proxy__srv.html
../../doxygen/html/group__bt__mesh__priv__beacon__cli.html
../../doxygen/html/group__bt__mesh__priv__beacon__srv.html
../../doxygen/html/group__bt__mesh__sar__cfg__cli.html
../../doxygen/html/group__bt__mesh__sar__cfg__srv.html
../../doxygen/html/group__bt__mesh__sol__pdu__rpl__cli.html
../../doxygen/html/group__bt__mesh__sol__pdu__rpl__srv.html
../../doxygen/html/group__bt__mesh__cfg__cli.html
../../doxygen/html/group__bt__mesh__cfg__srv.html
../../doxygen/html/group__bt__mesh__dfd.html
../../doxygen/html/group__bt__mesh__dfd__srv.html
../../doxygen/html/group__bt__mesh__health__cli.html
../../doxygen/html/group__bt__mesh__health__srv.html
../../doxygen/html/group__bt__mesh__health__faults.html
../../doxygen/html/group__bt__mesh__heartbeat.html
../../doxygen/html/group__bt__mesh__large__comp__data__cli.html
../../doxygen/html/group__bt__mesh__large__comp__data__srv.html
../../doxygen/html/group__bt__mesh__msg.html
../../doxygen/html/group__bt__mesh__op__agg__cli.html
../../doxygen/html/group__bt__mesh__op__agg__srv.html
../../doxygen/html/group__bt__mesh__prov.html
../../doxygen/html/group__bt__mesh__proxy.html
../../doxygen/html/group__bt__mesh__rpr__cli.html
../../doxygen/html/group__bt__mesh__rpr.html
../../doxygen/html/group__bt__mesh__rpr__srv.html
../../doxygen/html/group__bt__mesh__cfg.html
../../doxygen/html/group__bt__mesh__cfg__app.html
../../doxygen/html/group__bt__mesh__cfg__subnet.html
../../doxygen/html/group__bt__mesh__sar__cfg.html
../../doxygen/html/group__bt__mesh__stat.html
../../doxygen/html/group__bt__test__cb.html
../../doxygen/html/group__bt__byteorder.html
../../doxygen/html/group__bt__cap.html
../../doxygen/html/group__bt__conn.html
../../doxygen/html/group__bt__gatt__csip.html
../../doxygen/html/group__bt__crypto.html
../../doxygen/html/group__bt__buf.html
../../doxygen/html/group__bt__addr.html
../../doxygen/html/group__bt__ead.html
../../doxygen/html/group__bt__gap.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.0.0
../../doxygen/html/group__bt__gap__defines.html
../../doxygen/html/group__bt__gatt.html
../../doxygen/html/group__bt__gatt__client.html
../../doxygen/html/group__bt__gatt__server.html
../../doxygen/html/group__hci__raw.html

Zephyr Project Documentation, Release 3.6.99

Table 1 – continued from previous page
API Version Available in Zephyr Since

HCI drivers
Hands Free Profile (HFP)
Hearing Access Service (HAS)
Heart Rate Service (HRS)
Immediate Alert Service (IAS)
Isochronous channels (ISO)
L2CAP
Media Control Client (MCC)
Media Control Service (MCS)
Media Proxy
Microphone Control Profile (MICP)
Object Transfer Service (OTS)
Public Broadcast Profile (PBP)
RFCOMM
Service Discovery Protocol (SDP)
UUIDs
Volume Control Profile (VCP)
Volume Offset Control Service (VOCS)

CAN ISO-TP Protocol
IEEE 802.15.4 and Thread APIs 0.8.0 v1.0.0

IEEE 802.15.4 Drivers 0.8.0 v1.0.0
IEEE 802.15.4 L2 0.8.0 v1.0.0
IEEE 802.15.4 Net Management 0.8.0 v1.0.0
OpenThread L2 abstraction layer

LoRaWAN APIs 0.1.0 v2.5.0
Networking 1.0.0 v1.0.0

Application network context
BSD Sockets compatible API

Socket options for TLS
BSD socket service API
COAP Library 0.8.0 v1.10.0
CoAP Manager Events
CoAP client API
CoAP service API
Connection Manager API
Connection Manager Connectivity API 0.1.0 v3.4.0
Connection Manager Connectivity Bulk API
Connection Manager Connectivity Implementation API
DHCPv4
DHCPv4 server
DHCPv6
DNS Resolve Library
DNS Service Discovery
Distributed Switch Architecture definitions and helpers
Dummy L2/driver Support Functions
Ethernet Bridging API
Ethernet Library
Ethernet PHY Interface
Ethernet Support Functions

Ethernet MII Support Functions
IEEE 802.3 management interface

HTTP client API
HTTP request methods
HTTP response status codes
IGMP API

continues on next page

2.6. API Status and Guidelines 53

../../doxygen/html/group__bt__hci__driver.html
../../doxygen/html/group__bt__hfp.html
../../doxygen/html/group__bt__has.html
../../doxygen/html/group__bt__hrs.html
../../doxygen/html/group__bt__ias.html
../../doxygen/html/group__bt__iso.html
../../doxygen/html/group__bt__l2cap.html
../../doxygen/html/group__bt__gatt__mcc.html
../../doxygen/html/group__bt__mcs.html
../../doxygen/html/group__bt__media__proxy.html
../../doxygen/html/group__bt__gatt__micp.html
../../doxygen/html/group__bt__ots.html
../../doxygen/html/group__bt__pbp.html
../../doxygen/html/group__bt__rfcomm.html
../../doxygen/html/group__bt__sdp.html
../../doxygen/html/group__bt__uuid.html
../../doxygen/html/group__bt__gatt__vcp.html
../../doxygen/html/group__bt__gatt__vocs.html
../../doxygen/html/group__can__isotp.html
../../doxygen/html/group__ieee802154.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.0.0
../../doxygen/html/group__ieee802154__driver.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.0.0
../../doxygen/html/group__ieee802154__l2.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.0.0
../../doxygen/html/group__ieee802154__mgmt.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.0.0
../../doxygen/html/group__openthread.html
../../doxygen/html/group__lorawan__api.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v2.5.0
../../doxygen/html/group__networking.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.0.0
../../doxygen/html/group__net__context.html
../../doxygen/html/group__bsd__sockets.html
../../doxygen/html/group__secure__sockets__options.html
../../doxygen/html/group__bsd__socket__service.html
../../doxygen/html/group__coap.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.10.0
../../doxygen/html/group__coap__mgmt.html
../../doxygen/html/group__coap__client.html
../../doxygen/html/group__coap__service.html
../../doxygen/html/group__conn__mgr.html
../../doxygen/html/group__conn__mgr__connectivity.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.4.0
../../doxygen/html/group__conn__mgr__connectivity__bulk.html
../../doxygen/html/group__conn__mgr__connectivity__impl.html
../../doxygen/html/group__dhcpv4.html
../../doxygen/html/group__dhcpv4__server.html
../../doxygen/html/group__dhcpv6.html
../../doxygen/html/group__dns__resolve.html
../../doxygen/html/group__dns__sd.html
../../doxygen/html/group__DSA.html
../../doxygen/html/group__dummy.html
../../doxygen/html/group__eth__bridge.html
../../doxygen/html/group__ethernet__mgmt.html
../../doxygen/html/group__ethernet__phy.html
../../doxygen/html/group__ethernet.html
../../doxygen/html/group__ethernet__mii.html
../../doxygen/html/group__ethernet__mdio.html
../../doxygen/html/group__http__client.html
../../doxygen/html/group__http__methods.html
../../doxygen/html/group__http__status__codes.html
../../doxygen/html/group__igmp.html

Zephyr Project Documentation, Release 3.6.99

Table 1 – continued from previous page
API Version Available in Zephyr Since

IPv4/IPv6 primitives and helpers
Link Layer Discovery Protocol definitions and helpers
LwM2M high-level API 0.8.0 v1.9.0

LwM2M path helper macros
MQTT Client library 0.8.0 v1.14.0
MQTT-SN Client library
Network Buffer Library
Network Configuration Library
Network Core Library
Network Core Library
Network Core Library
Network Hostname Library
Network Interface abstraction layer
Network L2 Abstraction Layer
Network Link Address Library
Network Management
Network Offloading Interface
Network Packet Filter API

Basic Filter Conditions
Ethernet Filter Conditions

Network Packet Library
Network Statistics Library
Network long timeout primitives and helpers
Network packet capture
Network time representation.
Offloaded Net Devices
PPP L2/driver Support Functions
PTP time
Promiscuous mode
SNTP
Send and receive IPv4 or IPv6 ICMP Echo Request messages.
TFTP Client library
TLS credentials management
Trickle Algorithm Library
Virtual Interface Library
Virtual LAN definitions and helpers
Virtual Network Interface Support Functions
Websocket API
Wi-Fi Management
Wi-Fi Network Manager API
Zperf API
gPTP support

USB
USB BOS support
USB HID class API

HID class USB specific definitions
USB HID common definitions

Mouse and keyboard report descriptors
USB HID Item helpers

USB Host Core API
USB device core API

DSP Interface 0.1.0 v3.3.0
Basic Math Functions

Vector Absolute Value
Vector Addition

continues on next page

54 Chapter 2. Developing with Zephyr

../../doxygen/html/group__ip__4__6.html
../../doxygen/html/group__lldp.html
../../doxygen/html/group__lwm2m__api.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.9.0
../../doxygen/html/group__lwm2m__path__helpers.html
../../doxygen/html/group__mqtt__socket.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.14.0
../../doxygen/html/group__mqtt__sn__socket.html
../../doxygen/html/group__net__buf.html
../../doxygen/html/group__net__config.html
../../doxygen/html/group__net__core.html
../../doxygen/html/group__socket__net__mgmt.html
../../doxygen/html/group__socket__can.html
../../doxygen/html/group__net__hostname.html
../../doxygen/html/group__net__if.html
../../doxygen/html/group__net__l2.html
../../doxygen/html/group__net__linkaddr.html
../../doxygen/html/group__net__mgmt.html
../../doxygen/html/group__net__offload.html
../../doxygen/html/group__net__pkt__filter.html
../../doxygen/html/group__npf__basic__cond.html
../../doxygen/html/group__npf__eth__cond.html
../../doxygen/html/group__net__pkt.html
../../doxygen/html/group__net__stats.html
../../doxygen/html/group__net__timeout.html
../../doxygen/html/group__net__capture.html
../../doxygen/html/group__net__time.html
../../doxygen/html/group__offloaded__netdev.html
../../doxygen/html/group__ppp.html
../../doxygen/html/group__ptp__time.html
../../doxygen/html/group__promiscuous.html
../../doxygen/html/group__sntp.html
../../doxygen/html/group__icmp.html
../../doxygen/html/group__tftp__client.html
../../doxygen/html/group__tls__credentials.html
../../doxygen/html/group__trickle.html
../../doxygen/html/group__virtual__mgmt.html
../../doxygen/html/group__vlan__api.html
../../doxygen/html/group__virtual.html
../../doxygen/html/group__websocket.html
../../doxygen/html/group__wifi__mgmt.html
../../doxygen/html/group__wifi__nm.html
../../doxygen/html/group__zperf.html
../../doxygen/html/group__gptp.html
../../doxygen/html/group__usb.html
../../doxygen/html/group__usb__bos.html
../../doxygen/html/group__usb__hid__class.html
../../doxygen/html/group__usb__hid__device__api.html
../../doxygen/html/group__usb__hid__definitions.html
../../doxygen/html/group__usb__hid__mk__report__desc.html
../../doxygen/html/group__usb__hid__items.html
../../doxygen/html/group__usb__host__core__api.html
../../doxygen/html/group__usbd__api.html
../../doxygen/html/group__math__dsp.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.3.0
../../doxygen/html/group__math__dsp__basic.html
../../doxygen/html/group__math__dsp__basic__abs.html
../../doxygen/html/group__math__dsp__basic__add.html

Zephyr Project Documentation, Release 3.6.99

Table 1 – continued from previous page
API Version Available in Zephyr Since

Vector Clipping
Vector Dot Product
Vector Multiplication
Vector Negate
Vector Offset
Vector Scale
Vector Shift
Vector Subtraction
Vector bitwise AND
Vector bitwise NOT
Vector bitwise OR
Vector bitwise XOR

Helper macros for printing Q values.
Device Driver APIs

1-Wire Interface 0.1.0 v3.2.0
1-Wire Sensor API
1-Wire data link layer
1-Wire network layer

ADC driver APIs 1.0.0 v1.0.0
Emulated ADC

Analog axis API
BBRAM Interface
BBRAM emulator backend API
BC1.2 backed emulator APIs
BC1.2 driver APIs
CAN Interface 1.0.0 v1.12.0
CAN Transceiver 0.1.0 v3.1.0
Cache Controller Interface
Cellular Interface
Charger Interface
Clock Control Interface 1.0.0 v1.0.0

LiteX Clock Control driver interface
Coredump pseudo-device driver APIs
Counter Interface 0.8.0 v1.14.0
DAC driver APIs 0.8.0 v2.3.0
DAI Interface 0.1.0 v3.1.0
DMA Interface 1.0.0 v1.5.0
Disk Driver Interface 1.0.0 v1.6.0
Display Interface 0.8.0 v1.14.0

LCD Interface
EC Host Command Interface 0.1.0 v2.4.0
EDAC API 0.8.0 v2.5.0
EEPROM Interface 1.0.0 v2.1.0
ESPI Driver APIs
Entropy Interface 1.0.0 v1.10.0
External Cache Controller Interface
FLASH Interface 1.0.0 v1.2.0
FLASH internal Interface
Fuel Gauge Interface 0.1.0 v3.3.0
Fuel gauge backend emulator APIs
GNSS Interface 0.1.0 v3.6.0
GPIO Driver APIs 1.0.0 v1.0.0

Emulated GPIO
nPM1300-specific GPIO Flags
nPM6001-specific GPIO Flags

continues on next page

2.6. API Status and Guidelines 55

../../doxygen/html/group__math__dsp__basic__clip.html
../../doxygen/html/group__math__dsp__basic__dot.html
../../doxygen/html/group__math__dsp__basic__mult.html
../../doxygen/html/group__math__dsp__basic__negate.html
../../doxygen/html/group__math__dsp__basic__offset.html
../../doxygen/html/group__math__dsp__basic__scale.html
../../doxygen/html/group__math__dsp__basic__shift.html
../../doxygen/html/group__math__dsp__basic__sub.html
../../doxygen/html/group__math__dsp__basic__and.html
../../doxygen/html/group__math__dsp__basic__not.html
../../doxygen/html/group__math__dsp__basic__or.html
../../doxygen/html/group__math__dsp__basic__xor.html
../../doxygen/html/group__math__printing.html
../../doxygen/html/group__io__interfaces.html
../../doxygen/html/group__w1__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.2.0
../../doxygen/html/group__w1__sensor.html
../../doxygen/html/group__w1__data__link.html
../../doxygen/html/group__w1__network.html
../../doxygen/html/group__adc__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.0.0
../../doxygen/html/group__adc__emul.html
../../doxygen/html/group__input__analog__axis.html
../../doxygen/html/group__bbram__interface.html
../../doxygen/html/group__bbram__emulator__backend.html
../../doxygen/html/group__b12__emulator__backend.html
../../doxygen/html/group__b12__interface.html
../../doxygen/html/group__can__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.12.0
../../doxygen/html/group__can__transceiver.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.1.0
../../doxygen/html/group__cache__arch__interface.html
../../doxygen/html/group__cellular__interface.html
../../doxygen/html/group__charger__interface.html
../../doxygen/html/group__clock__control__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.0.0
../../doxygen/html/group__clock__control__litex__interface.html
../../doxygen/html/group__coredump__device__interface.html
../../doxygen/html/group__counter__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.14.0
../../doxygen/html/group__dac__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v2.3.0
../../doxygen/html/group__dai__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.1.0
../../doxygen/html/group__dma__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.5.0
../../doxygen/html/group__disk__driver__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.6.0
../../doxygen/html/group__display__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.14.0
../../doxygen/html/group__lcd__interface.html
../../doxygen/html/group__ec__host__cmd__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v2.4.0
../../doxygen/html/group__edac.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v2.5.0
../../doxygen/html/group__eeprom__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v2.1.0
../../doxygen/html/group__espi__interface.html
../../doxygen/html/group__entropy__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.10.0
../../doxygen/html/group__cache__external__interface.html
../../doxygen/html/group__flash__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.2.0
../../doxygen/html/group__flash__internal__interface.html
../../doxygen/html/group__fuel__gauge__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.3.0
../../doxygen/html/group__fuel__gauge__emulator__backend.html
../../doxygen/html/group__gnss__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.6.0
../../doxygen/html/group__gpio__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.0.0
../../doxygen/html/group__gpio__emul.html
../../doxygen/html/group__gpio__interface__npm1300.html
../../doxygen/html/group__gpio__interface__npm6001.html

Zephyr Project Documentation, Release 3.6.99

Table 1 – continued from previous page
API Version Available in Zephyr Since

nRF-specific GPIO Flags
HW spinlock Interface
Hardware Info Interface 1.0.0 v1.14.0
I2C EEPROM Target Driver API 1.0.0 v1.13.0
I2C Interface 1.0.0 v1.0.0
I2S Interface 1.0.0 v1.9.0
I3C Interface 0.1.0 v3.2.0

I3C Address-related Helper Code
I3C Common Command Codes
I3C Devicetree related bits
I3C In-Band Interrupts
I3C Target Device API
I3C Transfer API

IPM Interface 1.0.0 v1.0.0
Input Interface 0.1.0 v3.4.0

Input Event Definitions
Inter-VM Shared Memory (ivshmem) reference API
Keyboard Matrix API
Keyboard Scan Driver APIs 1.0.0 v2.1.0
LED Interface 1.0.0 v1.12.0
LED Strip Interface
LoRa APIs 0.1.0 v2.2.0
MBOX Interface 0.1.0 v1.0.0
MDIO Interface
MIPI Display interface
MIPI-DBI driver APIs 0.1.0 v3.6.0
MIPI-DSI driver APIs 0.1.0 v3.1.0
MODBUS
Miscellaneous Drivers APIs

Devmux Driver APIs
FT8xx driver APIs

FT8xx co-processor
FT8xx common functions
FT8xx display list
FT8xx memory map
FT8xx reference API

Multi Function Device Drivers APIs
MFD AD5592 interface
MFD AXP192 interface
MFD BD8LB600FS interface
MFD NPM1300 Interface

PCI Express Controller Interface
PCIe Host Interface

PCIe Capabilities
PCIe Host MSI Interface
PCIe Host PTM Interface
PCIe Virtual Channel Host Interface

PECI Interface 1.0.0 v2.1.0
PS/2 Driver APIs
PWM Interface 1.0.0 v1.0.0
Pin Controller Interface 0.1.0 v3.0.0

Dynamic Pin Control
RTC DS3231 Interface
RTC Interface 0.1.0 v3.4.0
Regulator Interface 0.1.0 v2.4.0

continues on next page

56 Chapter 2. Developing with Zephyr

../../doxygen/html/group__gpio__interface__nrf.html
../../doxygen/html/group__hwspinlock__interface.html
../../doxygen/html/group__hwinfo__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.14.0
../../doxygen/html/group__i2c__eeprom__target__api.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.13.0
../../doxygen/html/group__i2c__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.0.0
../../doxygen/html/group__i2s__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.9.0
../../doxygen/html/group__i3c__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.2.0
../../doxygen/html/group__i3c__addresses.html
../../doxygen/html/group__i3c__ccc.html
../../doxygen/html/group__i3c__devicetree.html
../../doxygen/html/group__i3c__ibi.html
../../doxygen/html/group__i3c__target__device.html
../../doxygen/html/group__i3c__transfer__api.html
../../doxygen/html/group__ipm__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.0.0
../../doxygen/html/group__input__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.4.0
../../doxygen/html/group__input__events.html
../../doxygen/html/group__ivshmem.html
../../doxygen/html/group__input__kbd__matrix.html
../../doxygen/html/group__kscan__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v2.1.0
../../doxygen/html/group__led__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.12.0
../../doxygen/html/group__led__strip__interface.html
../../doxygen/html/group__lora__api.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v2.2.0
../../doxygen/html/group__mbox__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.0.0
../../doxygen/html/group__mdio__interface.html
../../doxygen/html/group__mipi__interface.html
../../doxygen/html/group__mipi__dbi__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.6.0
../../doxygen/html/group__mipi__dsi__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.1.0
../../doxygen/html/group__modbus.html
../../doxygen/html/group__misc__interfaces.html
../../doxygen/html/group__demux__interface.html
../../doxygen/html/group__ft8xx__interface.html
../../doxygen/html/group__ft8xx__copro.html
../../doxygen/html/group__ft8xx__common.html
../../doxygen/html/group__ft8xx__dl.html
../../doxygen/html/group__ft8xx__memory.html
../../doxygen/html/group__ft8xx__reference__api.html
../../doxygen/html/group__mfd__interfaces.html
../../doxygen/html/group__mdf__interface__ad5592.html
../../doxygen/html/group__mdf__interface__axp192.html
../../doxygen/html/group__mdf__interface__bd8lb600fs.html
../../doxygen/html/group__mdf__interface__npm1300.html
../../doxygen/html/group__pcie__controller__interface.html
../../doxygen/html/group__pcie__host__interface.html
../../doxygen/html/group__pcie__capabilities.html
../../doxygen/html/group__pcie__host__msi__interface.html
../../doxygen/html/group__pcie__host__ptm__interface.html
../../doxygen/html/group__pcie__vc__host__interface.html
../../doxygen/html/group__peci__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v2.1.0
../../doxygen/html/group__ps2__interface.html
../../doxygen/html/group__pwm__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.0.0
../../doxygen/html/group__pinctrl__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.0.0
../../doxygen/html/group__pinctrl__interface__dynamic.html
../../doxygen/html/group__rtc__ds3231__interface.html
../../doxygen/html/group__rtc__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.4.0
../../doxygen/html/group__regulator__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v2.4.0

Zephyr Project Documentation, Release 3.6.99

Table 1 – continued from previous page
API Version Available in Zephyr Since

ADP5360 Devicetree helpers.
AXP192 Devicetree helpers.
Devicetree helpers
MAX20335 Devicetree helpers.
NPM1100 Devicetree helpers.
NPM1300 Devicetree helpers.
NPM6001 Devicetree helpers.
Regulator Parent Interface

PCA9420 Utilities.
Reset Controller Interface 0.1.0 v3.1.0
Retained memory driver interface 0.8.0 v3.4.0
SDHC interface 0.1.0 v3.1.0
SMBus Interface 0.1.0 v3.4.0
SPI Interface 1.0.0 v1.0.0
SYSCON Interface
Sensor Interface 1.0.0 v1.2.0
Sensor emulator backend API
Text Display Interface 0.1.0 v3.4.0
Time-aware GPIO Interface 0.1.0 v3.5.0
UART Interface 1.0.0 v1.0.0

Async UART API 0.8.0 v1.14.0
Interrupt-driven UART API
Polling UART API

UART Mux Interface
USB Power Delivery
USB Type-C
USB Type-C Port Controller API 0.1.0 v3.1.0
USB device controller driver API
USB host controller driver API
USB-C VBUS API 0.1.0 v3.3.0
Video Controls
Video Interface 1.0.0 v2.1.0

Video pixel formats
Watchdog Interface 1.0.0 v1.0.0

Device Model 1.0.0 v1.0.0
Device memory-mapped IO management

Named MMIO region macros
Single MMIO region macros
Top-level MMIO region macros

Devicetree 1.0.0 v2.2.0
“For-each” macros
Bus helpers
Chosen nodes
Dependency tracking
Devicetree CAN API
Devicetree Clocks API
Devicetree DMA API
Devicetree Fixed Partition API
Devicetree GPIO API
Devicetree IO Channels API
Devicetree MBOX API
Devicetree PWMs API
Devicetree Reset Controller API
Devicetree SPI API
Existence checks

continues on next page

2.6. API Status and Guidelines 57

../../doxygen/html/group__regulator__adp5360.html
../../doxygen/html/group__regulator__axp192.html
../../doxygen/html/group__regulator__nxp__vref.html
../../doxygen/html/group__regulator__max20335.html
../../doxygen/html/group__regulator__npm1100.html
../../doxygen/html/group__regulator__npm1300.html
../../doxygen/html/group__regulator__npm6001.html
../../doxygen/html/group__regulator__parent__interface.html
../../doxygen/html/group__regulator__parent__pca9420.html
../../doxygen/html/group__reset__controller__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.1.0
../../doxygen/html/group__retained__mem__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.4.0
../../doxygen/html/group__sdhc__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.1.0
../../doxygen/html/group__smbus__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.4.0
../../doxygen/html/group__spi__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.0.0
../../doxygen/html/group__syscon__interface.html
../../doxygen/html/group__sensor__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.2.0
../../doxygen/html/group__sensor__emulator__backend.html
../../doxygen/html/group__auxdisplay__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.4.0
../../doxygen/html/group__tgpio__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.5.0
../../doxygen/html/group__uart__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.0.0
../../doxygen/html/group__uart__async.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.14.0
../../doxygen/html/group__uart__interrupt.html
../../doxygen/html/group__uart__polling.html
../../doxygen/html/group__uart__mux__interface.html
../../doxygen/html/group__usb__power__delivery.html
../../doxygen/html/group__usb__type__c.html
../../doxygen/html/group__usb__type__c__port__controller__api.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.1.0
../../doxygen/html/group__udc__api.html
../../doxygen/html/group__uhc__api.html
../../doxygen/html/group__usbc__vbus__api.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.3.0
../../doxygen/html/group__video__controls.html
../../doxygen/html/group__video__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v2.1.0
../../doxygen/html/group__video__pixel__formats.html
../../doxygen/html/group__watchdog__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.0.0
../../doxygen/html/group__device__model.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.0.0
../../doxygen/html/group__device-mmio.html
../../doxygen/html/group__device-mmio-named.html
../../doxygen/html/group__device-mmio-single.html
../../doxygen/html/group__device-mmio-toplevel.html
../../doxygen/html/group__devicetree.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v2.2.0
../../doxygen/html/group__devicetree-generic-foreach.html
../../doxygen/html/group__devicetree-generic-bus.html
../../doxygen/html/group__devicetree-generic-chosen.html
../../doxygen/html/group__devicetree-dep-ord.html
../../doxygen/html/group__devicetree-can.html
../../doxygen/html/group__devicetree-clocks.html
../../doxygen/html/group__devicetree-dmas.html
../../doxygen/html/group__devicetree-fixed-partition.html
../../doxygen/html/group__devicetree-gpio.html
../../doxygen/html/group__devicetree-io-channels.html
../../doxygen/html/group__devicetree-mbox.html
../../doxygen/html/group__devicetree-pwms.html
../../doxygen/html/group__devicetree-reset-controller.html
../../doxygen/html/group__devicetree-spi.html
../../doxygen/html/group__devicetree-generic-exist.html

Zephyr Project Documentation, Release 3.6.99

Table 1 – continued from previous page
API Version Available in Zephyr Since

Instance-based devicetree APIs
Node identifiers and helpers
Pin control
Property accessors
Vendor and model name helpers
interrupts property
ranges property
reg property

Error numbers
Internal and System API

Architecture Interface
Architecture thread APIs
Architecture timing APIs
Architecture-specific IRQ APIs
Architecture-specific SMP APIs
Architecture-specific Thread Local Storage APIs
Architecture-specific core dump APIs
Architecture-specific gdbstub APIs
Architecture-specific memory-mapping APIs
Architecture-specific power management APIs
Architecture-specific userspace APIs
Miscellaneous architecture APIs

Kernel Memory Management Internal APIs
User Mode Internal APIs
User mode and Syscall APIs

Kernel APIs 1.0.0 v1.0.0
Async polling APIs
Asynchronous Notification APIs
Atomic Services APIs
Barrier Services APIs 0.1.0 v3.4.0
CPU Idling APIs
Condition Variables APIs
Event APIs
FIFO APIs
FUTEX APIs
Fatal error APIs

Fatal error base types
Floating Point APIs
Heap APIs
Interrupt Service Routine APIs
Kernel Memory Management

Demand Paging
Backing Store APIs
Demand Paging APIs
Eviction Algorithm APIs

LIFO APIs
Mailbox APIs
Memory Slab APIs
Memory domain APIs

Application memory domain APIs
Message Queue APIs
Mutex APIs
Object Core APIs
Object Core Statistics APIs
On-Off Service APIs

continues on next page

58 Chapter 2. Developing with Zephyr

../../doxygen/html/group__devicetree-inst.html
../../doxygen/html/group__devicetree-generic-id.html
../../doxygen/html/group__devicetree-pinctrl.html
../../doxygen/html/group__devicetree-generic-prop.html
../../doxygen/html/group__devicetree-generic-vendor.html
../../doxygen/html/group__devicetree-interrupts-prop.html
../../doxygen/html/group__devicetree-ranges-prop.html
../../doxygen/html/group__devicetree-reg-prop.html
../../doxygen/html/group__system__errno.html
../../doxygen/html/group__internal__api.html
../../doxygen/html/group__arch-interface.html
../../doxygen/html/group__arch-threads.html
../../doxygen/html/group__arch-timing.html
../../doxygen/html/group__arch-irq.html
../../doxygen/html/group__arch-smp.html
../../doxygen/html/group__arch-tls.html
../../doxygen/html/group__arch-coredump.html
../../doxygen/html/group__arch-gdbstub.html
../../doxygen/html/group__arch-mmu.html
../../doxygen/html/group__arch-pm.html
../../doxygen/html/group__arch-userspace.html
../../doxygen/html/group__arch-misc.html
../../doxygen/html/group__kernel__mm__internal__apis.html
../../doxygen/html/group__usermode__internal__apis.html
../../doxygen/html/group__syscall__apis.html
../../doxygen/html/group__kernel__apis.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.0.0
../../doxygen/html/group__poll__apis.html
../../doxygen/html/group__sys__notify__apis.html
../../doxygen/html/group__atomic__apis.html
../../doxygen/html/group__barrier__apis.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.4.0
../../doxygen/html/group__cpu__idle__apis.html
../../doxygen/html/group__condvar__apis.html
../../doxygen/html/group__event__apis.html
../../doxygen/html/group__fifo__apis.html
../../doxygen/html/group__futex__apis.html
../../doxygen/html/group__fatal__apis.html
../../doxygen/html/group__fatal__types.html
../../doxygen/html/group__float__apis.html
../../doxygen/html/group__heap__apis.html
../../doxygen/html/group__isr__apis.html
../../doxygen/html/group__kernel__memory__management.html
../../doxygen/html/group__demand__paging.html
../../doxygen/html/group__mem-demand-paging-backing-store.html
../../doxygen/html/group__mem-demand-paging.html
../../doxygen/html/group__mem-demand-paging-eviction.html
../../doxygen/html/group__lifo__apis.html
../../doxygen/html/group__mailbox__apis.html
../../doxygen/html/group__mem__slab__apis.html
../../doxygen/html/group__mem__domain__apis.html
../../doxygen/html/group__mem__domain__apis__app.html
../../doxygen/html/group__msgq__apis.html
../../doxygen/html/group__mutex__apis.html
../../doxygen/html/group__obj__core__apis.html
../../doxygen/html/group__obj__core__stats__apis.html
../../doxygen/html/group__resource__mgmt__onoff__apis.html

Zephyr Project Documentation, Release 3.6.99

Table 1 – continued from previous page
API Version Available in Zephyr Since

Pipe APIs
Queue APIs
Semaphore APIs
Spinlock APIs
Stack APIs
System Clock APIs
Thread APIs
Thread Stack APIs
Timer APIs
User Mode APIs
User mode mutex APIs
User mode semaphore APIs
Version APIs
Work Queue APIs

Memory heaps based on memory attributes
Memory-Attr Interface
Modem APIs 0.1.0 v3.5.0

Modem CMUX
Modem PPP
Modem Pipe

Operating System Services
Cache Interface
Checksum

CRC
Console API
Coredump APIs
Crypto 1.0.0 v1.7.0

Cipher
Hash
Random Function APIs 1.0.0 v1.0.0

File System APIs 1.0.0 v1.5.0
File System Storage

Flash Circular Buffer (FCB) 1.0.0 v1.11.0
Flash Circular Buffer Data Structures
fcb API
fcb non-API prototypes

Non-volatile Storage (NVS) 1.0.0 v1.12.0
Non-volatile Storage APIs
Non-volatile Storage Data Structures

Settings 1.0.0 v1.12.0
Settings backend interface
Settings name processing
Settings subsystem runtime

Flash image API
Heap Management

Heap Listener APIs
Shared multi-heap interface

IPC
IPC service APIs
IPC service RPMsg API
IPC service backend
IPC service static VRINGs API
Icmsg IPC library API
Icmsg multi-endpoint IPC library API
Packed Buffer API

continues on next page

2.6. API Status and Guidelines 59

../../doxygen/html/group__pipe__apis.html
../../doxygen/html/group__queue__apis.html
../../doxygen/html/group__semaphore__apis.html
../../doxygen/html/group__spinlock__apis.html
../../doxygen/html/group__stack__apis.html
../../doxygen/html/group__clock__apis.html
../../doxygen/html/group__thread__apis.html
../../doxygen/html/group__thread__stack__api.html
../../doxygen/html/group__timer__apis.html
../../doxygen/html/group__usermode__apis.html
../../doxygen/html/group__user__mutex__apis.html
../../doxygen/html/group__user__semaphore__apis.html
../../doxygen/html/group__version__apis.html
../../doxygen/html/group__workqueue__apis.html
../../doxygen/html/group__memory__attr__heap.html
../../doxygen/html/group__memory__attr__interface.html
../../doxygen/html/group__modem.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.5.0
../../doxygen/html/group__modem__cmux.html
../../doxygen/html/group__modem__ppp.html
../../doxygen/html/group__modem__pipe.html
../../doxygen/html/group__os__services.html
../../doxygen/html/group__cache__interface.html
../../doxygen/html/group__checksum.html
../../doxygen/html/group__crc.html
../../doxygen/html/group__console__api.html
../../doxygen/html/group__coredump__apis.html
../../doxygen/html/group__crypto.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.7.0
../../doxygen/html/group__crypto__cipher.html
../../doxygen/html/group__crypto__hash.html
../../doxygen/html/group__random__api.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.0.0
../../doxygen/html/group__file__system__api.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.5.0
../../doxygen/html/group__file__system__storage.html
../../doxygen/html/group__fcb.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.11.0
../../doxygen/html/group__fcb__data__structures.html
../../doxygen/html/group__fcb__api.html
../../doxygen/html/group__fcb__internal.html
../../doxygen/html/group__nvs.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.12.0
../../doxygen/html/group__nvs__high__level__api.html
../../doxygen/html/group__nvs__data__structures.html
../../doxygen/html/group__settings.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.12.0
../../doxygen/html/group__settings__backend.html
../../doxygen/html/group__settings__name__proc.html
../../doxygen/html/group__settings__rt.html
../../doxygen/html/group__flash__img__api.html
../../doxygen/html/group__heaps.html
../../doxygen/html/group__heap__listener__apis.html
../../doxygen/html/group__shared__multi__heap.html
../../doxygen/html/group__ipc.html
../../doxygen/html/group__ipc__service__api.html
../../doxygen/html/group__ipc__service__rpmsg__api.html
../../doxygen/html/group__ipc__service__backend.html
../../doxygen/html/group__ipc__service__static__vrings__api.html
../../doxygen/html/group__ipc__icmsg__api.html
../../doxygen/html/group__ipc__icmsg__me__api.html
../../doxygen/html/group__pbuf.html

Zephyr Project Documentation, Release 3.6.99

Table 1 – continued from previous page
API Version Available in Zephyr Since

RPMsg service APIs
Iterable Sections APIs
Linkable loadable extensions 0.1.0 v3.5.0

ELF data types and defines
LLEXT symbols
Linkable loadable extensions buffer loader
Loader context for llext

Logging 1.0.0 v1.13.0
Logger system v1.13.0

Log link API
Log message API
Log output API

Log output formatting flags.
Logger backend interface

Logger multidomain backend helpers
Logger backend standard interface
Logger control API v1.13.0
Logging API

MCUmgr
MCUmgr callback API

MCUmgr fs_mgmt callback API
MCUmgr img_mgmt callback API
MCUmgr os_mgmt callback API
MCUmgr settings_mgmt callback API

MCUmgr handler API
MCUmgr img_mgmt API
MCUmgr img_mgmt_client API
MCUmgr mgmt API 1.0.0 v1.11.0
MCUmgr os_mgmt_client API
MCUmgr transport SMP API
SMP client API

Memory Management
Memory Banks Driver APIs
Memory Blocks APIs
Memory Management Driver APIs

Power Management (PM) v1.2.0
CPU Power Management
Device
Device Runtime
S2RAM APIs
States
System v1.2.0

Hooks
Policy

RTIO 0.1.0 v3.2.0
RTIO CQE Flags
RTIO MPSC API
RTIO Priorities
RTIO SPSC API
RTIO SQE Flags

Retention API 0.1.0 v3.4.0
Boot mode interface
Bootloader info interface 0.1.0 v3.5.0

Semihosting APIs
Shell API 1.0.0 v1.14.0

continues on next page

60 Chapter 2. Developing with Zephyr

../../doxygen/html/group__rpmsg__service__api.html
../../doxygen/html/group__iterable__section__apis.html
../../doxygen/html/group__llext.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.5.0
../../doxygen/html/group__elf.html
../../doxygen/html/group__llext__symbols.html
../../doxygen/html/group__llext__buf__loader.html
../../doxygen/html/group__llext__loader.html
../../doxygen/html/group__logging.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.13.0
../../doxygen/html/group__logger.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.13.0
../../doxygen/html/group__log__link.html
../../doxygen/html/group__log__msg.html
../../doxygen/html/group__log__output.html
../../doxygen/html/group__LOG__OUTPUT__FLAGS.html
../../doxygen/html/group__log__backend.html
../../doxygen/html/group__log__backend__multidomain.html
../../doxygen/html/group__log__backend__std.html
../../doxygen/html/group__log__ctrl.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.13.0
../../doxygen/html/group__log__api.html
../../doxygen/html/group__mcumgr.html
../../doxygen/html/group__mcumgr__callback__api.html
../../doxygen/html/group__mcumgr__callback__api__fs__mgmt.html
../../doxygen/html/group__mcumgr__callback__api__img__mgmt.html
../../doxygen/html/group__mcumgr__callback__api__os__mgmt.html
../../doxygen/html/group__mcumgr__callback__api__settings__mgmt.html
../../doxygen/html/group__mcumgr__handler__api.html
../../doxygen/html/group__mcumgr__img__mgmt.html
../../doxygen/html/group__mcumgr__img__mgmt__client.html
../../doxygen/html/group__mcumgr__mgmt__api.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.11.0
../../doxygen/html/group__mcumgr__os__mgmt__client.html
../../doxygen/html/group__mcumgr__transport__smp.html
../../doxygen/html/group__mcumgr__smp__client.html
../../doxygen/html/group__memory__management.html
../../doxygen/html/group__mm__drv__bank__apis.html
../../doxygen/html/group__mem__blocks__apis.html
../../doxygen/html/group__mm__drv__apis.html
../../doxygen/html/group__subsys__pm.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.2.0
../../doxygen/html/group__power__management__cpu__api.html
../../doxygen/html/group__subsys__pm__device.html
../../doxygen/html/group__subsys__pm__device__runtime.html
../../doxygen/html/group__pm__s2ram.html
../../doxygen/html/group__subsys__pm__states.html
../../doxygen/html/group__subsys__pm__sys.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.2.0
../../doxygen/html/group__subsys__pm__sys__hooks.html
../../doxygen/html/group__subsys__pm__sys__policy.html
../../doxygen/html/group__rtio.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.2.0
../../doxygen/html/group__rtio__cqe__flags.html
../../doxygen/html/group__rtio__mpsc.html
../../doxygen/html/group__rtio__sqe__prio.html
../../doxygen/html/group__rtio__spsc.html
../../doxygen/html/group__rtio__sqe__flags.html
../../doxygen/html/group__retention__api.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.4.0
../../doxygen/html/group__boot__mode__interface.html
../../doxygen/html/group__bootloader__info__interface.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.5.0
../../doxygen/html/group__semihost.html
../../doxygen/html/group__shell__api.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.14.0

Zephyr Project Documentation, Release 3.6.99

Table 1 – continued from previous page
API Version Available in Zephyr Since

State Machine Framework API
Storage APIs

Disk Access Interface
Stream to flash interface 0.1.0 v2.3.0
flash area Interface 1.0.0 v1.11.0

System Initialization
System power off
Task Watchdog APIs 0.8.0 v2.5.0
Thread analyzer
Timing Measurement APIs

Arch specific Timing Measurement APIs
Board specific Timing Measurement APIs
SoC specific Timing Measurement APIs

Tracing
Object tracking
Tracing APIs

Conditional Variable Tracing APIs
Event Tracing APIs
FIFO Tracing APIs
Heap Tracing APIs
LIFO Tracing APIs
Mailbox Tracing APIs
Memory Slab Tracing APIs
Message Queue Tracing APIs
Mutex Tracing APIs
PM Device Runtime Tracing APIs
Pipe Tracing APIs
Poll Tracing APIs
Queue Tracing APIs
Semaphore Tracing APIs
Stack Tracing APIs
Syscall Tracing APIs
System PM Tracing APIs
Thread Tracing APIs
Timer Tracing APIs
Work Delayable Tracing APIs
Work Poll Tracing APIs
Work Queue Tracing APIs
Work Tracing APIs

Tracing format APIs
Tracing utility macros

Zbus APIs
Sensing

Data Types
Sensing Sensor API

Sensor Callbacks
Sensing Subsystem API
Sensor Types

Testing
Emulator interface

I2C Emulation Interface
SPI Emulation Interface
eSPI Emulation Interface

FFF extensions
Zephyr Testing Framework (ZTest)

continues on next page

2.6. API Status and Guidelines 61

../../doxygen/html/group__smf.html
../../doxygen/html/group__storage__apis.html
../../doxygen/html/group__disk__access__interface.html
../../doxygen/html/group__stream__flash.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v2.3.0
../../doxygen/html/group__flash__area__api.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v1.11.0
../../doxygen/html/group__sys__init.html
../../doxygen/html/group__sys__poweroff.html
../../doxygen/html/group__task__wdt__api.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v2.5.0
../../doxygen/html/group__thread__analyzer.html
../../doxygen/html/group__timing__api.html
../../doxygen/html/group__timing__api__arch.html
../../doxygen/html/group__timing__api__board.html
../../doxygen/html/group__timing__api__soc.html
../../doxygen/html/group__subsys__tracing.html
../../doxygen/html/group__subsys__tracing__object__tracking.html
../../doxygen/html/group__subsys__tracing__apis.html
../../doxygen/html/group__subsys__tracing__apis__condvar.html
../../doxygen/html/group__subsys__tracing__apis__event.html
../../doxygen/html/group__subsys__tracing__apis__fifo.html
../../doxygen/html/group__subsys__tracing__apis__heap.html
../../doxygen/html/group__subsys__tracing__apis__lifo.html
../../doxygen/html/group__subsys__tracing__apis__mbox.html
../../doxygen/html/group__subsys__tracing__apis__mslab.html
../../doxygen/html/group__subsys__tracing__apis__msgq.html
../../doxygen/html/group__subsys__tracing__apis__mutex.html
../../doxygen/html/group__subsys__tracing__apis__pm__device__runtime.html
../../doxygen/html/group__subsys__tracing__apis__pipe.html
../../doxygen/html/group__subsys__tracing__apis__poll.html
../../doxygen/html/group__subsys__tracing__apis__queue.html
../../doxygen/html/group__subsys__tracing__apis__sem.html
../../doxygen/html/group__subsys__tracing__apis__stack.html
../../doxygen/html/group__subsys__tracing__apis__syscall.html
../../doxygen/html/group__subsys__tracing__apis__pm__system.html
../../doxygen/html/group__subsys__tracing__apis__thread.html
../../doxygen/html/group__subsys__tracing__apis__timer.html
../../doxygen/html/group__subsys__tracing__apis__work__delayable.html
../../doxygen/html/group__subsys__tracing__apis__work__poll.html
../../doxygen/html/group__subsys__tracing__apis__work__q.html
../../doxygen/html/group__subsys__tracing__apis__work.html
../../doxygen/html/group__subsys__tracing__format__apis.html
../../doxygen/html/group__subsys__tracing__macros.html
../../doxygen/html/group__zbus__apis.html
../../doxygen/html/group__sensing.html
../../doxygen/html/group__sensing__datatypes.html
../../doxygen/html/group__sensing__sensor.html
../../doxygen/html/group__sensing__sensor__callbacks.html
../../doxygen/html/group__sensing__api.html
../../doxygen/html/group__sensing__sensor__types.html
../../doxygen/html/group__testing.html
../../doxygen/html/group__io__emulators.html
../../doxygen/html/group__i2c__emul__interface.html
../../doxygen/html/group__spi__emul__interface.html
../../doxygen/html/group__espi__emul__interface.html
../../doxygen/html/group__fff__extensions.html
../../doxygen/html/group__ztest.html

Zephyr Project Documentation, Release 3.6.99

Table 1 – continued from previous page
API Version Available in Zephyr Since

Ztest assertion macros
Ztest assumption macros
Ztest expectation macros
Ztest mocking support
Ztest testing macros
Ztest ztress macros

Third-party
BBC micro:bit display APIs
Grove display APIs
MCUboot image control API
UpdateHub Firmware Over-the-Air
hawkBit Firmware Over-the-Air

USB Device Controller API
USB Device Core API
USB-C Device API 0.1.0 v3.3.0

Sink_callbacks
Source_callbacks

Utilities
Base64
Data Structure APIs

Balanced Red/Black Tree
Bit array
Doubly-linked list
Flagged Single-linked list
Hashmap

Hash Functions
Hashmap Implementations

MPSC (Multi producer, single consumer) packet buffer API
MPSC (Multi producer, single consumer) packet header
MPSC packet buffer flags

Ring Buffer APIs
SPSC (Single producer, single consumer) packet buffer API

SPSC packet buffer flags
Single-linked list

Formatted Output APIs
Package convert flags
Package flags
cbvprintf processing flags.

JSON
JSON Web Token (JWT)

Linear Range
Math extras
Monochrome Character Framebuffer
Navigation
Time Utility APIs

Time Representation APIs
Time Synchronization APIs
Time Units Helpers

Utility Functions 0.1.0 v2.4.0
Xtensa APIs

Xtensa Internal APIs
Xtensa Memory Management Unit (MMU) APIs
Xtensa Memory Protection Unit (MPU) APIs

62 Chapter 2. Developing with Zephyr

../../doxygen/html/group__ztest__assert.html
../../doxygen/html/group__ztest__assume.html
../../doxygen/html/group__ztest__expect.html
../../doxygen/html/group__ztest__mock.html
../../doxygen/html/group__ztest__test.html
../../doxygen/html/group__ztest__ztress.html
../../doxygen/html/group__third__party.html
../../doxygen/html/group__mb__display.html
../../doxygen/html/group__grove__display.html
../../doxygen/html/group__mcuboot__api.html
../../doxygen/html/group__updatehub.html
../../doxygen/html/group__hawkbit.html
../../doxygen/html/group____usb__device__controller__api.html
../../doxygen/html/group____usb__device__core__api.html
../../doxygen/html/group____usbc__device__api.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v3.3.0
../../doxygen/html/group__sink__callbacks.html
../../doxygen/html/group__source__callbacks.html
../../doxygen/html/group__utilities.html
../../doxygen/html/group__base64.html
../../doxygen/html/group__datastructure__apis.html
../../doxygen/html/group__rbtree__apis.html
../../doxygen/html/group__bitarray__apis.html
../../doxygen/html/group__doubly-linked-list__apis.html
../../doxygen/html/group__flagged-single-linked-list__apis.html
../../doxygen/html/group__hashmap__apis.html
../../doxygen/html/group__hash__functions.html
../../doxygen/html/group__hashmap__implementations.html
../../doxygen/html/group__mpsc__buf.html
../../doxygen/html/group__mpsc__packet.html
../../doxygen/html/group__MPSC__PBUF__FLAGS.html
../../doxygen/html/group__ring__buffer__apis.html
../../doxygen/html/group__spsc__buf.html
../../doxygen/html/group__SPSC__PBUF__FLAGS.html
../../doxygen/html/group__single-linked-list__apis.html
../../doxygen/html/group__cbprintf__apis.html
../../doxygen/html/group__CBPRINTF__PACKAGE__CONVERT__FLAGS.html
../../doxygen/html/group__CBPRINTF__PACKAGE__FLAGS.html
../../doxygen/html/group__Z__CBVPRINTF__PROCESS__FLAGS.html
../../doxygen/html/group__json.html
../../doxygen/html/group__jwt.html
../../doxygen/html/group__linear__range.html
../../doxygen/html/group__math__extras.html
../../doxygen/html/group__monochrome__character__framebuffer.html
../../doxygen/html/group__navigation.html
../../doxygen/html/group__timeutil__apis.html
../../doxygen/html/group__timeutil__repr__apis.html
../../doxygen/html/group__timeutil__sync__apis.html
../../doxygen/html/group__timeutil__unit__apis.html
../../doxygen/html/group__sys-util.html
https://github.com/zephyrproject-rtos/zephyr/releases/tag//v2.4.0
../../doxygen/html/group__xtensa__apis.html
../../doxygen/html/group__xtensa__internal__apis.html
../../doxygen/html/group__xtensa__mmu__apis.html
../../doxygen/html/group__xtensa__mpu__apis.html

Zephyr Project Documentation, Release 3.6.99

2.6.2 API Lifecycle

Developers using Zephyr’s APIs need to know how long they can trust that a given API will not
change in future releases. At the same time, developers maintaining and extending Zephyr’s
APIs need to be able to introduce new APIs that aren’t yet fully proven, and to potentially retire
old APIs when they’re no longer optimal or supported by the underlying platforms.

Fig. 2: API Life Cycle

An up-to-date table of all APIs and their maturity level can be found in the API Overview page.

Experimental

Experimental APIs denote that a feature was introduced recently, and may change or be removed
in future versions. Try it out and provide feedback to the community via the Developer mailing
list.

The following requirements apply to all new APIs:

• Documentation of the API (usage) explaining its design and assumptions, how it is to be
used, current implementation limitations, and future potential, if appropriate.

• The API introduction should be accompanied by at least one implementation of said API (in
the case of peripheral APIs, this corresponds to one driver)

• At least one sample using the new API (may only build on one single board)

When introducing a new and experimental API, mark the API version in the headers where the
API is defined. An experimental API shall have a version where the minor version is up to one
(0.1.z). (see api overview <api_overview>)

Peripheral APIs (Hardware Related) When introducing an API (public header file with docu-
mentation) for a new peripheral or driver subsystem, review of the API is enforced and is driven
by the Architecture working group consisting of representatives from different vendors.

The API shall be promoted to unstable when it has at least two implementations on different
hardware platforms.

2.6. API Status and Guidelines 63

https://lists.zephyrproject.org/g/devel
https://lists.zephyrproject.org/g/devel

Zephyr Project Documentation, Release 3.6.99

Unstable

The API is in the process of settling, but has not yet had sufficient real-world testing to be con-
sidered stable. The API is considered generic in nature and can be used on different hardware
platforms.

When the API changes status to unstable API, mark the API version in the headers where the API
is defined. Unstable APIs shall have a version where the minor version is larger than one (0.y.z
| y > 1). (see api overview <api_overview>)

Note: Changes will not be announced.

Peripheral APIs (Hardware Related) The API shall be promoted from experimental to un-
stable when it has at least two implementations on different hardware platforms.

Hardware Agnostic APIs For hardware agnostic APIs, multiple applications using it are re-
quired to promote an API from experimental to unstable.

Stable

The API has proven satisfactory, but cleanup in the underlying code may cause minor changes.
Backwards-compatibility will be maintained if reasonable.

An API can be declared stable after fulfilling the following requirements:

• Test cases for the new API with 100% coverage

• Complete documentation in code. All public interfaces shall be documented and available
in online documentation.

• The API has been in-use and was available in at least 2 development releases

• Stable APIs can get backward compatible updates, bug fixes and security fixes at any time.

In order to declare an API stable, the following steps need to be followed:

1. A Pull Request must be opened that changes the corresponding entry in the API Overview
table

2. An email must be sent to the devel mailing list announcing the API upgrade request

3. The Pull Request must be submitted for discussion in the next Zephyr Architecture meeting
where, barring any objections, the Pull Request will be merged

When the API changes status to stable API, mark the API version in the headers where the API is
defined. Stable APIs shall have a version where the major version is one or larger (x.y.z | x >= 1
). (see api overview <api_overview>)

Introducing breaking API changes A stable API, as described above, strives to remain
backwards-compatible through its life-cycle. There are however cases where fulfilling this ob-
jective prevents technical progress, or is simply unfeasible without unreasonable burden on the
maintenance of the API and its implementation(s).

A breaking API change is defined as one that forces users to modify their existing code in order to
maintain the current behavior of their application. The need for recompilation of applications
(without changing the application itself) is not considered a breaking API change.

64 Chapter 2. Developing with Zephyr

https://github.com/zephyrproject-rtos/zephyr/wiki/Architecture-Working-Group

Zephyr Project Documentation, Release 3.6.99

In order to restrict and control the introduction of a change that breaks the promise of back-
wards compatibility, the following steps must be followed whenever such a change is considered
necessary in order to accept it in the project:

1. An RFC issue must be opened on GitHub with the following content:

Title: RFC: Breaking API Change: <subsystem>
Contents: - Problem Description:

- Background information on why the change is required
- Proposed Change (detailed):

- Brief description of the API change
- Detailed RFC:

- Function call changes
- Device Tree changes (source and bindings)
- Kconfig option changes

- Dependencies:
- Impact to users of the API, including the steps required
to adapt out-of-tree users of the API to the change

Instead of a written description of the changes, the RFC issue may link to a Pull Request
containing those changes in code form.

2. The RFC issue must be labeled with the GitHub Breaking API Change label

3. The RFC issue must be submitted for discussion in the next Zephyr Architecture meeting

4. An email must be sent to the devel mailing list with a subject identical to the RFC issue title
and that links to the RFC issue

The RFC will then receive feedback through issue comments and will also be discussed in the
Zephyr Architecture meeting, where the stakeholders and the community at large will have a
chance to discuss it in detail.

Finally, and if not done as part of the first step, a Pull Request must be opened on GitHub. It
is left to the person proposing the change to decide whether to introduce both the RFC and the
Pull Request at the same time or to wait until the RFC has gathered consensus enough so that
the implementation can proceed with confidence that it will be accepted. The Pull Request must
include the following:

• A title that matches the RFC issue

• A link to the RFC issue

• The actual changes to the API

– Changes to the API header file

– Changes to the API implementation(s)

– Changes to the relevant API documentation

– Changes to Device Tree source and bindings

• The changes required to adapt in-tree users of the API to the change. Depending on the
scope of this task this might require additional help from the corresponding maintainers

• An entry in the “API Changes” section of the release notes for the next upcoming release

• The labels API, Breaking API Change and Release Notes, as well as any others that are
applicable

• The label Architecture Review if the RFC was not yet discussed and agreed upon in Zephyr
Architecture meeting

Once the steps above have been completed, the outcome of the proposal will depend on the
approval of the actual Pull Request by the maintainer of the corresponding subsystem. As with
any other Pull Request, the author can request for it to be discussed and ultimately even voted
on in the Zephyr TSC meeting.

2.6. API Status and Guidelines 65

https://github.com/zephyrproject-rtos/zephyr/wiki/Architecture-Working-Group
https://github.com/zephyrproject-rtos/zephyr/wiki/Architecture-Working-Group
https://github.com/zephyrproject-rtos/zephyr/wiki/Architecture-Working-Group
https://github.com/zephyrproject-rtos/zephyr/wiki/Zephyr-Committee-and-Working-Group-Meetings#technical-steering-committee-tsc

Zephyr Project Documentation, Release 3.6.99

If the Pull Request is merged then an email must be sent to the devel and user mailing lists
informing them of the change.

The API version shall be changed to signal backward incompatible changes. This is achieved
by incrementing the major version (X.y.z | X > 1). It MAY also include minor and patch level
changes. Patch and minor versions MUST be reset to 0 when major version is incremented. (see
api overview <api_overview>)

Note: Breaking API changes will be listed and described in the migration guide.

Deprecated

Note: Unstable APIs can be removed without deprecation at any time. Deprecation and removal
of APIs will be announced in the “API Changes” section of the release notes.

The following are the requirements for deprecating an existing API:

• Deprecation Time (stable APIs): 2 Releases The API needs to be marked as deprecated in
at least two full releases. For example, if an API was first deprecated in release 1.14, it
will be ready to be removed in 1.16 at the earliest. There may be special circumstances,
determined by the Architecture working group, where an API is deprecated sooner.

• What is required when deprecating:

– Mark as deprecated. This can be done by using the compiler itself (__deprecated for
function declarations and __DEPRECATED_MACRO for macro definitions), or by introduc-
ing a Kconfig option (typically one that contains the DEPRECATED word in it) that, when
enabled, reverts the APIs back to their previous form

– Document the deprecation

– Include the deprecation in the “API Changes” of the release notes for the next upcoming
release

– Code using the deprecated API needs to be modified to remove usage of said API

– The change needs to be atomic and bisectable

– Create a GitHub issue to track the removal of the deprecated API, and add it to the
roadmap targeting the appropriate release (in the example above, 1.16).

During the deprecation waiting period, the API will be in the deprecated state. The Zephyr main-
tainers will track usage of deprecated APIs on docs.zephyrproject.org and support developers
migrating their code. Zephyr will continue to provide warnings:

• API documentation will inform users that the API is deprecated.

• Attempts to use a deprecated API at build time will log a warning to the console.

Retired

In this phase, the API is removed.

The target removal date is 2 releases after deprecation is announced. The Zephyr maintainers
will decide when to actually remove the API: this will depend on how many developers have suc-
cessfully migrated from the deprecated API, and on how urgently the API needs to be removed.

If it’s OK to remove the API, it will be removed. The maintainers will remove the corresponding
documentation, and communicate the removal in the usual ways: the release notes, mailing lists,
Github issues and pull-requests.

66 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

If it’s not OK to remove the API, the maintainers will continue to support migration and update
the roadmap with the aim to remove the API in the next release.

2.6.3 API Design Guidelines

Zephyr development and evolution is a group effort, and to simplify maintenance and enhance-
ments there are some general policies that should be followed when developing a new capability
or interface.

Using Callbacks

Many APIs involve passing a callback as a parameter or as a member of a configuration structure.
The following policies should be followed when specifying the signature of a callback:

• The first parameter should be a pointer to the object most closely associated with the call-
back. In the case of device drivers this would be const struct device *dev. For library
functions it may be a pointer to another object that was referenced when the callback was
provided.

• The next parameter(s) should be additional information specific to the callback invocation,
such as a channel identifier, new status value, and/or a message pointer followed by the
message length.

• The final parameter should be a void *user_data pointer carrying context that allows a
shared callback function to locate additional material necessary to process the callback.

An exception to providing user_data as the last parameter may be allowed when the callback
itself was provided through a structure that will be embedded in another structure. An example
of such a case is gpio_callback, normally defined within a data structure specific to the code that
also defines the callback function. In those cases further context can accessed by the callback
indirectly by CONTAINER_OF.

Examples
• The requirements of k_timer_expiry_t invoked when a system timer alarm fires are satis-

fied by:

void handle_timeout(struct k_timer *timer)
{ ... }

The assumption here, as with gpio_callback, is that the timer is embedded in a structure
reachable from CONTAINER_OF that can provide additional context to the callback.

• The requirements of counter_alarm_callback_t invoked when a counter device alarm
fires are satisfied by:

void handle_alarm(const struct device *dev,
uint8_t chan_id,
uint32_t ticks,
void *user_data)

{ ... }

This provides more complete useful information, including which counter channel timed-
out and the counter value at which the timeout occurred, as well as user context which
may or may not be the counter_alarm_cfg used to register the callback, depending on user
needs.

2.6. API Status and Guidelines 67

Zephyr Project Documentation, Release 3.6.99

Conditional Data and APIs

APIs and libraries may provide features that are expensive in RAM or code size but are optional
in the sense that some applications can be implemented without them. Examples of such fea-
ture include capturing a timestamp or providing an alternative interface. The developer
in coordination with the community must determine whether enabling the features is to be con-
trollable through a Kconfig option.

In the case where a feature is determined to be optional the following practices should be fol-
lowed.

• Any data that is accessed only when the feature is enabled should be conditionally included
via #ifdef CONFIG_MYFEATURE in the structure or union declaration. This reduces memory
use for applications that don’t need the capability.

• Function declarations that are available only when the option is enabled should be pro-
vided unconditionally. Add a note in the description that the function is available only
when the specified feature is enabled, referencing the required Kconfig symbol by name.
In the cases where the function is used but not enabled the definition of the function shall
be excluded from compilation, so references to the unsupported API will result in a link-
time error.

• Where code specific to the feature is isolated in a source file that has no other content that
file should be conditionally included in CMakeLists.txt:

zephyr_sources_ifdef(CONFIG_MYFEATURE foo_funcs.c)

• Where code specific to the feature is part of a source file that has other content the feature-
specific code should be conditionally processed using #ifdef CONFIG_MYFEATURE.

The Kconfig flag used to enable the feature should be added to the PREDEFINED variable in doc/
zephyr.doxyfile.in to ensure the conditional API and functions appear in generated documen-
tation.

Return Codes

Implementations of an API, for example an API for accessing a peripheral might implement only
a subset of the functions that is required for minimal operation. A distinction is needed between
APIs that are not supported and those that are not implemented or optional:

• APIs that are supported but not implemented shall return -ENOSYS.

• Optional APIs that are not supported by the hardware should be implemented and the re-
turn code in this case shall be -ENOTSUP.

• When an API is implemented, but the particular combination of options requested in the
call cannot be satisfied by the implementation the call shall return -ENOTSUP. (For exam-
ple, a request for a level-triggered GPIO interrupt on hardware that supports only edge-
triggered interrupts)

2.6.4 API Terminology

The following terms may be used as shorthand API tags to indicate the allowed calling context
(thread, ISR, pre-kernel), the effect of a call on the current thread state, and other behavioral
characteristics.

reschedule
if executing the function reaches a reschedule point

sleep
if executing the function can cause the invoking thread to sleep

68 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

no-wait
if a parameter to the function can prevent the invoking thread from trying to sleep

isr-ok
if the function can be safely called and will have its specified effect whether invoked from
interrupt or thread context

pre-kernel-ok
if the function can be safely called before the kernel has been fully initialized and will have
its specified effect when invoked from that context.

async
if the function may return before the operation it initializes is complete (i.e. function return
and operation completion are asynchronous)

supervisor
if the calling thread must have supervisor privileges to execute the function

Details on the behavioral impact of each attribute are in the following sections.

reschedule

The reschedule attribute is used on a function that can reach a reschedule point within its exe-
cution.

Details The significance of this attribute is that when a rescheduling function is invoked by a
thread it is possible for that thread to be suspended as a consequence of a higher-priority thread
being made ready. Whether the suspension actually occurs depends on the operation associated
with the reschedule point and the relative priorities of the invoking thread and the head of the
ready queue.

Note that in the case of timeslicing, or reschedule points executed from interrupts, any thread
may be suspended in any function.

Functions that are not reschedule may be invoked from either thread or interrupt context.

Functions that are reschedule may be invoked from thread context.

Functions that are reschedule but not sleep may be invoked from interrupt context.

sleep

The sleep attribute is used on a function that can cause the invoking thread to sleep.

Explanation This attribute is of relevance specifically when considering applications that use
only non-preemptible threads, because the kernel will not replace a running cooperative-only
thread at a reschedule point unless that thread has explicitly invoked an operation that caused
it to sleep.

This attribute does not imply the function will sleep unconditionally, but that the operation may
require an invoking thread that would have to suspend, wait, or invoke k_yield() before it can
complete its operation. This behavior may be mediated by no-wait.
Functions that are sleep are implicitly reschedule.

Functions that are sleep may be invoked from thread context.

Functions that are sleep may be invoked from interrupt and pre-kernel contexts if and only if
invoked in no-wait mode.

2.6. API Status and Guidelines 69

Zephyr Project Documentation, Release 3.6.99

no-wait

The no-wait attribute is used on a function that is also sleep to indicate that a parameter to the
function can force an execution path that will not cause the invoking thread to sleep.

Explanation The paradigmatic case of a no-wait function is a function that takes a timeout,
to which K_NO_WAIT can be passed. The semantics of this special timeout value are to execute
the function’s operation as long as it can be completed immediately, and to return an error code
rather than sleep if it cannot.

It is use of the no-wait feature that allows functions like k_sem_take() to be invoked from ISRs,
since it is not permitted to sleep in interrupt context.

A function with a no-wait path does not imply that taking that path guarantees the function is
synchronous.

Functions with this attribute may be invoked from interrupt and pre-kernel contexts only when
the parameter selects the no-wait path.

isr-ok

The isr-ok attribute is used on a function to indicate that it works whether it is being invoked
from interrupt or thread context.

Explanation Any function that is not sleep is inherently isr-ok. Functions that are sleep are
isr-ok if the implementation ensures that the documented behavior is implemented even if
called from an interrupt context. This may be achieved by having the implementation detect
the calling context and transfer the operation that would sleep to a thread, or by documenting
that when invoked from a non-thread context the function will return a specific error (generally
-EWOULDBLOCK).

Note that a function that is no-wait is safe to call from interrupt context only when the no-wait
path is selected. isr-ok functions need not provide a no-wait path.

pre-kernel-ok

The pre-kernel-ok attribute is used on a function to indicate that it works as documented even
when invoked before the kernel main thread has been started.

Explanation This attribute is similar to isr-ok in function, but is intended for use by any API
that is expected to be called in DEVICE_DEFINE() or SYS_INIT() calls that may be invoked with
PRE_KERNEL_1 or PRE_KERNEL_2 initialization levels.

Generally a function that is pre-kernel-ok checks k_is_pre_kernel() when determining
whether it can fulfill its required behavior. In many cases it would also check k_is_in_isr()
so it can be isr-ok as well.

async

A function is async (i.e. asynchronous) if it may return before the operation it initiates has
completed. An asynchronous function will generally provide a mechanism by which operation
completion is reported, e.g. a callback or event.

70 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

A function that is not asynchronous is synchronous, i.e. the operation will always be complete
when the function returns. As most functions are synchronous this behavior does not have a
distinct attribute to identify it.

Explanation Be aware that async is orthogonal to context-switching. Some APIs may provide
completion information through a callback, but may suspend while waiting for the resource
necessary to initiate the operation; an example is spi_transceive_async().

If a function is both no-wait and async then selecting the no-wait path only guarantees that the
function will not sleep. It does not affect whether the operation will be completed before the
function returns.

supervisor

The supervisor attribute is relevant only in user-mode applications, and indicates that the func-
tion cannot be invoked from user mode.

2.7 Language Support

2.7.1 C Language Support

C is a general-purpose low-level programming language that is widely used for writing code for
embedded systems.

Zephyr is primarily written in C and natively supports applications written in the C language.
All Zephyr API functions and macros are implemented in C and available as part of the C header
files under the include directory, so writing Zephyr applications in C gives the developers access
to the most features.

The main() function must have the return type of int as Zephyr applications run in a “hosted”
environment as defined by the C standard. Applications must return zero (0) from main. All
non-zero return values are reserved.

Language Standards

Zephyr does not target a specific version of the C standards; however, the Zephyr codebase makes
extensive use of the features newly introduced in the 1999 release of the ISO C standard (ISO/IEC
9899:1999, hereinafter referred to as C99) such as those listed below, effectively requiring the
use of a compiler toolchain that supports the C99 standard and above:

• inline functions

• standard boolean types (bool in <stdbool.h>)

• fixed-width integer types ([u]intN_t in <stdint.h>)

• designated initializers

• variadic macros

• restrict qualification

Some Zephyr components make use of the features newly introduced in the 2011 release of the
ISO C standard (ISO/IEC 9899:2011, hereinafter referred to as C11) such as the type-generic ex-
pressions using the _Generic keyword. For example, the cbprintf() component, used as the
default formatted output processor for Zephyr, makes use of the C11 type-generic expressions,
and this effectively requires most Zephyr applications to be compiled using a compiler toolchain
that supports the C11 standard and above.

2.7. Language Support 71

Zephyr Project Documentation, Release 3.6.99

In summary, it is recommended to use a compiler toolchain that supports at least the C11 stan-
dard for developing with Zephyr. It is, however, important to note that some optional Zephyr
components and external modules may make use of the C language features that have been in-
troduced in more recent versions of the standards, in which case it will be necessary to use a
more up-to-date compiler toolchain that supports such standards.

Standard Library

The C Standard Library is an integral part of any C program, and Zephyr provides the support for
a number of different C libraries for the applications to choose from, depending on the compiler
toolchain being used to build the application.

CommonC library code Zephyr provides some C library functions that are designed to be used
in conjunction with multiple C libraries. These either provide functions not available in multiple
C libraries or are designed to replace functionality in the C library with code better suited for use
in the Zephyr environment

Time function This provides an implementation of the standard C function, time(), rely-
ing on the Zephyr function, clock_gettime(). This function can be enabled by selecting COM-
MON_LIBC_TIME.

Dynamic Memory Management The common dynamic memory management implementa-
tion can be enabled by selecting the CONFIG_COMMON_LIBC_MALLOC in the application configura-
tion file.

The common C library internally uses the kernel memory heap API to manage the memory heap
used by the standard dynamic memory management interface functions such as malloc() and
free().

The internal memory heap is normally located in the .bss section. When userspace is enabled,
however, it is placed in a dedicated memory partition called z_malloc_partition, which can be
accessed from the user mode threads. The size of the internal memory heap is specified by the
CONFIG_COMMON_LIBC_MALLOC_ARENA_SIZE.

The default heap size for applications using the common C library is zero (no heap). For other
C library users, if there is an MMU present, then the default heap is 16kB. Otherwise, the heap
uses all available memory.

There are also separate controls to select calloc() (COMMON_LIBC_CALLOC) and reallocarray()
(COMMON_LIBC_REALLOCARRAY). Both of these are enabled by default as that doesn’t impact mem-
ory usage in applications not using them.

The standard dynamic memory management interface functions implemented by the common
C library are thread safe and may be simultaneously called by multiple threads. These functions
are implemented in lib/libc/common/source/stdlib/malloc.c.

Minimal libc The most basic C library, named “minimal libc”, is part of the Zephyr codebase
and provides the minimal subset of the standard C library required to meet the needs of Zephyr
and its subsystems, primarily in the areas of string manipulation and display.

It is very low footprint and is suitable for projects that do not rely on less frequently used portions
of the ISO C standard library. It can also be used with a number of different toolchains.

The minimal libc implementation can be found in lib/libc/minimal in the main Zephyr tree.

72 Chapter 2. Developing with Zephyr

https://en.wikipedia.org/wiki/C_standard_library

Zephyr Project Documentation, Release 3.6.99

Functions The minimal libc implements the minimal subset of the ISO/IEC 9899:2011 standard
C library functions required to meet the needs of the Zephyr kernel, as defined by the Coding
Guidelines Rule A.4.

Formatted Output The minimal libc does not implement its own formatted output processor;
instead, it maps the C standard formatted output functions such as printf and sprintf to the
cbprintf() function, which is Zephyr’s own C99-compatible formatted output implementation.

For more details, refer to the Formatted Output OS service documentation.

Dynamic Memory Management The minimal libc uses the malloc api family implementation
provided by the common C library, which itself is built upon the kernel memory heap API.

Error numbers Error numbers are used throughout Zephyr APIs to signal error conditions as
return values from functions. They are typically returned as the negative value of the integer
literals defined in this section, and are defined in the errno.h header file.

A subset of the error numbers defined in the POSIX errno.h specification and other de-facto
standard sources have been added to the minimal libc.

A conscious effort is made in Zephyr to keep the values of the minimal libc error numbers con-
sistent with the different implementations of the C standard libraries supported by Zephyr. The
minimal libc errno.h is checked against that of the Newlib to ensure that the error numbers are
kept aligned.

Below is a list of the error number definitions. For the actual numeric values please refer to
errno.h.

group system_errno
System error numbers Error codes returned by functions.

Includes a list of those defined by IEEE Std 1003.1-2017.

Defines

errno

EPERM
Not owner.

ENOENT
No such file or directory.

ESRCH
No such context.

EINTR
Interrupted system call.

EIO
I/O error.

2.7. Language Support 73

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/errno.h.html
https://github.com/zephyrproject-rtos/zephyr/blob/main/lib/libc/minimal/include/errno.h

Zephyr Project Documentation, Release 3.6.99

ENXIO
No such device or address.

E2BIG
Arg list too long.

ENOEXEC
Exec format error.

EBADF
Bad file number.

ECHILD
No children.

EAGAIN
No more contexts.

ENOMEM
Not enough core.

EACCES
Permission denied.

EFAULT
Bad address.

ENOTBLK
Block device required.

EBUSY
Mount device busy.

EEXIST
File exists.

EXDEV
Cross-device link.

ENODEV
No such device.

ENOTDIR
Not a directory.

EISDIR
Is a directory.

74 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

EINVAL
Invalid argument.

ENFILE
File table overflow.

EMFILE
Too many open files.

ENOTTY
Not a typewriter.

ETXTBSY
Text file busy.

EFBIG
File too large.

ENOSPC
No space left on device.

ESPIPE
Illegal seek.

EROFS
Read-only file system.

EMLINK
Too many links.

EPIPE
Broken pipe.

EDOM
Argument too large.

ERANGE
Result too large.

ENOMSG
Unexpected message type.

EDEADLK
Resource deadlock avoided.

ENOLCK
No locks available.

2.7. Language Support 75

Zephyr Project Documentation, Release 3.6.99

ENOSTR
STREAMS device required.

ENODATA
Missing expected message data.

ETIME
STREAMS timeout occurred.

ENOSR
Insufficient memory.

EPROTO
Generic STREAMS error.

EBADMSG
Invalid STREAMS message.

ENOSYS
Function not implemented.

ENOTEMPTY
Directory not empty.

ENAMETOOLONG
File name too long.

ELOOP
Too many levels of symbolic links.

EOPNOTSUPP
Operation not supported on socket.

EPFNOSUPPORT
Protocol family not supported.

ECONNRESET
Connection reset by peer.

ENOBUFS
No buffer space available.

EAFNOSUPPORT
Addr family not supported.

EPROTOTYPE
Protocol wrong type for socket.

76 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

ENOTSOCK
Socket operation on non-socket.

ENOPROTOOPT
Protocol not available.

ESHUTDOWN
Can’t send after socket shutdown.

ECONNREFUSED
Connection refused.

EADDRINUSE
Address already in use.

ECONNABORTED
Software caused connection abort.

ENETUNREACH
Network is unreachable.

ENETDOWN
Network is down.

ETIMEDOUT
Connection timed out.

EHOSTDOWN
Host is down.

EHOSTUNREACH
No route to host.

EINPROGRESS
Operation now in progress.

EALREADY
Operation already in progress.

EDESTADDRREQ
Destination address required.

EMSGSIZE
Message size.

EPROTONOSUPPORT
Protocol not supported.

2.7. Language Support 77

Zephyr Project Documentation, Release 3.6.99

ESOCKTNOSUPPORT
Socket type not supported.

EADDRNOTAVAIL
Can’t assign requested address.

ENETRESET
Network dropped connection on reset.

EISCONN
Socket is already connected.

ENOTCONN
Socket is not connected.

ETOOMANYREFS
Too many references: can’t splice.

ENOTSUP
Unsupported value.

EILSEQ
Illegal byte sequence.

EOVERFLOW
Value overflow.

ECANCELED
Operation canceled.

EWOULDBLOCK
Operation would block.

Newlib Newlib is a complete C library implementation written for the embedded systems. It is
a separate open source project and is not included in source code form with Zephyr. Instead, the
Zephyr SDK includes a precompiled library for each supported architecture (libc.a and libm.a).

Note: Other 3rd-party toolchains, such as GNU Arm Embedded, also bundle the Newlib as a
precompiled library.

Zephyr implements the “API hook” functions that are invoked by the C standard library functions
in the Newlib. These hook functions are implemented in lib/libc/newlib/libc-hooks.c and
translate the library internal system calls to the equivalent Zephyr API calls.

Types of Newlib The Newlib included in the Zephyr SDK comes in two versions: ‘full’ and
‘nano’ variants.

78 Chapter 2. Developing with Zephyr

https://sourceware.org/newlib/

Zephyr Project Documentation, Release 3.6.99

Full Newlib The Newlib full variant (libc.a and libm.a) is the most capable variant of the
Newlib available in the Zephyr SDK, and supports almost all standard C library features. It is
optimized for performance (prefers performance over code size) and its footprint is significantly
larger than the nano variant.

This variant can be enabled by selecting the CONFIG_NEWLIB_LIBC and de-selecting the CON-
FIG_NEWLIB_LIBC_NANO in the application configuration file.

Nano Newlib The Newlib nano variant (libc_nano.a and libm_nano.a) is the size-optimized
version of the Newlib, and supports all features that the full variant supports except the new
format specifiers introduced in C99, such as the char, long long type format specifiers (i.e. %hhX
and %llX).

This variant can be enabled by selecting the CONFIG_NEWLIB_LIBC and CONFIG_NEWLIB_LIBC_NANO
in the application configuration file.

Note that the Newlib nano variant is not available for all architectures. The availability of the
nano variant is specified by the CONFIG_HAS_NEWLIB_LIBC_NANO.

Formatted Output Newlib supports all standard C formatted input and output functions, in-
cluding printf, fprintf, sprintf and sscanf.

The Newlib formatted input and output function implementation supports all format specifiers
defined by the C standard with the following exceptions:

• Floating point format specifiers (e.g. %f) require CONFIG_NEWLIB_LIBC_FLOAT_PRINTF and
CONFIG_NEWLIB_LIBC_FLOAT_SCANF to be enabled.

• C99 format specifiers are not supported in the Newlib nano variant (i.e. %hhX for char, %llX
for long long, %jX for intmax_t, %zX for size_t, %tX for ptrdiff_t).

DynamicMemoryManagement Newlib implements an internal heap allocator to manage the
memory blocks used by the standard dynamic memory management interface functions (for
example, malloc() and free()).

The internal heap allocator implemented by the Newlib may vary across the different types of the
Newlib used. For example, the heap allocator implemented in the Full Newlib (libc.a and libm.
a) of the Zephyr SDK requests larger memory chunks to the operating system and has a signifi-
cantly higher minimum memory requirement compared to that of the Nano Newlib (libc_nano.
a and libm_nano.a).

The only interface between the Newlib dynamic memory management functions and the Zephyr-
side libc hooks is the sbrk() function, which is used by the Newlib to manage the size of the
memory pool reserved for its internal heap allocator.

The _sbrk()hook function, implemented in libc-hooks.c, handles the memory pool size change
requests from the Newlib and ensures that the Newlib internal heap allocator memory pool size
does not exceed the amount of available memory space by returning an error when the system
is out of memory.

When userspace is enabled, the Newlib internal heap allocator memory pool is placed in a dedi-
cated memory partition called z_malloc_partition, which can be accessed from the user mode
threads.

The amount of memory space available for the Newlib heap depends on the system configura-
tions:

• When MMU is enabled (CONFIG_MMU is selected), the amount of memory space re-
served for the Newlib heap is set by the size of the free memory space returned
by the k_mem_free_get() function or the CONFIG_NEWLIB_LIBC_MAX_MAPPED_REGION_SIZE,
whichever is the smallest.

2.7. Language Support 79

Zephyr Project Documentation, Release 3.6.99

• When MPU is enabled and the MPU requires power-of-two partition size and ad-
dress alignment (CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE is set to a non-zero value),
the amount of memory space reserved for the Newlib heap is set by the CON-
FIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE.

• Otherwise, the amount of memory space reserved for the Newlib heap is equal to the
amount of free (unallocated) memory in the SRAM region.

The standard dynamic memory management interface functions implemented by the Newlib
are thread safe and may be simultaneously called by multiple threads.

Picolibc Picolibc is a complete C library implementation written for the embedded systems,
targeting C17 (ISO/IEC 9899:2018) and POSIX 2018 (IEEE Std 1003.1-2017) standards. Picolibc is
an external open source project which is provided for Zephyr as a module, and included as part
of the Zephyr SDK in precompiled form for each supported architecture (libc.a).

Note: Picolibc is also available for other 3rd-party toolchains, such as GNU Arm Embedded.

Zephyr implements the “API hook” functions that are invoked by the C standard library functions
in the Picolibc. These hook functions are implemented in lib/libc/picolibc/libc-hooks.c and
translate the library internal system calls to the equivalent Zephyr API calls.

Picolibc Module When built as a Zephyr module, there are several configuration knobs avail-
able to adjust the feature set in the library, balancing what the library supports versus the code
size of the resulting functions. Because the standard C++ library must be compiled for the tar-
get C library, the Picolibc module cannot be used with applications which use the standard C++
library. Building the Picolibc module will increase the time it takes to compile the application.

The Picolibc module can be enabled by selecting CONFIG_PICOLIBC_USE_MODULE in the application
configuration file.

When updating the Picolibc module to a newer version, the toolchain-bundled Picolibc in the
Zephyr SDK must also be updated to the same version.

Toolchain Picolibc Starting with version 0.16, the Zephyr SDK includes precompiled versions
of Picolibc for every target architecture, along with precompiled versions of libstdc++.

The toolchain version of Picolibc can be enabled by de-selecting CONFIG_PICOLIBC_USE_MODULE
in the application configuration file.

For every release of Zephyr, the toolchain-bundled Picolibc and the Picolibc module are guaran-
teed to be in sync when using the recommended version of Zephyr SDK.

Building Without Toolchain bundled Picolibc For toolchain where there is no bundled Pi-
colibc, it is still possible to use Picolibc by building it from source. Note that any restrictions
mentioned in Picolibc Module still apply.

To build without toolchain bundled Picolibc, the toolchain must enable CON-
FIG_PICOLIBC_SUPPORTED. For example, this needs to be added to the toolchain Kconfig
file:

config TOOLCHAIN_<name>_PICOLIBC_SUPPORTED
def_bool y
select PICOLIBC_SUPPORTED

By enabling CONFIG_PICOLIBC_SUPPORTED, the build system would automatically build Picolibc
from source with its module when there is no toolchain bundled Picolibc.

80 Chapter 2. Developing with Zephyr

https://github.com/picolibc/picolibc
https://www.iso.org/standard/74528.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/printf.html

Zephyr Project Documentation, Release 3.6.99

Formatted Output Picolibc supports all standard C formatted input and output functions, in-
cluding printf(), fprintf(), sprintf() and sscanf().

Picolibc formatted input and output function implementation supports all format specifiers de-
fined by the C17 and POSIX 2018 standards with the following exceptions:

• Floating point format specifiers (e.g. %f) require CONFIG_PICOLIBC_IO_FLOAT.

• Long long format specifiers (e.g. %lld) require CONFIG_PICOLIBC_IO_LONG_LONG. This option
is automatically enabled with CONFIG_PICOLIBC_IO_FLOAT.

Printk, cbprintf and friends When using Picolibc, Zephyr formatted output functions are im-
plemented in terms of stdio calls. This includes:

• printk, snprintk and vsnprintk

• cbprintf and cbvprintf

• fprintfcb, vfprintfcb, printfcb, vprintfcb, snprintfcb and vsnprintfcb

When using tagged args (CONFIG_CBPRINTF_PACKAGE_SUPPORT_TAGGED_ARGUMENTS and
CBPRINTF_PACKAGE_ARGS_ARE_TAGGED), calls to cbpprintf will not use Picolibc, so formatting
of output using those code will differ from Picolibc results as the cbprintf functions are not
completely C/POSIX compliant.

Math Functions Picolibc provides full C17/IEEE STD 754-2019 support for float, double and
long double math operations, except for long double versions of the Bessel functions.

Thread Local Storage Picolibc uses Thread Local Storage (TLS) (where supported) for data
which is supposed to remain local to each thread, like errno. This means that TLS support is
enabled when using Picolibc. As all TLS variables are allocated out of the thread stack area, this
can affect stack size requirements by a few bytes.

C Library Local Variables Picolibc uses a few internal variables for things like heap manage-
ment. These are collected in a dedicated memory partition called z_libc_partition. Applica-
tions using CONFIG_USERSPACE and memory domains must ensure that this partition is included
in any domain active during Picolibc calls.

DynamicMemoryManagement Picolibc uses the malloc api family implementation provided
by the common C library, which itself is built upon the kernel memory heap API.

Formatted Output

C defines standard formatted output functions such as printf and sprintf and these functions
are implemented by the C standard libraries.

Each C standard library has its own set of requirements and configurations for selecting the
formatted output modes and capabilities. Refer to each C standard library documentation for
more details.

Dynamic Memory Management

C defines a standard dynamic memory management interface (for example, malloc() and
free()) and these functions are implemented by the C standard libraries.

2.7. Language Support 81

https://ieeexplore.ieee.org/document/8766229

Zephyr Project Documentation, Release 3.6.99

While the details of the dynamic memory management implementation varies across different
C standard libraries, all supported libraries must conform to the following conventions. Every
supported C standard library shall:

• manage its own memory heap either internally or by invoking the hook functions (for ex-
ample, sbrk()) implemented in libc-hooks.c.

• maintain the architecture- and memory region-specific alignment requirements for the
memory blocks allocated by the standard dynamic memory allocation interface (for ex-
ample, malloc()).

• allocate memory blocks inside the z_malloc_partition memory partition when userspace
is enabled. See Pre-defined Memory Partitions.

For more details regarding the C standard library-specific memory management implementa-
tion, refer to each C standard library documentation.

Note: Native Zephyr applications should use the memory management API supported by the
Zephyr kernel such as k_malloc() in order to take advantage of the advanced features that they
offer.

C standard dynamic memory management interface functions such as malloc() should be used
only by the portable applications and libraries that target multiple operating systems.

2.7.2 C++ Language Support

C++ is a general-purpose object-oriented programming language that is based on the C language.

Enabling C++ Support

Zephyr supports applications written in both C and C++. However, to use C++ in an application
you must configure Zephyr to include C++ support by selecting the CONFIG_CPP in the application
configuration file.

To enable C++ support, the compiler toolchain must also include a C++ compiler and the included
compiler must be supported by the Zephyr build system. The Zephyr SDK, which includes the
GNU C++ Compiler (part of GCC), is supported by Zephyr, and the features and their availability
documented here assume the use of the Zephyr SDK.

The default C++ standard level (i.e. the language enforced by the compiler flags passed) for
Zephyr apps is C++11. Other standards are available via kconfig choice, for example CON-
FIG_STD_CPP98. The oldest standard supported and tested in Zephyr is C++98.

When compiling a source file, the build system selects the C++ compiler based on the suffix (ex-
tension) of the files. Files identified with either a cpp or a cxx suffix are compiled using the C++
compiler. For example, myCplusplusApp.cpp is compiled using C++.

The C++ standard requires the main() function to have the return type of int. Your main() must
be defined as int main(void). Zephyr ignores the return value from main, so applications should
not return status information and should, instead, return zero.

Note: Do not use C++ for kernel, driver, or system initialization code.

82 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Language Features

Zephyr currently provides only a subset of C++ functionality. The following features are not
supported:

• Static global object destruction

• OS-specific C++ standard library classes (e.g. std::thread, std::mutex)

While not an exhaustive list, support for the following functionality is included:

• Inheritance

• Virtual functions

• Virtual tables

• Static global object constructors

• Dynamic object management with the new and delete operators

• Exceptions

• RTTI (runtime type information)

• Standard Template Library (STL)

Static global object constructors are initialized after the drivers are initialized but before the
application main() function. Therefore, use of C++ is restricted to application code.

In order to make use of the C++ exceptions, the CONFIG_CPP_EXCEPTIONS must be selected in the
application configuration file.

Zephyr Minimal C++ Library

Zephyr minimal C++ library (lib/cpp/minimal) provides a minimal subset of the C++ standard
library and application binary interface (ABI) functions to enable basic C++ language support.
This includes:

• new and delete operators

• virtual function stub and vtables

• static global initializers for global constructors

The scope of the minimal C++ library is strictly limited to providing the basic C++ language sup-
port, and it does not implement any Standard Template Library (STL) classes and functions. For
this reason, it is only suitable for use in the applications that implement their own (non-standard)
class library and do not rely on the Standard Template Library (STL) components.

Any application that makes use of the Standard Template Library (STL) components, such as
std::string and std::vector, must enable the C++ standard library support.

C++ Standard Library

The C++ Standard Library is a collection of classes and functions that are part of the ISO C++
standard (std namespace).

Zephyr does not include any C++ standard library implementation in source code form. Instead,
it allows configuring the build system to link against the pre-built C++ standard library included
in the C++ compiler toolchain.

To enable C++ standard library, select an applicable toolchain-specific C++ standard library type
from the CONFIG_LIBCPP_IMPLEMENTATION in the application configuration file.

2.7. Language Support 83

https://en.wikipedia.org/wiki/Standard_Template_Library
https://en.wikipedia.org/wiki/C%2B%2B_Standard_Library

Zephyr Project Documentation, Release 3.6.99

For instance, when building with the Zephyr SDK, the build system can be configured to link
against the GNU C++ Library (libstdc++.a), which is a fully featured C++ standard library that
provides all features required by the ISO C++ standard including the Standard Template Library
(STL), by selecting CONFIG_GLIBCXX_LIBCPP in the application configuration file.

The following C++ standard libraries are supported by Zephyr:

• GNU C++ Library (CONFIG_GLIBCXX_LIBCPP)

• ARC MetaWare C++ Library (CONFIG_ARCMWDT_LIBCPP)

A Zephyr subsystem that requires the features from the full C++ standard library can select,
from its config, CONFIG_REQUIRES_FULL_LIBCPP, which automatically selects a compatible C++
standard library unless the Kconfig symbol for a specific C++ standard library is selected.

2.8 Optimizations

Guides on how to optimize Zephyr for performance, power and footprint.

2.8.1 Optimizing for Footprint

Stack Sizes

Stack sizes of various system threads are specified generously to allow for usage in different
scenarios on as many supported platforms as possible. You should start the optimization process
by reviewing all stack sizes and adjusting them for your application:

CONFIG_ISR_STACK_SIZE
Set to 2048 by default

CONFIG_MAIN_STACK_SIZE
Set to 1024 by default

CONFIG_IDLE_STACK_SIZE
Set to 320 by default

CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE
Set to 1024 by default

CONFIG_PRIVILEGED_STACK_SIZE
Set to 1024 by default, depends on userspace feature.

Unused Peripherals

Some peripherals are enabled by default. You can disable unused peripherals in your project
configuration, for example:

CONFIG_GPIO=n
CONFIG_SPI=n

Various Debug/Informational Options

The following options are enabled by default to provide more information about the running
application and to provide means for debugging and error handling:

CONFIG_BOOT_BANNER
This option can be disabled to save a few bytes.

84 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

CONFIG_DEBUG
This option can be disabled for production builds

MPU/MMU Support

Depending on your application and platform needs, you can disable MPU/MMU support to gain
some memory and improve performance. Consider the consequences of this configuration
choice though, because you’ll lose advanced stack checking and support.

2.8.2 Optimization Tools

The available optimization tools let you analyse Footprint andMemoryUsage andData Structures
using different build system targets.

Footprint and Memory Usage

The build system offers 3 targets to view and analyse RAM, ROM and stack usage in generated
images. The tools run on the final image and give information about size of symbols and code
being used in both RAM and ROM. Additionally, with features available through the compiler,
we can also generate worst-case stack usage analysis.

Some of the tools mentioned in this section are organizing their output based on the physical
organization of the symbols. As some symbols might be external to the project’s tree structure,
or might lack metadata needed to display them by name, the following top-level containers are
used to group such symbols:

• Hidden - The RAM and ROM reports list all processing symbols with no matching mapped
files in the Hidden category.

This means that the file for the listed symbol was not added to the metadata file, was empty,
or was undefined. The tool was unable to get the name of the function for the given symbol
nor identify where it comes from.

• No paths - The RAM and ROM reports list all processing symbols with relative paths in the
No paths category.

This means that the listed symbols cannot be placed in the tree structure of the report at
an absolute path under one specific file. The tool was able to get the name of the function,
but it was unable to identify where it comes from.

Note: You can have multiple cases of the same function, and the No paths category will
list the sum of these in one entry.

Build Target: ram_report List all compiled objects and their RAM usage in a tabular form
with bytes per symbol and the percentage it uses. The data is grouped based on the file system
location of the object in the tree and the file containing the symbol.

Use the ram_report target with your board, as in the following example.

Using west:

west build -b reel_board samples/hello_world
west build -t ram_report

Using CMake and ninja:

2.8. Optimizations 85

Zephyr Project Documentation, Release 3.6.99

Use cmake to configure a Ninja-based buildsystem:
cmake -Bbuild -GNinja -DBOARD=reel_board samples/hello_world

Now run the build tool on the generated build system:
ninja -Cbuild ram_report

These commands will generate something similar to the output below:

Path Size %
==
Root 4637 100.00%
├── (hidden) 4 0.09%
├── (no paths) 2748 59.26%
│ ├── _cpus_active 4 0.09%
│ ├── _kernel 32 0.69%
│ ├── _sw_isr_table 384 8.28%
│ ├── cli.1 16 0.35%
│ ├── on.2 4 0.09%
│ ├── poll_out_lock.0 4 0.09%
│ ├── z_idle_threads 128 2.76%
│ ├── z_interrupt_stacks 2048 44.17%
│ └── z_main_thread 128 2.76%
├── WORKSPACE 184 3.97%
│ └── modules 184 3.97%
│ └── hal 184 3.97%
│ └── nordic 184 3.97%
│ └── nrfx 184 3.97%
│ └── drivers 184 3.97%
│ └── src 184 3.97%
│ ├── nrfx_clock.c 8 0.17%
│ │ └── m_clock_cb 8 0.17%
│ ├── nrfx_gpiote.c 132 2.85%
│ │ └── m_cb 132 2.85%
│ ├── nrfx_ppi.c 4 0.09%
│ │ └── m_channels_allocated 4 0.09%
│ └── nrfx_twim.c 40 0.86%
│ └── m_cb 40 0.86%
└── ZEPHYR_BASE 1701 36.68%

├── arch 5 0.11%
│ └── arm 5 0.11%
│ └── core 5 0.11%
│ ├── mpu 1 0.02%
│ │ └── arm_mpu.c 1 0.02%
│ │ └── static_regions_num 1 0.02%
│ └── tls.c 4 0.09%
│ └── z_arm_tls_ptr 4 0.09%
├── drivers 258 5.56%
│ ├──%

==
4637

Build Target: rom_report List all compiled objects and their ROM usage in a tabular form
with bytes per symbol and the percentage it uses. The data is grouped based on the file system
location of the object in the tree and the file containing the symbol.

Use the rom_report target with your board, as in the following example.

Using west:

west build -b reel_board samples/hello_world
west build -t rom_report

86 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Using CMake and ninja:

Use cmake to configure a Ninja-based buildsystem:
cmake -Bbuild -GNinja -DBOARD=reel_board samples/hello_world

Now run the build tool on the generated build system:
ninja -Cbuild rom_report

These commands will generate something similar to the output below:

Path Size %
==
Root 21652 100.00%
├──%
└── ZEPHYR_BASE 13378 61.79%

├── arch 1718 7.93%
│ └── arm 1718 7.93%
│ └── core 1718 7.93%
│ ├── cortex_m 1020 4.71%
│ │ ├── fault.c 620 2.86%
│ │ │ ├── bus_fault.constprop.0 108 0.50%
│ │ │ ├── mem_manage_fault.constprop.0 120 0.55%
│ │ │ ├── usage_fault.constprop.0 84 0.39%
│ │ │ ├── z_arm_fault 292 1.35%
│ │ │ └── z_arm_fault_init 16 0.07%
│ │ ├──%
├── boards 32 0.15%
│ └── arm 32 0.15%
│ └── reel_board 32 0.15%
│ └── board.c 32 0.15%
│ ├── __init_board_reel_board_init 8 0.04%
│ └── board_reel_board_init 24 0.11%
├── build 194 0.90%
│ └── zephyr 194 0.90%
│ ├── isr_tables.c 192 0.89%
│ │ └── _irq_vector_table 192 0.89%
│ └── misc 2 0.01%
│ └── generated 2 0.01%
│ └── configs.c 2 0.01%
│ └── _ConfigAbsSyms 2 0.01%
├── drivers 6162 28.46%
│ ├──%

==
21652

Build Target: puncover This target uses a third-party tool called puncover which can be found
at https://github.com/HBehrens/puncover. When this target is built, it will launch a local web
server which will allow you to open a web client and browse the files and view their ROM, RAM,
and stack usage.

Before you can use this target, install the puncover Python module:

pip3 install git+https://github.com/HBehrens/puncover --user

Warning: This is a third-party tool that might or might not be working at any given time.
Please check the GitHub issues, and report new problems to the project maintainer.

After you installed the Python module, use puncover target with your board, as in the following
example.

2.8. Optimizations 87

https://github.com/HBehrens/puncover

Zephyr Project Documentation, Release 3.6.99

Using west:

west build -b reel_board samples/hello_world
west build -t puncover

Using CMake and ninja:

Use cmake to configure a Ninja-based buildsystem:
cmake -Bbuild -GNinja -DBOARD=reel_board samples/hello_world

Now run the build tool on the generated build system:
ninja -Cbuild puncover

To view worst-case stack usage analysis, build this with the CONFIG_STACK_USAGE enabled.

Using west:

west build -b reel_board samples/hello_world -- -DCONFIG_STACK_USAGE=y
west build -t puncover

Using CMake and ninja:

Use cmake to configure a Ninja-based buildsystem:
cmake -Bbuild -GNinja -DBOARD=reel_board -DCONFIG_STACK_USAGE=y samples/hello_world

Now run the build tool on the generated build system:
ninja -Cbuild puncover

Data Structures

Build Target: pahole Poke-a-hole (pahole) is an object-file analysis tool to find the size of the
data structures, and the holes caused due to aligning the data elements to the word-size of the
CPU by the compiler.

Poke-a-hole (pahole) must be installed prior to using this target. It can be obtained from https:
//git.kernel.org/pub/scm/devel/pahole/pahole.git and is available in the dwarves package in both
fedora and ubuntu:

sudo apt-get install dwarves

Alternatively, you can get it from fedora:

sudo dnf install dwarves

After you installed the package, use pahole target with your board, as in the following example.

Using west:

west build -b reel_board samples/hello_world
west build -t pahole

Using CMake and ninja:

Use cmake to configure a Ninja-based buildsystem:
cmake -Bbuild -GNinja -DBOARD=reel_board samples/hello_world

Now run the build tool on the generated build system:
ninja -Cbuild pahole

Pahole will generate something similar to the output below in the console:

88 Chapter 2. Developing with Zephyr

https://git.kernel.org/pub/scm/devel/pahole/pahole.git
https://git.kernel.org/pub/scm/devel/pahole/pahole.git

Zephyr Project Documentation, Release 3.6.99

/* Used at: zephyr/isr_tables.c */
/* <80> ../include/sw_isr_table.h:30 */
struct _isr_table_entry {

void * arg; /* 0 4 */
void (*isr)(void *); /* 4 4 */

/* size: 8, cachelines: 1, members: 2 */
/* last cacheline: 8 bytes */

};
/* Used at: zephyr/isr_tables.c */
/* <eb> ../include/arch/arm/aarch32/cortex_m/mpu/arm_mpu_v7m.h:134 */
struct arm_mpu_region_attr {

uint32_t rasr; /* 0 4 */

/* size: 4, cachelines: 1, members: 1 */
/* last cacheline: 4 bytes */

};
/* Used at: zephyr/isr_tables.c */
/* <112> ../include/arch/arm/aarch32/cortex_m/mpu/arm_mpu.h:24 */
struct arm_mpu_region {

uint32_t base; /* 0 4 */
const char * name; /* 4 4 */
arm_mpu_region_attr_t attr; /* 8 4 */

/* size: 12, cachelines: 1, members: 3 */
/* last cacheline: 12 bytes */

};
...
...

2.9 Flashing and Hardware Debugging

2.9.1 Flash & Debug Host Tools

This guide describes the software tools you can run on your host workstation to flash and debug
Zephyr applications.

Zephyr’s west tool has built-in support for all of these in its flash, debug, debugserver, and attach
commands, provided your board hardware supports them and your Zephyr board directory’s
board.cmake file declares that support properly. See Building, Flashing and Debugging for more
information on these commands.

SAM Boot Assistant (SAM-BA)

Atmel SAM Boot Assistant (Atmel SAM-BA) allows In-System Programming (ISP) from USB or
UART host without any external programming interface. Zephyr allows users to develop and
program boards with SAM-BA support using west. Zephyr supports devices with/without ROM
bootloader and both extensions from Arduino and Adafruit. Full support was introduced in
Zephyr SDK 0.12.0.

The typical command to flash the board is:

west flash [-r bossac] [-p /dev/ttyX]

Flash configuration for devices:

With ROM bootloader

2.9. Flashing and Hardware Debugging 89

Zephyr Project Documentation, Release 3.6.99

These devices don’t need any special configuration. After building your application, just run
west flash to flash the board.

Without ROM bootloader

For these devices, the user should:

1. Define flash partitions required to accommodate the bootloader and application image; see
Flash map for details.

2. Have board .defconfig file with the CONFIG_USE_DT_CODE_PARTITION Kconfig option set to
y to instruct the build system to use these partitions for code relocation. This option can
also be set in prj.conf or any other Kconfig fragment.

3. Build and flash the SAM-BA bootloader on the device.

With compatible SAM-BA bootloader

For these devices, the user should:

1. Define flash partitions required to accommodate the bootloader and application image; see
Flash map for details.

2. Have board .defconfig file with the CONFIG_BOOTLOADER_BOSSA Kconfig option set
to y. This will automatically select the CONFIG_USE_DT_CODE_PARTITION Kconfig op-
tion which instruct the build system to use these partitions for code relocation.
The board .defconfig file should have CONFIG_BOOTLOADER_BOSSA_ARDUINO , CON-
FIG_BOOTLOADER_BOSSA_ADAFRUIT_UF2 or the CONFIG_BOOTLOADER_BOSSA_LEGACY Kconfig
option set to y to select the right compatible SAM-BA bootloader mode. These options can
also be set in prj.conf or any other Kconfig fragment.

3. Build and flash the SAM-BA bootloader on the device.

Note: The CONFIG_BOOTLOADER_BOSSA_LEGACY Kconfig option should be used as last resource.
Try configure first with Devices without ROM bootloader.

Typical flash layout and configuration For bootloaders that reside on flash, the devicetree
partition layout is mandatory. For devices that have a ROM bootloader, they are mandatory
when the application uses a storage or other non-application partition. In this special case, the
boot partition should be omitted and code_partition should start from offset 0. It is necessary to
define the partitions with sizes that avoid overlaps, always.

A typical flash layout for devices without a ROM bootloader is:

/ {
chosen {

zephyr,code-partition = &code_partition;
};

};

&flash0 {
partitions {

compatible = "fixed-partitions";
#address-cells = <1>;
#size-cells = <1>;

boot_partition: partition@0 {
label = "sam-ba";
reg = <0x00000000 0x2000>;
read-only;

};

(continues on next page)

90 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
code_partition: partition@2000 {

label = "code";
reg = <0x2000 0x3a000>;
read-only;

};

/*
* The final 16 KiB is reserved for the application.
* Storage partition will be used by FCB/LittleFS/NVS
* if enabled.
*/
storage_partition: partition@3c000 {

label = "storage";
reg = <0x0003c000 0x00004000>;

};
};

};

A typical flash layout for devices with a ROM bootloader and storage partition is:

/ {
chosen {

zephyr,code-partition = &code_partition;
};

};

&flash0 {
partitions {

compatible = "fixed-partitions";
#address-cells = <1>;
#size-cells = <1>;

code_partition: partition@0 {
label = "code";
reg = <0x0 0xF0000>;
read-only;

};

/*
* The final 64 KiB is reserved for the application.
* Storage partition will be used by FCB/LittleFS/NVS
* if enabled.
*/
storage_partition: partition@F0000 {

label = "storage";
reg = <0x000F0000 0x00100000>;

};
};

};

Enabling SAM-BA runner In order to instruct Zephyr west tool to use the SAM-BA bootloader
the board.cmake file must have include(${ZEPHYR_BASE}/boards/common/bossac.board.cmake)
entry. Note that Zephyr tool accept more entries to define multiple runners. By default, the first
one will be selected when using west flash command. The remaining options are available
passing the runner option, for instance west flash -r bossac.

More implementation details can be found in the boards documentation. As a quick reference,
see these three board documentation pages:

• sam4e_xpro (ROM bootloader)

2.9. Flashing and Hardware Debugging 91

Zephyr Project Documentation, Release 3.6.99

• adafruit_feather_m0_basic_proto (Adafruit UF2 bootloader)

• arduino_nano_33_iot (Arduino bootloader)

• arduino_nano_33_ble (Arduino legacy bootloader)

Enabling BOSSAC onWindows Native [Experimental] Zephyr SDK´s bossac is currently sup-
ported on Linux and macOS only. Windows support can be achieved by using the bossac ver-
sion from BOSSA official releases. After installing using default options, the bossac.exe must
be added to Windows PATH. A specific bossac executable can be used by passing the --bossac
option, as follows:

west flash -r bossac --bossac="C:\Program Files (x86)\BOSSA\bossac.exe" --bossac-port="COMx"

Note: WSL is not currently supported.

LinkServer Debug Host Tools

Linkserver is a utility for launching and managing GDB servers for NXP debug probes, which
also provides a command-line target flash programming capabilities. Linkserver can be used
with the NXP MCUXpresso for Visual Studio Code implementation, with custom debug config-
urations based on GNU tools or as part of a headless solution for continuous integration and
test. LinkServer can be used with MCU-Link, LPC-Link2, LPC11U35-based and OpenSDA based
standalone or on-board debug probes from NXP.

NXP recommends installing LinkServer by using NXP’s MCUXpresso Installer. This method will
also install the tools supporting the debug probes below, including NXP’s MCU-Link and LPC-
Scrypt tools.

LinkServer is compatible with the following debug probes:

• LPC-LINK2 CMSIS DAP Onboard Debug Probe

• MCU-Link CMSIS-DAP Onboard Debug Probe

• OpenSDA DAPLink Onboard Debug Probe

To use LinkServer with West commands, the install folder should be added to the PATH environ-
ment variable. The default installation path to add is:

Linux

/usr/local/LinkServer

Windows

c:\nxp\LinkServer_<version>

Supported west commands:

1. flash

2. debug

3. debugserver

4. attach

Notes:

1. Probes can be listed with LinkServer:

92 Chapter 2. Developing with Zephyr

https://github.com/shumatech/BOSSA/releases
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-for-visual-studio-code:MCUXPRESSO-VSC
https://github.com/nxp-mcuxpresso/vscode-for-mcux/wiki/Dependency-Installation

Zephyr Project Documentation, Release 3.6.99

LinkServer probes

2. With multiple debug probes attached to the host, use the LinkServer west runner --probe
option to pass the probe index.

west flash --runner=linkserver --probe=3

3. Device-specific settings can be overridden with the west runner for LinkServer with the
option ‘–override’. May be used multiple times. The format is dictated by LinkServer, e.g.:

west flash --runner=linkserver --override /device/memory/5/flash-driver=MIMXRT500_SFDP_MXIC_
↪→OSPI_S.cfx

J-Link Debug Host Tools

Segger provides a suite of debug host tools for Linux, macOS, and Windows operating systems:

• J-Link GDB Server: GDB remote debugging

• J-Link Commander: Command-line control and flash programming

• RTT Viewer: RTT terminal input and output

• SystemView: Real-time event visualization and recording

These debug host tools are compatible with the following debug probes:

• LPC-Link2 J-Link Onboard Debug Probe

• OpenSDA J-Link Onboard Debug Probe

• MCU-Link JLink Onboard Debug Probe

• J-Link External Debug Probe

• ST-LINK/V2-1 Onboard Debug Probe

Check if your SoC is listed in J-Link Supported Devices.

Download and install the J-Link Software and Documentation Pack to get the J-Link GDB Server
and Commander, and to install the associated USB device drivers. RTT Viewer and SystemView
can be downloaded separately, but are not required.

Note that the J-Link GDB server does not yet support Zephyr RTOS-awareness.

OpenOCD Debug Host Tools

OpenOCD is a community open source project that provides GDB remote debugging and flash
programming support for a wide range of SoCs. A fork that adds Zephyr RTOS-awareness is
included in the Zephyr SDK; otherwise see Getting OpenOCD for options to download OpenOCD
from official repositories.

These debug host tools are compatible with the following debug probes:

• OpenSDA DAPLink Onboard Debug Probe

• J-Link External Debug Probe

• ST-LINK/V2-1 Onboard Debug Probe

Check if your SoC is listed in OpenOCD Supported Devices.

Note: On Linux, openocd is available though the Zephyr SDK. Windows users should use the
following steps to install openocd:

2.9. Flashing and Hardware Debugging 93

https://www.segger.com/downloads/supported-devices.php
https://www.segger.com/downloads/jlink/#J-LinkSoftwareAndDocumentationPack
https://openocd.org/pages/getting-openocd.html
https://github.com/zephyrproject-rtos/openocd/tree/latest/tcl/target
https://github.com/zephyrproject-rtos/sdk-ng/releases

Zephyr Project Documentation, Release 3.6.99

• Download openocd for Windows from here: OpenOCD Windows

• Copy bin and share dirs to C:\Program Files\OpenOCD\
• Add C:\Program Files\OpenOCD\bin to ‘PATH’ environment variable

pyOCD Debug Host Tools

pyOCD is an open source project from Arm that provides GDB remote debugging and flash pro-
gramming support for Arm Cortex-M SoCs. It is distributed on PyPi and installed when you com-
plete the Get Zephyr and install Python dependencies step in the Getting Started Guide. pyOCD
includes support for Zephyr RTOS-awareness.

These debug host tools are compatible with the following debug probes:

• LPC-LINK2 CMSIS DAP Onboard Debug Probe

• MCU-Link CMSIS-DAP Onboard Debug Probe

• OpenSDA DAPLink Onboard Debug Probe

• ST-LINK/V2-1 Onboard Debug Probe

Check if your SoC is listed in pyOCD Supported Devices.

Lauterbach TRACE32 Debug Host Tools

Lauterbach TRACE32 is a product line of microprocessor development tools, debuggers and real-
time tracer with support for JTAG, SWD, NEXUS or ETM over multiple core architectures, includ-
ing Arm Cortex-A/-R/-M, RISC-V, Xtensa, etc. Zephyr allows users to develop and program boards
with Lauterbach TRACE32 support using west.

The runner consists of a wrapper around TRACE32 software, and allows a Zephyr board to exe-
cute a custom start-up script (Practice Script) for the different commands supported, including
the ability to pass extra arguments from CMake. Is up to the board using this runner to define
the actions performed on each command.

Install Lauterbach TRACE32 Software Download Lauterbach TRACE32 software from the
Lauterbach TRACE32 download website (registration required) and follow the installation steps
described in Lauterbach TRACE32 Installation Guide.

Flashing and Debugging Set the environment variable T32_DIR to the TRACE32 system direc-
tory. Then execute west flash or west debug commands to flash or debug the Zephyr application
as detailed in Building, Flashing and Debugging. The debug command launches TRACE32 GUI to
allow debug the Zephyr application, while the flash command hides the GUI and perform all
operations in the background.

By default, the t32 runner will launch TRACE32 using the default configuration file named
config.t32 located in the TRACE32 system directory. To use a different configuration file, supply
the argument --config CONFIG to the runner, for example:

west flash --config myconfig.t32

For more options, run west flash --context -r t32 to print the usage.

Zephyr RTOS Awareness To enable Zephyr RTOS awareness follow the steps described in
Lauterbach TRACE32 Zephyr OS Awareness Manual.

94 Chapter 2. Developing with Zephyr

http://gnutoolchains.com/arm-eabi/openocd/
https://github.com/pyocd/pyOCD/tree/main/pyocd/target/builtin
https://www.lauterbach.com/
http://www.lauterbach.com/download_trace32.html
https://www2.lauterbach.com/pdf/installation.pdf
https://www2.lauterbach.com/pdf/rtos_zephyr.pdf

Zephyr Project Documentation, Release 3.6.99

NXP S32 Debug Probe Host Tools

NXP S32 Debug Probe is designed to work in conjunction with NXP S32 Design Studio for S32
Platform.

Download (registration required) NXP S32 Design Studio for S32 Platform and follow the S32
Design Studio for S32 Platform Installation User Guide to get the necessary debug host tools and
associated USB device drivers.

Note that Zephyr RTOS-awareness support for the NXP S32 GDB server depends on the target
device. Consult the product release notes for more information.

Supported west commands:

1. debug

2. debugserver

3. attach

Basic usage Before starting, add NXP S32 Design Studio installation directory to the system
PATH environment variable. Alternatively, it can be passed to the runner on each invocation via
--s32ds-path as shown below:

Linux

west debug --s32ds-path=/opt/NXP/S32DS.3.5

Windows

west debug --s32ds-path=C:\NXP\S32DS.3.5

If multiple S32 debug probes are connected to the host via USB, the runner will ask the user
to select one via command line prompt before continuing. The connection string for the probe
can be also specified when invoking the runner via --dev-id=<connection-string>. Consult
NXP S32 debug probe user manual for details on how to construct the connection string. For
example, if using a probe with serial ID 00:04:9f:00:ca:fe:

west debug --dev-id='s32dbg:00:04:9f:00:ca:fe'

It is possible to pass extra options to the debug host tools via --tool-opt. When executing debug
or attach commands, the tool options will be passed to the GDB client only. When executing
debugserver, the tool options will be passed to the GDB server. For example, to load a Zephyr
application to SRAM and afterwards detach the debug session:

west debug --tool-opt='--batch'

2.9.2 Debug Probes

A debug probe is special hardware which allows you to control execution of a Zephyr application
running on a separate board. Debug probes usually allow reading and writing registers and
memory, and support breakpoint debugging of the Zephyr application on your host workstation
using tools like GDB. They may also support other debug software and more advanced features
such as tracing program execution. For details on the related host software supported by Zephyr,
see Flash & Debug Host Tools.

Debug probes are usually connected to your host workstation via USB; they are sometimes also
accessible via an IP network or other means. They usually connect to the device running Zephyr
using the JTAG or SWD protocols. Debug probes are either separate hardware devices or circuitry
integrated into the same board which runs Zephyr.

2.9. Flashing and Hardware Debugging 95

https://www.nxp.com/design/software/development-software/s32-design-studio-ide/s32-design-studio-for-s32-platform:S32DS-S32PLATFORM
https://www.nxp.com/design/software/development-software/s32-design-studio-ide/s32-design-studio-for-s32-platform:S32DS-S32PLATFORM
https://www.nxp.com/webapp/Download?colCode=S32DSIG
https://www.nxp.com/webapp/Download?colCode=S32DSIG

Zephyr Project Documentation, Release 3.6.99

Many supported boards in Zephyr include a second microcontroller that serves as an onboard de-
bug probe, usb-to-serial adapter, and sometimes a drag-and-drop flash programmer. This elim-
inates the need to purchase an external debug probe and provides a variety of debug host tool
options.

Several hardware vendors have their own branded onboard debug probe implementations: NXP
LPC boards haveLPC-Link2, NXP Kinetis (former Freescale) boards haveOpenSDA, and ST boards
have ST-LINK. Each onboard debug probe microcontroller can support one or more types of
firmware that communicate with their respective debug host tools. For example, an OpenSDA
microcontroller can be programmed with DAPLink firmware to communicate with pyOCD or
OpenOCD debug host tools, or with J-Link firmware to communicate with J-Link debug host tools.

Debug Probes & Host Tools
Compatibility Chart

Host Tools

J-Link De-
bug

OpenOCD pyOCD NXP S32DS

Debug
Probes

LPC-Link2 J-
Link

✓

OpenSDA
DAPLink

✓ ✓

OpenSDA
J-Link

✓

J-Link Exter-
nal

✓ ✓

ST-LINK/V2-
1

✓ ✓ some STM32
boards

NXP S32 De-
bug Probe

✓

Some supported boards in Zephyr do not include an onboard debug probe and therefore require
an external debug probe. In addition, boards that do include an onboard debug probe often also
have an SWD or JTAG header to enable the use of an external debug probe instead. One reason
this may be useful is that the onboard debug probe may have limitations, such as lack of support
for advanced debuggers or high-speed tracing. You may need to adjust jumpers to prevent the
onboard debug probe from interfering with the external debug probe.

MCU-Link CMSIS-DAP Onboard Debug Probe

The CMSIS-DAP debug probes allow debugging from any compatible toolchain, including IAR
EWARM, Keil MDK, NXP’s MCUXpresso IDE and MCUXpresso extension for VS Code. In addition
to debug probe functionality, the MCU-Link probes may also provide:

1. SWO trace end point: this virtual device is used by MCUXpresso to retrieve SWO trace data.
See the MCUXpresso IDE documentation for more information.

2. Virtual COM (VCOM) port / UART bridge connected to the target processor

3. USB to UART, SPI and/or I2C interfaces (depending on MCU-Link type/implementation)

4. Energy measurements of the target MCU

This debug probe is compatible with the following debug host tools:

• LinkServer Debug Host Tools

This probe is realized by programming the MCU-Link microcontroller with the CMSIS-DAP MCU-
Link firmware, which is already installed by default. NXP recommends using NXP’s MCUXpresso
Installer, which installs both the MCU-Link host tools plus the LinkServer Debug Host Tools.

1. Put the MCU-Link microcontroller into DFU boot mode by attaching the DFU jumper, then
powering up the board.

96 Chapter 2. Developing with Zephyr

https://www.nxp.com/lgfiles/updates/mcuxpresso/MCUXpressoInstaller.exe
https://www.nxp.com/lgfiles/updates/mcuxpresso/MCUXpressoInstaller.exe

Zephyr Project Documentation, Release 3.6.99

2. Run the program_CMSIS script, found in the installed MCU-Link scripts folder.

3. Remove the DFU jumper and power cycle the board.

MCU-Link JLink Onboard Debug Probe

The MCU-Link J-Link is an onboard debug probe and usb-to-serial adapter supported on many
NXP development boards.

This debug probe is compatible with the following debug host tools:

• J-Link Debug Host Tools

These probes do not have JLink firmware installed by default, and must be updated. NXP recom-
mends using NXP’s MCUXpresso Installer, which installs both the J-Link Debug Host Tools plus
the MCU-Link host tools.

1. Put the MCU-Link microcontroller into DFU boot mode by attaching the DFU jumper, then
powering up the board.

2. Run the program_JLINK script, found in the installed MCU-Link scripts folder.

3. Remove the DFU jumper and power cycle the board.

LPC-LINK2 CMSIS DAP Onboard Debug Probe

The CMSIS-DAP debug probes allow debugging from any compatible toolchain, including IAR
EWARM, Keil MDK, as well as NXP’s MCUXpresso IDE and MCUXpresso extension for VS Code.
As well as providing debug probe functionality, the LPC-Link2 probes also provide:

1. SWO trace end point: this virtual device is used by MCUXpresso to retrieve SWO trace data.
See the MCUXpresso IDE documentation for more information.

2. Virtual COM (VCOM) port / UART bridge connected to the target processor

3. LPCSIO bridge that provides communication to I2C and SPI slave devices

This probe is realized by programming the LPC-Link2 microcontroller with the CMSIS-DAP LPC-
Link2 firmware. Download and install LPCScrypt to get the firmware and programming scripts.

Note: Verify the firmware supports your board by visiting Firmware for LPCXpresso

1. Put the LPC-Link2 microcontroller into DFU boot mode by attaching the DFU jumper, then
powering up the board.

2. Run the program_CMSIS script.

3. Remove the DFU jumper and power cycle the board.

LPC-Link2 J-Link Onboard Debug Probe

The LPC-Link2 J-Link is an onboard debug probe and usb-to-serial adapter supported on many
NXP LPC and i.MX RT development boards.

This debug probe is compatible with the following debug host tools:

• J-Link Debug Host Tools

This probe is realized by programming the LPC-Link2 microcontroller with J-Link LPC-Link2
firmware. Download and install LPCScrypt to get the firmware and programming scripts.

2.9. Flashing and Hardware Debugging 97

https://www.nxp.com/lgfiles/updates/mcuxpresso/MCUXpressoInstaller.exe
https://www.nxp.com/lpcscrypt
https://www.segger.com/products/debug-probes/j-link/models/other-j-links/lpcxpresso-on-board/
https://www.nxp.com/lpcscrypt

Zephyr Project Documentation, Release 3.6.99

Note: Verify the firmware supports your board by visiting Firmware for LPCXpresso

1. Put the LPC-Link2 microcontroller into DFU boot mode by attaching the DFU jumper, then
powering up the board.

2. Run the program_JLINK script.

3. Remove the DFU jumper and power cycle the board.

OpenSDA DAPLink Onboard Debug Probe

The OpenSDA DAPLink is an onboard debug probe and usb-to-serial adapter supported on many
NXP Kinetis and i.MX RT development boards. It also includes drag-and-drop flash programming
support.

This debug probe is compatible with the following debug host tools:

• pyOCD Debug Host Tools

• OpenOCD Debug Host Tools

This probe is realized by programming the OpenSDA microcontroller with DAPLink OpenSDA
firmware. NXP provides OpenSDA DAPLink Board-Specific Firmwares.

Install the debug host tools before you program the firmware.

As with all OpenSDA debug probes, the steps for programming the firmware are:

1. Put the OpenSDA microcontroller into bootloader mode by holding the reset button while
you power on the board. Note that “bootloader mode” in this context applies to the
OpenSDA microcontroller itself, not the target microcontroller of your Zephyr application.

2. After you power on the board, release the reset button. A USB mass storage device called
BOOTLOADER or MAINTENANCE will enumerate.

3. Copy the OpenSDA firmware binary to the USB mass storage device.

4. Power cycle the board, this time without holding the reset button. You should see three
USB devices enumerate: a CDC device (serial port), a HID device (debug port), and a mass
storage device (drag-and-drop flash programming).

OpenSDA J-Link Onboard Debug Probe

The OpenSDA J-Link is an onboard debug probe and usb-to-serial adapter supported on many
NXP Kinetis and i.MX RT development boards.

This debug probe is compatible with the following debug host tools:

• J-Link Debug Host Tools

This probe is realized by programming the OpenSDA microcontroller with J-Link OpenSDA
firmware. Segger provides OpenSDA J-Link Generic Firmwares and OpenSDA J-Link Board-
Specific Firmwares, where the latter is generally recommended when available. Board-specific
firmwares are required for i.MX RT boards to support their external flash memories, whereas
generic firmwares are compatible with all Kinetis boards.

Install the debug host tools before you program the firmware.

As with all OpenSDA debug probes, the steps for programming the firmware are:

1. Put the OpenSDA microcontroller into bootloader mode by holding the reset button while
you power on the board. Note that “bootloader mode” in this context applies to the
OpenSDA microcontroller itself, not the target microcontroller of your Zephyr application.

98 Chapter 2. Developing with Zephyr

https://www.segger.com/products/debug-probes/j-link/models/other-j-links/lpcxpresso-on-board/
https://www.nxp.com/opensda
https://www.segger.com/downloads/jlink/#JLinkOpenSDAGenericFirmwares
https://www.segger.com/downloads/jlink/#JLinkOpenSDABoardSpecificFirmwares
https://www.segger.com/downloads/jlink/#JLinkOpenSDABoardSpecificFirmwares

Zephyr Project Documentation, Release 3.6.99

2. After you power on the board, release the reset button. A USB mass storage device called
BOOTLOADER or MAINTENANCE will enumerate.

3. Copy the OpenSDA firmware binary to the USB mass storage device.

4. Power cycle the board, this time without holding the reset button. You should see two USB
devices enumerate: a CDC device (serial port) and a vendor-specific device (debug port).

J-Link External Debug Probe

Segger J-Link is a family of external debug probes, including J-Link EDU, J-Link PLUS, J-Link
ULTRA+, and J-Link PRO, that support a large number of devices from different hardware archi-
tectures and vendors.

This debug probe is compatible with the following debug host tools:

• J-Link Debug Host Tools

• OpenOCD Debug Host Tools

Install the debug host tools before you program the firmware.

ST-LINK/V2-1 Onboard Debug Probe

ST-LINK/V2-1 is a serial and debug adapter built into all Nucleo and Discovery boards. It provides
a bridge between your computer (or other USB host) and the embedded target processor, which
can be used for debugging, flash programming, and serial communication, all over a simple USB
cable.

It is compatible with the following host debug tools:

• OpenOCD Debug Host Tools

• J-Link Debug Host Tools

For some STM32 based boards, it is also compatible with:

• pyOCD Debug Host Tools

While it works out of the box with OpenOCD, it requires some flashing to work with J-Link. To
do this, SEGGER offers a firmware upgrading the ST-LINK/V2-1 on board on the Nucleo and Dis-
covery boards. This firmware makes the ST-LINK/V2-1 compatible with J-LinkOB, allowing users
to take advantage of most J-Link features like the ultra fast flash download and debugging speed
or the free-to-use GDBServer.

More information about upgrading ST-LINK/V2-1 to JLink or restore ST-Link/V2-1 firmware
please visit: Segger over ST-Link

Flash and debug with ST-Link Using OpenOCD

OpenOCD is available by default on ST-Link and configured as the default flash and debug tool.
Flash and debug can be done as follows:

From the root of the zephyr repository
west build -b None samples/hello_world
west flash

From the root of the zephyr repository
west build -b None samples/hello_world
west debug

2.9. Flashing and Hardware Debugging 99

https://www.segger.com/products/debug-probes/j-link/
https://www.segger.com/products/debug-probes/j-link/models/other-j-links/st-link-on-board/

Zephyr Project Documentation, Release 3.6.99

Using Segger J-Link

Once STLink is flashed with SEGGER FW and J-Link GDB server is installed on your host com-
puter, you can flash and debug as follows:

Use CMake with -DBOARD_FLASH_RUNNER=jlink to change the default OpenOCD runner to J-Link.
Alternatively, you might add the following line to your application CMakeList.txt file.

set(BOARD_FLASH_RUNNER jlink)

If you use West (Zephyr’s meta-tool) you can modify the default runner using the --runner (or
-r) option.

west flash --runner jlink

To attach a debugger to your board and open up a debug console with jlink.

west debug --runner jlink

For more information about West and available options, see West (Zephyr’s meta-tool).

If you configured your Zephyr application to use Segger RTT console instead, open telnet:

$ telnet localhost 19021
Trying ::1...
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
SEGGER J-Link V6.30f - Real time terminal output
J-Link STLink V21 compiled Jun 26 2017 10:35:16 V1.0, SN=773895351
Process: JLinkGDBServerCLExe
Zephyr Shell, Zephyr version: 1.12.99
Type 'help' for a list of available commands
shell>

If you get no RTT output you might need to disable other consoles which conflict with the RTT
one if they are enabled by default in the particular sample or application you are running, such
as disable UART_CONSOLE in menuconfig

Updating or restoring ST-Link firmware ST-Link firmware can be updated using
STM32CubeProgrammer Tool. It is usually useful when facing flashing issues, for instance
when using twister’s device-testing option.

Once installed, you can update attached board ST-Link firmware with the following command

s java -jar ~/STMicroelectronics/STM32Cube/STM32CubeProgrammer/Drivers/
↪→FirmwareUpgrade/STLinkUpgrade.jar -sn <board_uid>

Where board_uid can be obtained using twister’s generate-hardware-map option. For more in-
formation about twister and available options, see Test Runner (Twister).

NXP S32 Debug Probe

NXP S32 Debug Probe enables NXP S32 target system debugging via a standard debug port while
connected to a developer’s workstation via USB or remotely via Ethernet.

NXP S32 Debug Probe is designed to work in conjunction with NXP S32 Design Studio (S32DS) and
NXP Automotive microcontrollers and processors. Install the debug host tools as in indicated in
NXP S32 Debug Probe Host Tools before you program the firmware.

100 Chapter 2. Developing with Zephyr

https://www.segger.com/jlink-rtt.html
https://www.st.com/en/development-tools/stm32cubeprog.html
https://www.nxp.com/design/software/automotive-software-and-tools/s32-debug-probe:S32-DP

Zephyr Project Documentation, Release 3.6.99

2.10 Modules (External projects)

Zephyr relies on the source code of several externally maintained projects in order to avoid
reinventing the wheel and to reuse as much well-established, mature code as possible when it
makes sense. In the context of Zephyr’s build system those are called modules. These modules
must be integrated with the Zephyr build system, as described in more detail in other sections
on this page.

To be classified as a candidate for being included in the default list of modules, an external project
is required to have its own life-cycle outside the Zephyr Project, that is, reside in its own repos-
itory, and have its own contribution and maintenance workflow and release process. Zephyr
modules should not contain code that is written exclusively for Zephyr. Instead, such code should
be contributed to the main zephyr tree.

Modules to be included in the default manifest of the Zephyr project need to provide functional-
ity or features endorsed and approved by the project Technical Steering Committee and should
comply with the module licensing requirements and contribution guidelines. They should also
have a Zephyr developer that is committed to maintain the module codebase.

Zephyr depends on several categories of modules, including but not limited to:

• Debugger integration

• Silicon vendor Hardware Abstraction Layers (HALs)

• Cryptography libraries

• File Systems

• Inter-Process Communication (IPC) libraries

Additionally, in some cases modules (particularly vendor HALs) can contain references to op-
tional binary blobs.

This page summarizes a list of policies and best practices which aim at better organizing the
workflow in Zephyr modules.

2.10.1 Modules vs west projects

Zephyr modules, described in this page, are not the same as west projects. In fact, modules do
not require west at all. However, when using modules with west, then the build system uses west
in order to find modules.

In summary:

Modules are repositories that contain a zephyr/module.yml file, so that the Zephyr build system
can pull in the source code from the repository. West projects are entries in the projects: section
in the west.yml manifest file. West projects are often also modules, but not always. There are
west projects that are not included in the final firmware image (eg. tools) and thus do not need
to be modules. Modules are found by the Zephyr build system either via west itself , or via the
ZEPHYR_MODULES CMake variable.

The contents of this page only apply to modules, and not to west projects in general (unless they
are a module themselves).

2.10.2 Module Repositories

• All modules included in the default manifest shall be hosted in repositories under the
zephyrproject-rtos GitHub organization.

• The module repository codebase shall include a module.yml file in a zephyr/ folder at the
root of the repository.

2.10. Modules (External projects) 101

Zephyr Project Documentation, Release 3.6.99

• Module repository names should follow the convention of using lowercase letters and
dashes instead of underscores. This rule will apply to all new module repositories, except
for repositories that are directly tracking external projects (hosted in Git repositories); such
modules may be named as their external project counterparts.

Note: Existing module repositories that do not conform to the above convention do not
need to be renamed to comply with the above convention.

• Module repositories names should be explicitly set in the zephyr/module.yml file.

• Modules should use “zephyr” as the default name for the repository main branch. Branches
for specific purposes, for example, a module branch for an LTS Zephyr version, shall have
names starting with the ‘zephyr_’ prefix.

• If the module has an external (upstream) project repository, the module repository should
preserve the upstream repository folder structure.

Note: It is not required in module repositories to maintain a ‘master’ branch mirroring
the master branch of the external repository. It is not recommended as this may generate
confusion around the module’s main branch, which should be ‘zephyr’.

• Modules should expose all provided header files with an include pathname beginning
with the module-name. (E.g., mcuboot should expose its bootutil/bootutil.h as “mcu-
boot/bootutil/bootutil.h”.)

Synchronizing with upstream

It is preferred to synchronize a module repository with the latest stable release of the corre-
sponding external project. It is permitted, however, to update a Zephyr module repository with
the latest development branch tip, if this is required to get important updates in the module code-
base. When synchronizing a module with upstream it is mandatory to document the rationale
for performing the particular update.

Requirements for allowed practices Changes to the main branch of a module repository, in-
cluding synchronization with upstream code base, may only be applied via pull requests. These
pull requests shall be verifiable by Zephyr CI and mergeable (e.g. with the Rebase and merge,
or Create a merge commit option using Github UI). This ensures that the incoming changes are
always reviewable, and the downstream module repository history is incremental (that is, ex-
isting commits, tags, etc. are always preserved). This policy also allows to run Zephyr CI, git lint,
identity, and license checks directly on the set of changes that are to be brought into the module
repository.

Note: Force-pushing to a module’s main branch is not allowed.

Allowed practices The following practices conform to the above requirements and should be
followed in all modules repositories. It is up to the module code owner to select the preferred
synchronization practice, however, it is required that the selected practice is consistently fol-
lowed in the respective module repository.

Updatingmodules with a diff from upstream: Upstream changes brought as a single snapshot
commit (manual diff) in a pull request against the module’s main branch, which may be merged
using the Rebase & merge operation. This approach is simple and should be applicable to all
modules with the downside of suppressing the upstream history in the module repository.

102 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Note: The above practice is the only allowed practice in modules where the external
project is not hosted in an upstream Git repository.

The commit message is expected to identify the upstream project URL, the version to which the
module is updated (upstream version, tag, commit SHA, if applicable, etc.), and the reason for
the doing the update.

Updating modules by merging the upstream branch: Upstream changes brought in by per-
forming a Git merge of the intended upstream branch (e.g. main branch, latest release branch,
etc.) submitting the result in pull request against the module main branch, and merging the pull
request using the Create a merge commit operation. This approach is applicable to modules with
an upstream project Git repository. The main advantages of this approach is that the upstream
repository history (that is, the original commit SHAs) is preserved in the module repository. The
downside of this approach is that two additional merge commits are generated in the down-
stream main branch.

2.10.3 Contributing to Zephyr modules

Individual Roles & Responsibilities

To facilitate management of Zephyr module repositories, the following individual roles are de-
fined.

Administrator: Each Zephyr module shall have an administrator who is responsible for man-
aging access to the module repository, for example, for adding individuals as Collaborators in
the repository at the request of the module owner. Module administrators are members of the
Administrators team, that is a group of project members with admin rights to module GitHub
repositories.

Module owner: Each module shall have a module code owner. Module owners will have the
overall responsibility of the contents of a Zephyr module repository. In particular, a module
owner will:

• coordinate code reviewing in the module repository

• be the default assignee in pull-requests against the repository’s main branch

• request additional collaborators to be added to the repository, as they see fit

• regularly synchronize the module repository with its upstream counterpart following the
policies described in Synchronizing with upstream

• be aware of security vulnerability issues in the external project and update the module
repository to include security fixes, as soon as the fixes are available in the upstream code
base

• list any known security vulnerability issues, present in the module codebase, in Zephyr
release notes.

Note: Module owners are not required to be Zephyr Maintainers.

Merger: The Zephyr Release Engineering team has the right and the responsibility to merge
approved pull requests in the main branch of a module repository.

Maintaining the module codebase

Updates in the zephyr main tree, for example, in public Zephyr APIs, may require patching a
module’s codebase. The responsibility for keeping the module codebase up to date is shared

2.10. Modules (External projects) 103

Zephyr Project Documentation, Release 3.6.99

between the contributor of such updates in Zephyr and the module owner. In particular:

• the contributor of the original changes in Zephyr is required to submit the corresponding
changes that are required in module repositories, to ensure that Zephyr CI on the pull re-
quest with the original changes, as well as the module integration testing are successful.

• the module owner has the overall responsibility for synchronizing and testing the module
codebase with the zephyr main tree. This includes occasional advanced testing of the mod-
ule’s codebase in addition to the testing performed by Zephyr’s CI. The module owner is
required to fix issues in the module’s codebase that have not been caught by Zephyr pull
request CI runs.

Contributing changes to modules

Submitting and merging changes directly to a module’s codebase, that is, before they have been
merged in the corresponding external project repository, should be limited to:

• changes required due to updates in the zephyr main tree

• urgent changes that should not wait to be merged in the external project first, such as fixes
to security vulnerabilities.

Non-trivial changes to a module’s codebase, including changes in the module design or function-
ality should be discouraged, if the module has an upstream project repository. In that case, such
changes shall be submitted to the upstream project, directly.

Submitting changes to modules describes in detail the process of contributing changes to module
repositories.

Contribution guidelines Contributing to Zephyr modules shall follow the generic project Con-
tribution guidelines.

Pull Requests: may be merged with minimum of 2 approvals, including an approval by the
PR assignee. In addition to this, pull requests in module repositories may only be merged if
the introduced changes are verified with Zephyr CI tools, as described in more detail in other
sections on this page.

The merging of pull requests in the main branch of a module repository must be coupled with
the corresponding manifest file update in the zephyr main tree.

Issue Reporting: GitHub issues are intentionally disabled in module repositories, in favor of a
centralized policy for issue reporting. Tickets concerning, for example, bugs or enhancements in
modules shall be opened in the main zephyr repository. Issues should be appropriately labeled
using GitHub labels corresponding to each module, where applicable.

Note: It is allowed to file bug reports for zephyr modules to track the corresponding
upstream project bugs in Zephyr. These bug reports shall not affect the Release Quality
Criteria.

2.10.4 Licensing requirements and policies

All source files in a module’s codebase shall include a license header, unless the module reposi-
tory has main license file that covers source files that do not include license headers.

Main license files shall be added in the module’s codebase by Zephyr developers, only if they
exist as part of the external project, and they contain a permissive OSI-compliant license. Main
license files should preferably contain the full license text instead of including an SPDX license

104 Chapter 2. Developing with Zephyr

https://github.com/zephyrproject-rtos/zephyr/issues

Zephyr Project Documentation, Release 3.6.99

identifier. If multiple main license files are present it shall be made clear which license applies
to each source file in a module’s codebase.

Individual license headers in module source files supersede the main license.

Any new content to be added in a module repository will require to have license coverage.

Note: Zephyr recommends conveying module licensing via individual license head-
ers and main license files. This not a hard requirement; should an external project
have its own practice of conveying how licensing applies in the module’s codebase
(for example, by having a single or multiple main license files), this practice may be
accepted by and be referred to in the Zephyr module, as long as licensing require-
ments, for example OSI compliance, are satisfied.

License policies

When creating a module repository a developer shall:

• import the main license files, if they exist in the external project, and

• document (for example in the module README or .yml file) the default license that covers
the module’s codebase.

License checks License checks (via CI tools) shall be enabled on every pull request that adds
new content in module repositories.

2.10.5 Documentation requirements

All Zephyr module repositories shall include an .rst file documenting:

• the scope and the purpose of the module

• how the module integrates with Zephyr

• the owner of the module repository

• synchronization information with the external project (commit, SHA, version etc.)

• licensing information as described in Licensing requirements and policies.

The file shall be required for the inclusion of the module and the contained information should
be kept up to date.

2.10.6 Testing requirements

All Zephyr modules should provide some level of integration testing, ensuring that the integra-
tion with Zephyr works correctly. Integration tests:

• may be in the form of a minimal set of samples and tests that reside in the zephyr main tree

• should verify basic usage of the module (configuration, functional APIs, etc.) that is inte-
grated with Zephyr.

• shall be built and executed (for example in QEMU) as part of twister runs in pull requests
that introduce changes in module repositories.

2.10. Modules (External projects) 105

Zephyr Project Documentation, Release 3.6.99

Note: New modules, that are candidates for being included in the Zephyr default manifest,
shall provide some level of integration testing.

Note: Vendor HALs are implicitly tested via Zephyr tests built or executed on target plat-
forms, so they do not need to provide integration tests.

The purpose of integration testing is not to provide functional verification of the module; this
should be part of the testing framework of the external project.

Certain external projects provide test suites that reside in the upstream testing infrastructure
but are written explicitly for Zephyr. These tests may (but are not required to) be part of the
Zephyr test framework.

2.10.7 Deprecating and removing modules

Modules may be deprecated for reasons including, but not limited to:

• Lack of maintainership in the module

• Licensing changes in the external project

• Codebase becoming obsolete

The module information shall indicate whether a module is deprecated and the build system
shall issue a warning when trying to build Zephyr using a deprecated module.

Deprecated modules may be removed from the Zephyr default manifest after 2 Zephyr releases.

Note: Repositories of removed modules shall remain accessible via their original
URL, as they are required by older Zephyr versions.

2.10.8 Integrate modules in Zephyr build system

The build system variable ZEPHYR_MODULES is a CMake list of absolute paths to the directories
containing Zephyr modules. These modules contain CMakeLists.txt and Kconfig files describ-
ing how to build and configure them, respectively. Module CMakeLists.txt files are added to
the build using CMake’s add_subdirectory() command, and the Kconfig files are included in the
build’s Kconfig menu tree.

If you have west installed, you don’t need to worry about how this variable is defined unless you
are adding a new module. The build system knows how to use west to set ZEPHYR_MODULES. You
can add additional modules to this list by setting the EXTRA_ZEPHYR_MODULES CMake variable or
by adding a EXTRA_ZEPHYR_MODULES line to .zephyrrc (See the section on Environment Variables
for more details). This can be useful if you want to keep the list of modules found with west and
also add your own.

Note: If the module FOO is provided by west but also given with -DEXTRA_ZEPHYR_MODULES=/
<path>/foo then the module given by the command line variable EXTRA_ZEPHYR_MODULES will
take precedence. This allows you to use a custom version of FOOwhen building and still use other
Zephyr modules provided by west. This can for example be useful for special test purposes.

If you want to permanently add modules to the zephyr workspace and you are using zephyr as
your manifest repository, you can also add a west manifest file into the submanifests directory.
See submanifests/README.txt for more details.

106 Chapter 2. Developing with Zephyr

https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#lists
https://cmake.org/cmake/help/latest/command/add_subdirectory.html
https://github.com/zephyrproject-rtos/zephyr/blob/main/submanifests
https://github.com/zephyrproject-rtos/zephyr/blob/main/submanifests/README.txt

Zephyr Project Documentation, Release 3.6.99

See Basics for more on west workspaces.

Finally, you can also specify the list of modules yourself in various ways, or not use modules at
all if your application doesn’t need them.

2.10.9 Module yaml file description

A module can be described using a file named zephyr/module.yml. The format of zephyr/
module.yml is described in the following:

Module name

Each Zephyr module is given a name by which it can be referred to in the build system.

The name should be specified in the zephyr/module.yml file. This will ensure the module name
is not changeable through user-defined directory names or west manifest files:

name: <name>

In CMake the location of the Zephyr module can then be referred to using the CMake variable
ZEPHYR_<MODULE_NAME>_MODULE_DIR and the variable ZEPHYR_<MODULE_NAME>_CMAKE_DIR holds
the location of the directory containing the module’s CMakeLists.txt file.

Note: When used for CMake and Kconfig variables, all letters in module names are converted to
uppercase and all non-alphanumeric characters are converted to underscores (_). As example,
the module foo-bar must be referred to as ZEPHYR_FOO_BAR_MODULE_DIR in CMake and Kconfig.

Here is an example for the Zephyr module foo:

name: foo

Note: If the name field is not specified then the Zephyr module name will be set to the name of
the module folder. As example, the Zephyr module located in <workspace>/modules/bar will use
bar as its module name if nothing is specified in zephyr/module.yml.

Module integration files (in-module)

Inclusion of build files, CMakeLists.txt and Kconfig, can be described as:

build:
cmake: <cmake-directory>
kconfig: <directory>/Kconfig

The cmake: <cmake-directory> part specifies that <cmake-directory> contains the CMakeLists.
txt to use. The kconfig: <directory>/Kconfig part specifies the Kconfig file to use. Neither is
required: cmake defaults to zephyr, and kconfig defaults to zephyr/Kconfig.

Here is an example module.yml file referring to CMakeLists.txt and Kconfig files in the root
directory of the module:

build:
cmake: .
kconfig: Kconfig

2.10. Modules (External projects) 107

Zephyr Project Documentation, Release 3.6.99

Sysbuild integration

Sysbuild is the Zephyr build system that allows for building multiple images as part of a single
application, the sysbuild build process can be extended externally with modules as needed, for
example to add custom build steps or add additional targets to a build. Inclusion of sysbuild-
specific build files, CMakeLists.txt and Kconfig, can be described as:

build:
sysbuild-cmake: <cmake-directory>
sysbuild-kconfig: <directory>/Kconfig

The sysbuild-cmake: <cmake-directory> part specifies that <cmake-directory> contains the
CMakeLists.txt to use. The sysbuild-kconfig: <directory>/Kconfigpart specifies the Kconfig
file to use.

Here is an example module.yml file referring to CMakeLists.txt and Kconfig files in the sysbuild
directory of the module:

build:
sysbuild-cmake: sysbuild
sysbuild-kconfig: sysbuild/Kconfig

The module description file zephyr/module.yml can also be used to specify that the build files,
CMakeLists.txt and Kconfig, are located in a Module integration files (external).

Build files located in a MODULE_EXT_ROOT can be described as:

build:
sysbuild-cmake-ext: True
sysbuild-kconfig-ext: True

This allows control of the build inclusion to be described externally to the Zephyr module.

Build system integration

When a module has a module.yml file, it will automatically be included into the Zephyr build
system. The path to the module is then accessible through Kconfig and CMake variables.

Zephyr modules In both Kconfig and CMake, the variable ZEPHYR_<MODULE_NAME>_MODULE_DIR
contains the absolute path to the module.

In CMake, ZEPHYR_<MODULE_NAME>_CMAKE_DIR contains the absolute path to the directory con-
taining the CMakeLists.txt file that is included into CMake build system. This variable’s value
is empty if the module.yml file does not specify a CMakeLists.txt.

To read these variables for a Zephyr module named foo:

• In CMake: use ${ZEPHYR_FOO_MODULE_DIR} for the module’s top level directory, and
${ZEPHYR_FOO_CMAKE_DIR} for the directory containing its CMakeLists.txt

• In Kconfig: use $(ZEPHYR_FOO_MODULE_DIR) for the module’s top level directory

Notice how a lowercase module name foo is capitalized to FOO in both CMake and Kconfig.

These variables can also be used to test whether a given module exists. For example, to verify
that foo is the name of a Zephyr module:

if(ZEPHYR_FOO_MODULE_DIR)
Do something if FOO exists.

endif()

108 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

In Kconfig, the variable may be used to find additional files to include. For example, to include
the file some/Kconfig in module foo:

source "$(ZEPHYR_FOO_MODULE_DIR)/some/Kconfig"

During CMake processing of each Zephyr module, the following variables are also available:

• the current module’s name: ${ZEPHYR_CURRENT_MODULE_NAME}
• the current module’s top level directory: ${ZEPHYR_CURRENT_MODULE_DIR}
• the current module’s CMakeLists.txt directory: ${ZEPHYR_CURRENT_CMAKE_DIR}

This removes the need for a Zephyr module to know its own name during CMake processing.
The module can source additional CMake files using these CURRENT variables. For example:

include(${ZEPHYR_CURRENT_MODULE_DIR}/cmake/code.cmake)

It is possible to append values to a Zephyr CMake list variable from the module’s first CMake-
Lists.txt file. To do so, append the value to the list and then set the list in the PARENT_SCOPE
of the CMakeLists.txt file. For example, to append bar to the FOO_LIST variable in the Zephyr
CMakeLists.txt scope:

list(APPEND FOO_LIST bar)
set(FOO_LIST ${FOO_LIST} PARENT_SCOPE)

An example of a Zephyr list where this is useful is when adding additional directories to the
SYSCALL_INCLUDE_DIRS list.

Sysbuild modules In both Kconfig and CMake, the variable SYSBUILD_CURRENT_MODULE_DIR
contains the absolute path to the sysbuild module. In CMake, SYSBUILD_CURRENT_CMAKE_DIR con-
tains the absolute path to the directory containing the CMakeLists.txt file that is included into
CMake build system. This variable’s value is empty if the module.yml file does not specify a
CMakeLists.txt.

To read these variables for a sysbuild module:

• In CMake: use ${SYSBUILD_CURRENT_MODULE_DIR} for the module’s top level directory, and
${SYSBUILD_CURRENT_CMAKE_DIR} for the directory containing its CMakeLists.txt

• In Kconfig: use $(SYSBUILD_CURRENT_MODULE_DIR) for the module’s top level directory

In Kconfig, the variable may be used to find additional files to include. For example, to include
the file some/Kconfig:

source "$(SYSBUILD_CURRENT_MODULE_DIR)/some/Kconfig"

The module can source additional CMake files using these variables. For example:

include(${SYSBUILD_CURRENT_MODULE_DIR}/cmake/code.cmake)

It is possible to append values to a Zephyr CMake list variable from the module’s first CMake-
Lists.txt file. To do so, append the value to the list and then set the list in the PARENT_SCOPE
of the CMakeLists.txt file. For example, to append bar to the FOO_LIST variable in the Zephyr
CMakeLists.txt scope:

list(APPEND FOO_LIST bar)
set(FOO_LIST ${FOO_LIST} PARENT_SCOPE)

Sysbuild modules hooks Sysbuild provides an infrastructure which allows a sysbuild module
to define a function which will be invoked by sysbuild at a pre-defined point in the CMake flow.

Functions invoked by sysbuild:

2.10. Modules (External projects) 109

https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#lists
https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#lists

Zephyr Project Documentation, Release 3.6.99

• <module-name>_pre_cmake(IMAGES <images>): This function is called for each sysbuild
module before CMake configure is invoked for all images.

• <module-name>_post_cmake(IMAGES <images>): This function is called for each sysbuild
module after CMake configure has completed for all images.

• <module-name>_pre_domains(IMAGES <images>): This function is called for each sysbuild
module before domains yaml is created by sysbuild.

• <module-name>_post_domains(IMAGES <images>): This function is called for each sysbuild
module after domains yaml has been created by sysbuild.

arguments passed from sysbuild to the function defined by a module:

• <images> is the list of Zephyr images that will be created by the build system.

If a module foo want to provide a post CMake configure function, then the module’s sysbuild
CMakeLists.txt file must define function foo_post_cmake().

To facilitate naming of functions, the module name is provided by sysbuild CMake through
the SYSBUILD_CURRENT_MODULE_NAME CMake variable when loading the module’s sysbuild
CMakeLists.txt file.

Example of how the foo sysbuild module can define foo_post_cmake():

function(${SYSBUILD_CURRENT_MODULE_NAME}_post_cmake)
cmake_parse_arguments(POST_CMAKE "" "" "IMAGES" ${ARGN})

message("Invoking ${CMAKE_CURRENT_FUNCTION}. Images: ${POST_CMAKE_IMAGES}")
endfunction()

Zephyr module dependencies

A Zephyr module may be dependent on other Zephyr modules to be present in order to function
correctly. Or it might be that a given Zephyr module must be processed after another Zephyr
module, due to dependencies of certain CMake targets.

Such a dependency can be described using the depends field.

build:
depends:
- <module>

Here is an example for the Zephyr module foo that is dependent on the Zephyr module bar to be
present in the build system:

name: foo
build:
depends:
- bar

This example will ensure that bar is present when foo is included into the build system, and it
will also ensure that bar is processed before foo.

Module integration files (external)

Module integration files can be located externally to the Zephyr module itself. The MOD-
ULE_EXT_ROOT variable holds a list of roots containing integration files located externally to
Zephyr modules.

110 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Module integration files in Zephyr The Zephyr repository contain CMakeLists.txt and Kcon-
fig build files for certain known Zephyr modules.

Those files are located under

<ZEPHYR_BASE>
└── modules

└── <module_name>
├── CMakeLists.txt
└── Kconfig

Module integration files in a custom location You can create a similar MODULE_EXT_ROOT for
additional modules, and make those modules known to Zephyr build system.

Create a MODULE_EXT_ROOT with the following structure

<MODULE_EXT_ROOT>
└── modules

├── modules.cmake
└── <module_name>

├── CMakeLists.txt
└── Kconfig

and then build your application by specifying -DMODULE_EXT_ROOT parameter to the CMake build
system. The MODULE_EXT_ROOT accepts a CMake list of roots as argument.

A Zephyr module can automatically be added to the MODULE_EXT_ROOT list using the module de-
scription file zephyr/module.yml, see Build settings.

Note: ZEPHYR_BASE is always added as a MODULE_EXT_ROOT with the lowest priority. This allows
you to overrule any integration files under <ZEPHYR_BASE>/modules/<module_name> with your
own implementation your own MODULE_EXT_ROOT.

The modules.cmake file must contain the logic that specifies the integration files for Zephyr mod-
ules via specifically named CMake variables.

To include a module’s CMake file, set the variable ZEPHYR_<MODULE_NAME>_CMAKE_DIR to the path
containing the CMake file.

To include a module’s Kconfig file, set the variable ZEPHYR_<MODULE_NAME>_KCONFIG to the path
to the Kconfig file.

The following is an example on how to add support the FOO module.

Create the following structure

<MODULE_EXT_ROOT>
└── modules

├── modules.cmake
└── foo

├── CMakeLists.txt
└── Kconfig

and inside the modules.cmake file, add the following content

set(ZEPHYR_FOO_CMAKE_DIR ${CMAKE_CURRENT_LIST_DIR}/foo)
set(ZEPHYR_FOO_KCONFIG ${CMAKE_CURRENT_LIST_DIR}/foo/Kconfig)

Module integration files (zephyr/module.yml) The module description file zephyr/module.
yml can be used to specify that the build files, CMakeLists.txt and Kconfig, are located in a
Module integration files (external).

2.10. Modules (External projects) 111

https://cmake.org/cmake/help/latest/manual/cmake-language.7.html#lists

Zephyr Project Documentation, Release 3.6.99

Build files located in a MODULE_EXT_ROOT can be described as:

build:
cmake-ext: True
kconfig-ext: True

This allows control of the build inclusion to be described externally to the Zephyr module.

The Zephyr repository itself is always added as a Zephyr module ext root.

Build settings

It is possible to specify additional build settings that must be used when including the module
into the build system.

All root settings are relative to the root of the module.

Build settings supported in the module.yml file are:

• board_root: Contains additional boards that are available to the build system. Additional
boards must be located in a <board_root>/boards folder.

• dts_root: Contains additional dts files related to the architecture/soc families. Additional
dts files must be located in a <dts_root>/dts folder.

• snippet_root: Contains additional snippets that are available for use. These snippets must
be defined in snippet.yml files underneath the <snippet_root>/snippets folder. For ex-
ample, if you have snippet_root: foo, then you should place your module’s snippet.yml
files in <your-module>/foo/snippets or any nested subdirectory.

• soc_root: Contains additional SoCs that are available to the build system. Additional SoCs
must be located in a <soc_root>/soc folder.

• arch_root: Contains additional architectures that are available to the build system. Addi-
tional architectures must be located in a <arch_root>/arch folder.

• module_ext_root: Contains CMakeLists.txt and Kconfig files for Zephyr modules, see also
Module integration files (external).

• sca_root: Contains additional SCA tool implementations available to the build system.
Each tool must be located in <sca_root>/sca/<tool> folder. The folder must contain a
sca.cmake.

Example of a module.yaml file containing additional roots, and the corresponding file system
layout.

build:
settings:
board_root: .
dts_root: .
soc_root: .
arch_root: .
module_ext_root: .

requires the following folder structure:

<zephyr-module-root>
├── arch
├── boards
├── dts
├── modules
└── soc

112 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Twister (Test Runner)

To execute both tests and samples available in modules, the Zephyr test runner (twister) should
be pointed to the directories containing those samples and tests. This can be done by specifying
the path to both samples and tests in the zephyr/module.ymlfile. Additionally, if a module defines
out of tree boards, the module file can point twister to the path where those files are maintained
in the module. For example:

build:
cmake: .

samples:
- samples

tests:
- tests

boards:
- boards

Binary Blobs

Zephyr supports fetching and using binary blobs, and their metadata is contained entirely in
zephyr/module.yml. This is because a binary blob must always be associated with a Zephyr mod-
ule, and thus the blob metadata belongs in the module’s description itself.

Binary blobs are fetched using west blobs. If west is not used, they must be downloaded and
verified manually.

The blobs section in zephyr/module.yml consists of a sequence of maps, each of which has the
following entries:

• path: The path to the binary blob, relative to the zephyr/blobs/ folder in the module repos-
itory

• sha256: SHA-256 checksum of the binary blob file

• type: The type of binary blob. Currently limited to img or lib
• version: A version string

• license-path: Path to the license file for this blob, relative to the root of the module repos-
itory

• url: URL that identifies the location the blob will be fetched from, as well as the fetching
scheme to use

• description: Human-readable description of the binary blob

• doc-url: A URL pointing to the location of the official documentation for this blob

Module Inclusion

Using West If west is installed and ZEPHYR_MODULES is not already set, the build system finds
all the modules in your west installation and uses those. It does this by running west list to get
the paths of all the projects in the installation, then filters the results to just those projects which
have the necessary module metadata files.

Each project in the west list output is tested like this:

• If the project contains a file named zephyr/module.yml, then the content of that file will be
used to determine which files should be added to the build, as described in the previous
section.

2.10. Modules (External projects) 113

https://en.wikipedia.org/wiki/SHA-2

Zephyr Project Documentation, Release 3.6.99

• Otherwise (i.e. if the project has no zephyr/module.yml), the build system looks for zephyr/
CMakeLists.txt and zephyr/Kconfig files in the project. If both are present, the project is
considered a module, and those files will be added to the build.

• If neither of those checks succeed, the project is not considered a module, and is not added
to ZEPHYR_MODULES.

Without West If you don’t have west installed or don’t want the build system to use it to find
Zephyr modules, you can set ZEPHYR_MODULES yourself using one of the following options. Each
of the directories in the list must contain either a zephyr/module.yml file or the files zephyr/
CMakeLists.txt and Kconfig, as described in the previous section.

1. At the CMake command line, like this:

cmake -DZEPHYR_MODULES=<path-to-module1>[;<path-to-module2>[...]] ...

2. At the top of your application’s top level CMakeLists.txt, like this:

set(ZEPHYR_MODULES <path-to-module1> <path-to-module2> [...])
find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})

If you choose this option, make sure to set the variable before calling find_package(Zephyr
...), as shown above.

3. In a separate CMake script which is pre-loaded to populate the CMake cache, like this:

Put this in a file with a name like "zephyr-modules.cmake"
set(ZEPHYR_MODULES <path-to-module1> <path-to-module2>
CACHE STRING "pre-cached modules")

You can tell the build system to use this file by adding -C zephyr-modules.cmake to your
CMake command line.

Not usingmodules If you don’t have west installed and don’t specify ZEPHYR_MODULES yourself,
then no additional modules are added to the build. You will still be able to build any applications
that don’t require code or Kconfig options defined in an external repository.

2.10.10 Submitting changes to modules

When submitting new or making changes to existing modules the main repository Zephyr needs
a reference to the changes to be able to verify the changes. In the main tree this is done using
revisions. For code that is already merged and part of the tree we use the commit hash, a tag, or
a branch name. For pull requests however, we require specifying the pull request number in the
revision field to allow building the zephyr main tree with the changes submitted to the module.

To avoid merging changes to master with pull request information, the pull request should be
marked as DNM (Do Not Merge) or preferably a draft pull request to make sure it is not merged
by mistake and to allow for the module to be merged first and be assigned a permanent commit
hash. Drafts reduce noise by not automatically notifying anyone until marked as “Ready for
review”. Once the module is merged, the revision will need to be changed either by the submitter
or by the maintainer to the commit hash of the module which reflects the changes.

Note that multiple and dependent changes to different modules can be submitted using exactly
the same process. In this case you will change multiple entries of all modules that have a pull
request against them.

114 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Process for submitting a new module

Please follow the process in Submission and review process and obtain the TSC approval to inte-
grate the external source code as a module

If the request is approved, a new repository will created by the project team and initialized with
basic information that would allow submitting code to the module project following the project
contribution guidelines.

If a module is maintained as a fork of another project on Github, the Zephyr module related files
and changes in relation to upstream need to be maintained in a special branch named zephyr.

Maintainers from the Zephyr project will create the repository and initialize it. You will be added
as a collaborator in the new repository. Submit the module content (code) to the new repository
following the guidelines described here, and then add a new entry to the west.yml with the fol-
lowing information:

- name: <name of repository>
path: <path to where the repository should be cloned>
revision: <ref pointer to module pull request>

For example, to add my_module to the manifest:

- name: my_module
path: modules/lib/my_module
revision: pull/23/head

Where 23 in the example above indicated the pull request number submitted to the my_module
repository. Once the module changes are reviewed and merged, the revision needs to be changed
to the commit hash from the module repository.

Process for submitting changes to existing modules

1. Submit the changes using a pull request to an existing repository following the contribution
guidelines and expectations.

2. Submit a pull request changing the entry referencing the module into the west.yml of the
main Zephyr tree with the following information:

- name: <name of repository>
path: <path to where the repository should be cloned>
revision: <ref pointer to module pull request>

For example, to add my_module to the manifest:

- name: my_module
path: modules/lib/my_module
revision: pull/23/head

Where 23 in the example above indicated the pull request number submitted to the my_module
repository. Once the module changes are reviewed and merged, the revision needs to be changed
to the commit hash from the module repository.

2.11 West (Zephyr’s meta-tool)

The Zephyr project includes a swiss-army knife command line tool named west1. West is devel-
oped in its own repository.

1 Zephyr is an English name for the Latin Zephyrus, the ancient Greek god of the west wind.

2.11. West (Zephyr’s meta-tool) 115

https://github.com/zephyrproject-rtos/zephyr/blob/main/west.yml
https://github.com/zephyrproject-rtos/zephyr/blob/main/west.yml
https://github.com/zephyrproject-rtos/west
https://en.wiktionary.org/wiki/Zephyrus

Zephyr Project Documentation, Release 3.6.99

West’s built-in commands provide a multiple repository management system with features in-
spired by Google’s Repo tool and Git submodules. West is also “pluggable”: you can write your
own west extension commands which add additional features to west. Zephyr uses this to pro-
vide conveniences for building applications, flashing and debugging them, and more.

Like git and docker, the top-level west command takes some common options, a sub-command
to run, and then options and arguments for that sub-command:

west [common-opts] <command> [opts] <args>

Since west v0.8, you can also run west like this:

python3 -m west [common-opts] <command> [opts] <args>

You can run west --help (or west -h for short) to get top-level help for available west commands,
and west <command> -h for detailed help on each command.

2.11.1 Installing west

West is written in Python 3 and distributed through PyPI. Use pip3 to install or upgrade west:

On Linux:

pip3 install --user -U west

On Windows and macOS:

pip3 install -U west

Note: See Python and pip for additional clarification on using the --user switch.

Afterwards, you can run pip3 show -f west for information on where the west binary and
related files were installed.

Once west is installed, you can use it to clone the Zephyr repositories.

Structure

West’s code is distributed via PyPI in a Python package named west. This distribution includes
a launcher executable, which is also named west (or west.exe on Windows).

When west is installed, the launcher is placed by pip3 somewhere in the user’s filesystem (exactly
where depends on the operating system, but should be on the PATH environment variable). This
launcher is the command-line entry point to running both built-in commands like west init,
west update, along with any extensions discovered in the workspace.

In addition to its command-line interface, you can also use west’s Python APIs directly. See west-
apis for details.

Enabling shell completion

West currently supports shell completion in the following combinations of platform and shell:

• Linux: bash

• macOS: bash

• Windows: not available

116 Chapter 2. Developing with Zephyr

https://pypi.org/project/west/

Zephyr Project Documentation, Release 3.6.99

In order to enable shell completion, you will need to obtain the corresponding completion script
and have it sourced every time you enter a new shell session.

To obtain the completion script you can use the west completion command:

cd /path/to/zephyr/
west completion bash > ~/west-completion.bash

Note: Remember to update your local copy of the completion script using west completion
when you update Zephyr.

Next, you need to import west-completion.bash into your bash shell.

On Linux, you have the following options:

• Copy west-completion.bash to /etc/bash_completion.d/.

• Copy west-completion.bash to /usr/share/bash-completion/completions/.

• Copy west-completion.bash to a local folder and source it from your ~/.bashrc.

On macOS, you have the following options:

• Copy west-completion.bash to a local folder and source it from your ~/.bash_profile
• Install the bash-completion package with brew:

brew install bash-completion

then source the main bash completion script in your ~/.bash_profile:

source /usr/local/etc/profile.d/bash_completion.sh

and finally copy west-completion.bash to /usr/local/etc/bash_completion.d/.

2.11.2 West Release Notes

v1.2.0

Major changes:

• New west grep command for running a “grep tool” in your west workspace’s repositories.
Currently, git grep, ripgrep, and standard grep are supported grep tools.

To run this command to get git grep foo results from all cloned, active repositories, run:

west grep foo

Here are some other examples for running different grep commands with west grep:

git grep --untracked west grep --untracked foo
ripgrep west grep --tool ripgrep foo
grep --recursive west grep --tool grep foo

To switch the default grep tool in your workspace, run the appropriate command in this
table:

ripgrep west config grep.tool ripgrep
grep west config grep.tool grep

2.11. West (Zephyr’s meta-tool) 117

https://github.com/BurntSushi/ripgrep#readme

Zephyr Project Documentation, Release 3.6.99

For more details, run west help grep.

Other changes:

• The manifest file format now supports a description field in each projects: element. See
Projects for examples.

• west list --format now accepts {description} in the format string, which prints the
project’s description: value.

• west compare now always prints information about The manifest-rev branch.

Bug fixes:

• west init aborts if the destination directory already exists.

API changes:

• west.commands.WestCommand methods check_call() and check_output() now take any
kwargs that can be passed on to the underlying subprocess function.

• west.commands.WestCommand.run_subprocess(): new wrapper around subprocess.run().
This could not be named run() because WestCommand already had a method by this name.

• west.commands.WestCommand methods dbg(), inf(), wrn(), and err() now all take an end
kwarg, which is passed on to the call to print().

• west.manifest.Project now has a description attribute, which contains the parsed value
of the description: field in the manifest data.

v1.1.0

Major changes:

• west compare: new command that compares the state of the workspace against the mani-
fest.

• Support for a new manifest.project-filter configuration option. See Built-in Configura-
tion Options for details. The west manifest --freeze and west manifest --resolve com-
mands currently cannot be used when this option is set. This restriction can be removed
in a later release.

• Project names which contain comma (,) or whitespace now generate warnings. These
warnings are errors if the new manifest.project-filter configuration option is set. The
warnings may be promoted to errors in a future major version of west.

Other changes:

• west forall now takese a --group argument that can be used to restrict the command to
only run in one or more groups. Run west help forall for details.

• All west commands will now output log messages from west API modules at warning level
or higher. In addition, the --verbose argument to west can be used once to include infor-
mational messages, or twice to include debug messages, from all commands.

Bug fixes:

• Various improvements to error messages, debug logging, and error handling.

API changes:

• west.manifest.Manifest.is_active()now respects the manifest.project-filter config-
uration option’s value.

118 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

v1.0.1

Major changes:

• Manifest schema version “1.0” is now available for use in this release. This is identical to
the “0.13” schema version in terms of features, but can be used by applications that do not
wish to use a “0.x” manifest “version:” field. See Version for details on this feature.

Bug fixes:

• West no longer exits with a successful error code when sent an interrupt signal. Instead,
it exits with a platform-specific error code and signals to the calling environment that the
process was interrupted.

v1.0.0

Major changes in this release:

• The west-apis are now declared stable. Any breaking changes will be communicated by a
major version bump from v1.x.y to v2.x.y.

• West v1.0 no longer works with the Zephyr v1.14 LTS releases. This LTS has long been
obsoleted by Zephyr v2.7 LTS. If you need to use Zephyr v1.14, you must use west v0.14 or
earlier.

• Like the rest of Zephyr, west now requires Python v3.8 or later

• West commands no longer accept abbreviated command line arguments. For example, you
must now specify west update --keep-descendants instead of using an abbreviation like
west update --keep-d. This is part of a change applied to all of Zephyr’s Python scripts’
command-line interfaces. The abbreviations were causing problems in practice when com-
mands were updated to add new options with similar names but different behavior to ex-
isting ones.

Other changes:

• All built-in west functions have stopped using west.log
• west update: new --submodule-init-config option. See commit 9ba92b05 for details.

Bug fixes:

• West extension commands that failed to load properly sometimes dumped stack. This has
been fixed and west now prints a sensible error message in this case.

• west config now fails on malformed configuration option arguments which lack a . in the
option name

API changes:

• The west package now contains the metadata files necessary for some static analyzers (such
as mypy) to auto-detect its type annotations. See commit d9f00e24 for details.

• the deprecated west.build module used for Zephyr v1.14 LTS compatibility was removed

• the deprecated west.cmake module used for Zephyr v1.14 LTS compatibility was removed

• the west.log module is now deprecated. This module uses global state, which can make it
awkward to use it as an API which multiple different python modules may rely on.

• The west-apis-commands module got some new APIs which lay groundwork for a future
change to add a global verbosity control to a command’s output, and work to remove global
state from the west package’s API:

– New west.commands.WestCommand.__init__() keyword argument: verbosity
– New west.commands.WestCommand property: color_ui

2.11. West (Zephyr’s meta-tool) 119

https://github.com/zephyrproject-rtos/west/commit/9ba92b054500d75518ff4c4646590bfe134db523
https://www.mypy-lang.org/
https://github.com/zephyrproject-rtos/west/commit/d9f00e242b8cb297b56e941982adf231281c6bae

Zephyr Project Documentation, Release 3.6.99

– New west.commands.WestCommandmethods, which should be used to print output from
extension commands instead of writing directly to sys.stdout or sys.stderr: inf(),
wrn(), err(), die(), banner(), small_banner()

– New west.commands.VERBOSITY enum

v0.14.0

Bug fixes:

• West commands that were run with a bad local configuration file dumped stack in a con-
fusing way. This has been fixed and west now prints a sensible error message in this case.

• A bug in the way west looks for the zephyr repository was fixed. The bug itself usually
appeared when running an extension command like west build in a new workspace for the
first time; this used to fail (just for the first time, not on subsequent command invocations)
unless you ran the command in the workspace’s top level directory.

• West now prints sensible error messages when the user lacks permission to open the man-
ifest file instead of dumping stack traces.

API changes:

• The west.manifest.MalformedConfig exception type has been moved to the west.
configuration module

• The west.manifest.MalformedConfig exception type has been moved to the
west.configuration module

• The west.configuration.Configuration class now raises MalformedConfig instead of Run-
timeError in some cases

v0.13.1

Bug fix:

• When calling west.manifest.Manifest.from_file() when outside of a workspace, west again
falls back on the ZEPHYR_BASE environment variable to locate the workspace.

v0.13.0

New features:

• You can now associate arbitrary user data with the manifest repository itself in the mani-
fest: self: userdata: value, like so:

manifest:
self:

userdata: <any YAML value can go here>

Bug fixes:

• The path to the manifest repository reported by west could be incorrect in certain cir-
cumstances detailed in [issue #572](https://github.com/zephyrproject-rtos/west/issues/572).
This has been fixed as part of a larger overhaul of path handling support in the west.
manifest API module.

• The west.Manifest.ManifestProject.__repr__ return value was fixed

API changes:

120 Chapter 2. Developing with Zephyr

https://github.com/zephyrproject-rtos/west/issues/572

Zephyr Project Documentation, Release 3.6.99

• west.configuration.Configuration: new object-oriented interface to the current config-
uration. This reflects the system, global, and workspace-local configuration values, and
allows you to read, write, and delete configuration options from any or all of these loca-
tions.

• west.commands.WestCommand:

– config: new attribute, returns a Configuration object or aborts the program if none is
set. This is always usable from within extension command do_run() implementations.

– has_config: new boolean attribute, which is True if and only if reading self.config
will abort the program.

• The path handling in the west.manifest package has been overhauled in a backwards-
incompatible way. For more details, see commit [56cfe8d1d1](https://github.com/
zephyrproject-rtos/west/commit/56cfe8d1d1f3c9b45de3e793c738acd62db52aca).

• west.manifest.Manifest.validate(): this now returns the validated data as a Python dict.
This can be useful if the value passed to this function was a str, and the dict is desired.

• west.manifest.Manifest: new:

– path attributes abspath, posixpath, relative_path, yaml_path, repo_path,
repo_posixpath

– userdata attribute, which contains the parsed value from manifest: self: user-
data:, or is None

– from_topdir() factory method

• west.manifest.ManifestProject: new userdata attribute, which also contains the parsed
value from manifest: self: userdata:, or is None

• west.manifest.ManifestImportFailed: the constructor can now take any value; this can
be used to reflect failed imports from a map or other compound value.

• Deprecated configuration APIs:

The following APIs are now deprecated in favor of using a Configuration object. Usually
this will be done via self.config from a WestCommand instance, but this can be done directly
by instantiating a Configuration object for other usages.

– west.configuration.config
– west.configuration.read_config
– west.configuration.update_config
– west.configuration.delete_config

v0.12.0

New features:

• West now works on the MSYS2 platform.

• West manifest files can now contain arbitrary user data associated with each project. See
Repository user data for details.

Bug fixes:

• The west list command’s {sha} format key has been fixed for the manifest repository; it
now prints N/A (“not applicable”) as expected.

API changes:

• The west.manifest.Project.userdata attribute was added to support project user data.

2.11. West (Zephyr’s meta-tool) 121

https://github.com/zephyrproject-rtos/west/commit/56cfe8d1d1f3c9b45de3e793c738acd62db52aca
https://github.com/zephyrproject-rtos/west/commit/56cfe8d1d1f3c9b45de3e793c738acd62db52aca
https://www.msys2.org/

Zephyr Project Documentation, Release 3.6.99

v0.11.1

New features:

• west status now only prints output for projects which have a nonempty status.

Bug fixes:

• The manifest file parser was incorrectly allowing project names which contain the path
separator characters / and \. These invalid characters are now rejected.

Note: if you need to place a project within a subdirectory of the workspace topdir, use the
path: key. If you need to customize a project’s fetch URL relative to its remote url-base:,
use repo-path:. See Projects for examples.

• The changes made in west v0.10.1 to the west init --manifest-rev option which selected
the default branch name were leaving the manifest repository in a detached HEAD state.
This has been fixed by using git clone internally instead of git init and git fetch. See
issue #522 for details.

• The WEST_CONFIG_LOCAL environment variable now correctly overrides the default location,
<workspace topdir>/.west/config.

• west update --fetch=smart (smart is the default) now correctly skips fetches for project
revisions which are lightweight tags (it already worked correctly for annotated tags; only
lightweight tags were unnecessarily fetched).

Other changes:

• The fix for issue #522 mentioned above introduces a new restriction. The west init
--manifest-rev option value, if given, must now be either a branch or a tag. In partic-
ular, “pseudo-branches” like GitHub’s pull/1234/head references which could previously
be used to fetch a pull request can no longer be passed to --manifest-rev. Users must now
fetch and check out such revisions manually after running west init.

API changes:

• west.manifest.Manifest.get_projects() avoids incorrect results in some edge cases de-
scribed in issue #523.

• west.manifest.Project.sha() now works correctly for tag revisions. (This applies to both
lightweight and annotated tags.)

v0.11.0

New features:

• west update now supports --narrow, --name-cache, and --path-cache options. These can
be influenced by the update.narrow, update.name-cache, and update.path-cache Configu-
ration options. These can be used to optimize the speed of the update.

• west update now supports a --fetch-opt option that will be passed to the git fetch com-
mand used to fetch remote revisions when updating each project.

Bug fixes:

• west update now synchronizes Git submodules in projects by default. This avoids issues if
the URL changes in the manifest file from when the submodule was first initialized. This
behavior can be disabled by setting the update.sync-submodules configuration option to
false.

Other changes:

• the west-apis-manifest module has fixed docstrings for the Project class

122 Chapter 2. Developing with Zephyr

https://github.com/zephyrproject-rtos/west/issues/522
https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://github.com/zephyrproject-rtos/west/issues/523

Zephyr Project Documentation, Release 3.6.99

v0.10.1

New features:

• The west init command’s --manifest-rev (--mr) option no longer defaults to master. In-
stead, the command will query the repository for its default branch name and use that
instead. This allows users to move from master to main without breaking scripts that do
not provide this option.

v0.10.0

New features:

• The name key in a project’s submodules list is now optional.

Bug fixes:

• West now checks that the manifest schema version is one of the explicitly allowed values
documented in Version. The old behavior was just to check that the schema version was
newer than the west version where the manifest: version: key was introduced. This
incorrectly allowed invalid schema versions, like 0.8.2.

Other changes:

• A manifest file’s group-filter is now propagated through an import. This is a change from
how west v0.9.x handled this. In west v0.9.x, only the top level manifest file’s group-filter
had any effect; the group filter lists from any imported manifests were ignored.

Starting with west v0.10.0, the group filter lists from imported manifests are also imported.
For details, see Group Filters and Imports.

The new behavior will take effect if manifest: version: is not given or is at least 0.10. The
old behavior is still available in the top level manifest file only with an explicit manifest:
version: 0.9. See Version for more information on schema versions.

See west pull request #482 for the motivation for this change and additional context.

v0.9.1

Bug fixes:

• Commands like west manifest --resolve now correctly include group and group filter
information.

Other changes:

• West now warns if you combine importwith group-filter. Semantics for this combination
have changed starting with v0.10.x. See the v0.10.0 release notes above for more informa-
tion.

v0.9.0

Warning: The west config fix described below comes at a cost: any comments or other
manual edits in configuration files will be removed when setting a configuration option via
that command or the west.configuration API.

2.11. West (Zephyr’s meta-tool) 123

https://github.com/zephyrproject-rtos/west/pull/482

Zephyr Project Documentation, Release 3.6.99

Warning: Combining the group-filter feature introduced in this release with manifest
imports is discouraged. The resulting behavior has changed in west v0.10.

New features:

• West manifests now support Git Submodules in Projects. This allows you to clone Git sub-
modules into a west project repository in addition to the project repository itself.

• West manifests now support Project Groups. Project groups can be enabled and disabled
to determine what projects are “active”, and therefore will be acted upon by the following
commands: west update, west list, west diff, west status, west forall.

• west update no longer updates inactive projects by default. It now supports a
--group-filter option which allows for one-time modifications to the set of enabled and
disabled project groups.

• Running west list, west diff, west status, or west forall with no arguments does
not print information for inactive projects by default. If the user specifies a list of projects
explicitly at the command line, output for them is included regardless of whether they are
active.

These commands also now support --all arguments to include all projects, even inactive
ones.

• west list now supports a {groups} format string key in its --format argument.

Bug fixes:

• The west config command and west.configuration API did not correctly store some con-
figuration values, such as strings which contain commas. This has been fixed; see commit
36f3f91e for details.

• A manifest file with an empty manifest: self: path: value is invalid, but west used to
let it pass silently. West now rejects such manifests.

• A bug affecting the behavior of the west init -l . command was fixed; see issue #435.

API changes:

• added west.manifest.Manifest.is_active()
• added west.manifest.Manifest.group_filter
• added submodules attribute to west.manifest.Project, which has newly added type west.
manifest.Submodule

Other changes:

• The Manifest Imports feature now supports the terms allowlist and blocklist instead of
whitelist and blacklist, respectively.

The old terms are still supported for compatibility, but the documentation has been updated
to use the new ones exclusively.

v0.8.0

This is a feature release which changes the manifest schema by adding support for a
path-prefix: key in an import: mapping, along with some other features and fixes.

• Manifest import mappings now support a path-prefix: key, which places the project and
its imported repositories in a subdirectory of the workspace. See Example 3.4: Import into
a subdirectory for an example.

124 Chapter 2. Developing with Zephyr

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://github.com/zephyrproject-rtos/west/commit/36f3f91e270782fb05f6da13800f433a9c48f130
https://github.com/zephyrproject-rtos/west/commit/36f3f91e270782fb05f6da13800f433a9c48f130
https://github.com/zephyrproject-rtos/west/issues/435

Zephyr Project Documentation, Release 3.6.99

• The west command line application can now also be run using python3 -m west. This
makes it easier to run west under a particular Python interpreter without modifying the
PATH environment variable.

• west manifest –path prints the absolute path to west.yml

• west init now supports an --mf foo.yml option, which initializes the workspace using
foo.yml instead of west.yml.

• west list now prints the manifest repository’s path using the manifest.path configuration
option, which may differ from the self: path: value in the manifest data. The old behavior
is still available, but requires passing a new --manifest-path-from-yaml option.

• Various Python API changes; see west-apis for details.

v0.7.3

This is a bugfix release.

• Fix an error where a failed import could leave the workspace in an unusable state (see [PR
#415](https://github.com/zephyrproject-rtos/west/pull/415) for details)

v0.7.2

This is a bugfix and minor feature release.

• Filter out duplicate extension commands brought in by manifest imports

• Fix west.Manifest.get_projects() when finding the manifest repository by path

v0.7.1

This is a bugfix and minor feature release.

• west update --stats now prints timing for operations which invoke a subprocess, time
spent in west’s Python process for each project, and total time updating each project.

• west topdir always prints a POSIX style path

• minor console output changes

v0.7.0

The main user-visible feature in west 0.7 is the Manifest Imports feature. This allows users to
load west manifest data from multiple different files, resolving the results into a single logical
manifest.

Additional user-visible changes:

• The idea of a “west installation” has been renamed to “west workspace” in this documenta-
tion and in the west API documentation. The new term seems to be easier for most people
to work with than the old one.

• West manifests now support a schema version.

• The “west config” command can now be run outside of a workspace, e.g. to run west config
--global section.key value to set a configuration option’s value globally.

• There is a new west topdir command, which prints the root directory of the current west
workspace.

2.11. West (Zephyr’s meta-tool) 125

https://github.com/zephyrproject-rtos/west/pull/415

Zephyr Project Documentation, Release 3.6.99

• The west -vv init command now prints the git operations being performed, and their
results.

• The restriction that no project can be named “manifest” is now enforced; the name “man-
ifest” is reserved for the manifest repository, and is usable as such in commands like west
list manifest, instead of west list path-to-manifest-repository being the only way to
say that

• It’s no longer an error if there is no project named “zephyr”. This is part of an effort to
make west generally usable for non-Zephyr use cases.

• Various bug fixes.

The developer-visible changes to the west-apis are:

• west.build and west.cmake: deprecated; this is Zephyr-specific functionality and should
never have been part of west. Since Zephyr v1.14 LTS relies on it, it will continue to be
included in the distribution, but will be removed when that version of Zephyr is obsoleted.

• west.commands:

– WestCommand.requires_installation: deprecated; use requires_workspace instead

– WestCommand.requires_workspace: new

– WestCommand.has_manifest: new

– WestCommand.manifest: this is now settable

• west.configuration: callers can now identify the workspace directory when reading and
writing configuration files

• west.log:

– msg(): new

• west.manifest:

– The module now uses the standard logging module instead of west.log

– QUAL_REFS_WEST: new

– SCHEMA_VERSION: new

– Defaults: removed

– Manifest.as_dict(): new

– Manifest.as_frozen_yaml(): new

– Manifest.as_yaml(): new

– Manifest.from_file() and from_data(): these factory methods are more flexible to use
and less reliant on global state

– Manifest.validate(): new

– ManifestImportFailed: new

– ManifestProject: semi-deprecated and will likely be removed later.

– Project: the constructor now takes a topdir argument

– Project.format() and its callers are removed. Use f-strings instead.

– Project.name_and_path: new

– Project.remote_name: new

– Project.sha() now captures stderr

– Remote: removed

126 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

West now requires Python 3.6 or later. Additionally, some features may rely on Python dictio-
naries being insertion-ordered; this is only an implementation detail in CPython 3.6, but it is part
of the language specification as of Python 3.7.

v0.6.3

This point release fixes an error in the behavior of the deprecated west.cmake module.

v0.6.2

This point release fixes an error in the behavior of west update --fetch=smart, introduced in
v0.6.1.

All v0.6.1 users must upgrade.

v0.6.1

Warning: Do not use this point release. Make sure to use v0.6.2 instead.

The user-visible features in this point release are:

• The west update command has a new --fetch command line flag and update.fetch config-
uration option. The default value, “smart”, skips fetching SHAs and tags which are available
locally.

• Better and more consistent error-handling in the west diff, west status, west forall,
and west update commands. Each of these commands can operate on multiple projects;
if a subprocess related to one project fails, these commands now continue to operate on
the rest of the projects. All of them also now report a nonzero error code from the west
process if any of these subprocesses fails (this was previously not true of west forall in
particular).

• The west manifest command also handles errors better.

• The west list command now works even when the projects are not cloned, as long as its
format string only requires information which can be read from the manifest file. It still
fails if the format string requires data stored in the project repository, e.g. if it includes the
{sha} format string key.

• Commands and options which operate on git revisions now accept abbreviated SHAs. For
example, west init --mr SHA_PREFIX now works. Previously, the --mr argument needed
to be the entire 40 character SHA if it wasn’t a branch or a tag.

The developer-visible changes to the west-apis are:

• west.log.banner(): new

• west.log.small_banner(): new

• west.manifest.Manifest.get_projects(): new

• west.manifest.Project.is_cloned(): new

• west.commands.WestCommand instances can now access the parsed Manifest object via a
new self.manifest property during the do_run() call. If read, it returns the Manifest object
or aborts the command if it could not be parsed.

• west.manifest.Project.git() now has a capture_stderr kwarg

2.11. West (Zephyr’s meta-tool) 127

Zephyr Project Documentation, Release 3.6.99

v0.6.0

• No separate bootstrapper

In west v0.5.x, the program was split into two components, a bootstrapper and a per-
installation clone. See Multiple Repository Management in the v1.14 documentation for
more details.

This is similar to how Google’s Repo tool works, and lets west iterate quickly at first. It
caused confusion, however, and west is now stable enough to be distributed entirely as one
piece via PyPI.

From v0.6.x onwards, all of the core west commands and helper classes are part of the west
package distributed via PyPI. This eliminates complexity and makes it possible to import
west modules from anywhere in the system, not just extension commands.

• The selfupdate command still exists for backwards compatibility, but now simply exits
after printing an error message.

• Manifest syntax changes

– A west manifest file’s projects elements can now specify their fetch URLs directly, like
so:

manifest:
projects:
- name: example-project-name
url: https://github.com/example/example-project

Project elements with url attributes set in this way may not also have remote attributes.

– Project names must be unique: this restriction is needed to support future work, but
was not possible in west v0.5.x because distinct projects may have URLs with the same
final pathname component, like so:

manifest:
remotes:
- name: remote-1
url-base: https://github.com/remote-1

- name: remote-2
url-base: https://github.com/remote-2

projects:
- name: project
remote: remote-1
path: remote-1-project

- name: project
remote: remote-2
path: remote-2-project

These manifests can now be written with projects that use url instead of remote, like
so:

manifest:
projects:
- name: remote-1-project
url: https://github.com/remote-1/project

- name: remote-2-project
url: https://github.com/remote-2/project

• The west list command now supports a {sha} format string key

• The default format string for west list was changed to "{name:12} {path:28} {revi-
sion:40} {url}".

128 Chapter 2. Developing with Zephyr

https://docs.zephyrproject.org/1.14.0/guides/west/repo-tool.html

Zephyr Project Documentation, Release 3.6.99

• The command west manifest --validate can now be run to load and validate the current
manifest file, among other error-handling fixes related to manifest parsing.

• Incompatible API changes were made to west’s APIs. Further changes are expected until
API stability is declared in west v1.0.

– The west.manifest.Project constructor’s remote and defaults positional arguments
are now kwargs. A new url kwarg was also added; if given, the Project URL is set to
that value, and the remote kwarg is ignored.

– west.manifest.MANIFEST_SECTIONS was removed. There is only one section now,
namely manifest. The sections kwargs in the west.manifest.Manifest factory meth-
ods and constructor were also removed.

– The west.manifest.SpecialProject class was removed. Use west.manifest.
ManifestProject instead.

v0.5.x

West v0.5.x is the first version used widely by the Zephyr Project as part of its v1.14 Long-Term
Support (LTS) release. The west v0.5.x documentation is available as part of the Zephyr’s v1.14
documentation.

West’s main features in v0.5.x are:

• Multiple repository management using Git repositories, including self-update of west itself

• Hierarchical configuration files

• Extension commands

Versions Before v0.5.x

Tags in the west repository before v0.5.x are prototypes which are of historical interest only.

2.11.3 Troubleshooting West

This page covers common issues with west and how to solve them.

west update fetching failures

One good way to troubleshoot fetching issues is to run west update in verbose mode, like this:

west -v update

The output includes Git commands run by west and their outputs. Look for something like this:

=== updating your_project (path/to/your/project):
west.manifest: your_project: checking if cloned
[...other west.manifest logs...]
--- your_project: fetching, need revision SOME_SHA
west.manifest: running 'git fetch ... https://github.com/your-username/your_project ...' in␣
↪→/some/directory

The git fetch command example in the last line above is what needs to succeed.

One strategy is to go to /path/to/your/project, copy/paste and run the entire git fetch com-
mand, then debug from there using the documentation for your credential storage helper.

2.11. West (Zephyr’s meta-tool) 129

https://docs.zephyrproject.org/1.14.0/guides/west/index.html

Zephyr Project Documentation, Release 3.6.99

If you’re behind a corporate firewall and may have proxy or other issues, curl -v FETCH_URL
(for HTTPS URLs) or ssh -v FETCH_URL (for SSH URLs) may be helpful.

If you can get the git fetch command to run successfully without prompting for a password
when you run it directly, you will be able to run west update without entering your password
in that same shell.

“‘west’ is not recognized as an internal or external command, operable program or batch
file.’

On Windows, this means that either west is not installed, or your PATH environment variable
does not contain the directory where pip installed west.exe.

First, make sure you’ve installed west; see Installing west. Then try running west from a new
cmd.exe window. If that still doesn’t work, keep reading.

You need to find the directory containing west.exe, then add it to your PATH. (This PATH change
should have been done for you when you installed Python and pip, so ordinarily you should not
need to follow these steps.)

Run this command in cmd.exe:

pip3 show west

Then:

1. Look for a line in the output that looks like Location: C:\foo\python\python38\lib\
site-packages. The exact location will be different on your computer.

2. Look for a file named west.exe in the scripts directory C:\foo\python\python38\scripts.

Important: Notice how lib\site-packages in the pip3 show output was changed to
scripts!

3. If you see west.exe in the scripts directory, add the full path to scripts to your PATH using
a command like this:

setx PATH "%PATH%;C:\foo\python\python38\scripts"

Do not just copy/paste this command. The scripts directory location will be different on
your system.

4. Close your cmd.exe window and open a new one. You should be able to run west.

“Error: unexpected keyword argument ‘requires_workspace’”

This error occurs on some Linux distributions after upgrading to west 0.7.0 or later from 0.6.x.
For example:

$ west update
[... stack trace ...]
TypeError: __init__() got an unexpected keyword argument 'requires_workspace'

This appears to be a problem with the distribution’s pip; see this comment in west issue 373 for
details. Some versions of Ubuntu and Linux Mint are known to have this problem. Some users
report issues on Fedora as well.

Neither macOS nor Windows users have reported this issue. There have been no reports of this
issue on other Linux distributions, like Arch Linux, either.

Workaround 1: remove the old version, then upgrade:

130 Chapter 2. Developing with Zephyr

https://github.com/zephyrproject-rtos/west/issues/373#issuecomment-583489272

Zephyr Project Documentation, Release 3.6.99

$ pip3 show west | grep Location: | cut -f 2 -d ' '
/home/foo/.local/lib/python3.6/site-packages
$ rm -r /home/foo/.local/lib/python3.6/site-packages/west
$ pip3 install --user west==0.7.0

Workaround 2: install west in a Python virtual environment

One option is to use the venv module that’s part of the Python 3 standard library. Some distri-
butions remove this module from their base Python 3 packages, so you may need to do some
additional work to get it installed on your system.

“invalid choice: ‘build’” (or ‘flash’, etc.)

If you see an unexpected error like this when trying to run a Zephyr extension command (like
west flash, west build, etc.):

$ west build [...]
west: error: argument <command>: invalid choice: 'build' (choose from 'init', [...])

$ west flash [...]
west: error: argument <command>: invalid choice: 'flash' (choose from 'init', [...])

The most likely cause is that you’re running the command outside of a west workspace. West
needs to know where your workspace is to find Extensions.

To fix this, you have two choices:

1. Run the command from inside a workspace (e.g. the zephyrproject directory you created
when you got started).

For example, create your build directory inside the workspace, or run west flash
--build-dir YOUR_BUILD_DIR from inside the workspace.

2. Set the ZEPHYR_BASE environment variable and re-run the west extension command. If set,
west will use ZEPHYR_BASE to find your workspace.

If you’re unsure whether a command is built-in or an extension, run west help from inside your
workspace. The output prints extension commands separately, and looks like this for mainline
Zephyr:

$ west help

built-in commands for managing git repositories:
init: create a west workspace
[...]

other built-in commands:
help: get help for west or a command
[...]

extension commands from project manifest (path: zephyr):
build: compile a Zephyr application
flash: flash and run a binary on a board
[...]

“invalid choice: ‘post-init’”

If you see this error when running west init:

2.11. West (Zephyr’s meta-tool) 131

https://docs.python.org/3/library/venv.html

Zephyr Project Documentation, Release 3.6.99

west: error: argument <command>: invalid choice: 'post-init'
(choose from 'init', 'update', 'list', 'manifest', 'diff',
'status', 'forall', 'config', 'selfupdate', 'help')

Then you have an old version of west installed, and are trying to use it in a workspace that
requires a more recent version.

The easiest way to resolve this issue is to upgrade west and retry as follows:

1. Install the latest west with the -U option for pip3 install as shown in Installing west.

2. Back up any contents of zephyrproject/.west/config that you want to save. (If you don’t
have any configuration options set, it’s safe to skip this step.)

3. Completely remove the zephyrproject/.west directory (if you don’t, you will get the “al-
ready in a workspace” error message discussed next).

4. Run west init again.

“already in an installation”

You may see this error when running west init with west 0.6:

FATAL ERROR: already in an installation (<some directory>), aborting

If this is unexpected and you’re really trying to create a new west workspace, then it’s likely that
west is using the ZEPHYR_BASE environment variable to locate a workspace elsewhere on your
system.

This is intentional; it allows you to put your Zephyr applications in any directory and still use
west to build, flash, and debug them, for example.

To resolve this issue, unset ZEPHYR_BASE and try again.

2.11.4 Basics

This page introduces west’s basic concepts and provides references to further reading.

West’s built-in commands allow you to work with projects (Git repositories) under a common
workspace directory.

Example workspace

If you’ve followed the upstream Zephyr getting started guide, your workspace looks like this:

zephyrproject/ # west topdir
├── .west/ # marks the location of the topdir
│ └── config # per-workspace local configuration file
│
│ # The manifest repository, never modified by west after creation:
├── zephyr/ # .git/ repo
│ ├── west.yml # manifest file
│ └── [... other files ...]
│
│ # Projects managed by west:
├── modules/
│ └── lib/
│ └── zcbor/ # .git/ project
├── net-tools/ # .git/ project
└── [... other projects ...]

132 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Workspace concepts

Here are the basic concepts you should understand about this structure. Additional details are
in Workspaces.

topdir
Above, zephyrproject is the name of the workspace’s top level directory, or topdir. (The
name zephyrproject is just an example – it could be anything, like z, my-zephyr-workspace,
etc.)

You’ll typically create the topdir and a few other files and directories using west init.

.west directory
The topdir contains the .west directory. When west needs to find the topdir, it searches for
.west, and uses its parent directory. The search starts from the current working directory
(and starts again from the location in the ZEPHYR_BASE environment variable as a fallback
if that fails).

configuration file
The file .west/config is the workspace’s local configuration file.

manifest repository
Every west workspace contains exactly one manifest repository, which is a Git repository
containing a manifest file. The location of the manifest repository is given by the mani-
fest.path configuration option in the local configuration file.

For upstream Zephyr, zephyr is the manifest repository, but you can configure west to use
any Git repository in the workspace as the manifest repository. The only requirement is
that it contains a valid manifest file. See Topologies supported for information on other
options, and West Manifests for details on the manifest file format.

manifest file
The manifest file is a YAML file that defines projects, which are the additional Git reposito-
ries in the workspace managed by west. The manifest file is named west.yml by default;
this can be overridden using the manifest.file local configuration option.

You use thewest update command to update the workspace’s projects based on the contents
of the manifest file.

projects
Projects are Git repositories managed by west. Projects are defined in the manifest file and
can be located anywhere inside the workspace. In the above example workspace, zcbor
and net-tools are projects.

By default, the Zephyr build system uses west to get the locations of all the projects in the
workspace, so any code they contain can be used as Modules (External projects). Note how-
ever that modules and projects are conceptually different.

extensions
Any repository known to west (either the manifest repository or any project repository)
can define Extensions. Extensions are extra west commands you can run when using that
workspace.

The zephyr repository uses this feature to provide Zephyr-specific commands like west
build. Defining these as extensions keeps west’s core agnostic to the specifics of any
workspace’s Zephyr version, etc.

ignored files
A workspace can contain additional Git repositories or other files and directories not man-
aged by west. West basically ignores anything in the workspace except .west, the manifest
repository, and the projects specified in the manifest file.

2.11. West (Zephyr’s meta-tool) 133

Zephyr Project Documentation, Release 3.6.99

west init and west update

The two most important workspace-related commands are west init and west update.

west init basics This command creates a west workspace.

Important: West doesn’t change your manifest repository contents after west init is run. Use
ordinary Git commands to pull new versions, etc.

You will typically run it once, like this:

west init -m https://github.com/zephyrproject-rtos/zephyr --mr v2.5.0 zephyrproject

This will:

1. Create the topdir, zephyrproject, along with .west and .west/config inside it

2. Clone the manifest repository from https://github.com/zephyrproject-rtos/zephyr, placing
it into zephyrproject/zephyr

3. Check out the v2.5.0 git tag in your local zephyr clone

4. Set manifest.path to zephyr in .west/config
5. Set manifest.file to west.yml

Your workspace is now almost ready to use; you just need to run west update to clone the rest
of the projects into the workspace to finish.

For more details, see west init.

west update basics This command makes sure your workspace contains Git repositories
matching the projects in the manifest file.

Important: Whenever you check out a different revision in your manifest repository, you
should run west update to make sure your workspace contains the project repositories the new
revision expects.

The west update command reads the manifest file’s contents by:

1. Finding the topdir. In the west init example above, that means finding zephyrproject.

2. Loading .west/config in the topdir to read the manifest.path (e.g. zephyr) and manifest.
file (e.g. west.yml) options.

3. Loading the manifest file given by these options (e.g. zephyrproject/zephyr/west.yml).

It then uses the manifest file to decide where missing projects should be placed within the
workspace, what URLs to clone them from, and what Git revisions should be checked out lo-
cally. Project repositories which already exist are updated in place by fetching and checking out
their respective Git revisions in the manifest file.

For more details, see west update.

Other built-in commands

See Built-in commands.

134 Chapter 2. Developing with Zephyr

https://github.com/zephyrproject-rtos/zephyr

Zephyr Project Documentation, Release 3.6.99

Zephyr Extensions

See the following pages for information on Zephyr’s extension commands:

• Building, Flashing and Debugging

• Signing Binaries

• Additional Zephyr extension commands

• Enabling shell completion

Troubleshooting

See Troubleshooting West.

2.11.5 Built-in commands

This page describes west’s built-in commands, some of which were introduced in Basics, in more
detail.

Some commands are related to Git commands with the same name, but operate on the entire
workspace. For example, west diff shows local changes in multiple Git repositories in the
workspace.

Some commands take projects as arguments. These arguments can be project names as specified
in the manifest file, or (as a fallback) paths to them on the local file system. Omitting project
arguments to commands which accept them (such as west list, west forall, etc.) usually
defaults to using all projects in the manifest file plus the manifest repository itself.

For additional help, run west <command> -h (e.g. west init -h).

west init

This command creates a west workspace. It can be used in two ways:

1. Cloning a new manifest repository from a remote URL

2. Creating a workspace around an existing local manifest repository

Option 1: to clone a new manifest repository from a remote URL, use:

west init [-m URL] [--mr REVISION] [--mf FILE] [directory]

The new workspace is created in the given directory, creating a new .west inside this directory.
You can give the manifest URL using the -m switch, the initial revision to check out using --mr,
and the location of the manifest file within the repository using --mf.

For example, running:

west init -m https://github.com/zephyrproject-rtos/zephyr --mr v1.14.0 zp

would clone the upstream official zephyr repository into zp/zephyr, and check out the v1.14.
0 release. This command creates zp/.west, and set the manifest.path configuration option to
zephyr to record the location of the manifest repository in the workspace. The default manifest
file location is used.

The -m option defaults to https://github.com/zephyrproject-rtos/zephyr. The --mf option de-
faults to west.yml. Since west v0.10.1, west will use the default branch in the manifest repository
unless the --mr option is used to override it. (In prior versions, --mr defaulted to master.)

If no directory is given, the current working directory is used.

2.11. West (Zephyr’s meta-tool) 135

Zephyr Project Documentation, Release 3.6.99

Option 2: to create a workspace around an existing local manifest repository, use:

west init -l [--mf FILE] directory

This creates .west next to directory in the file system, and sets manifest.path to directory.

As above, --mf defaults to west.yml.

Reconfiguring the workspace:

If you change your mind later, you are free to change manifest.path and manifest.file using
west config after running west init. Just be sure to run west update afterwards to update your
workspace to match the new manifest file.

west update

west update [-f {always,smart}] [-k] [-r]
[--group-filter FILTER] [--stats] [PROJECT ...]

Which projects are updated:
By default, this command parses the manifest file, usually west.yml, and updates each project
specified there. If your manifest uses project groups, then only the active projects are updated.

To operate on a subset of projects only, give PROJECT argument(s). Each PROJECT is either a project
name as given in the manifest file, or a path that points to the project within the workspace. If
you specify projects explicitly, they are updated regardless of whether they are active.

Project update procedure:
For each project that is updated, this command:

1. Initializes a local Git repository for the project in the workspace, if it does not already exist

2. Inspects the project’s revision field in the manifest, and fetches it from the remote if it is
not already available locally

3. Sets the project’smanifest-rev branch to the commit specified by the revision in the previous
step

4. Checks out manifest-rev in the local working copy as a detached HEAD

5. If the manifest file specifies a submodules key for the project, recursively updates the
project’s submodules as described below.

To avoid unnecessary fetches, west update will not fetch project revision values which are Git
SHAs or tags that are already available locally. This is the behavior when the -f (--fetch) option
has its default value, smart. To force this command to fetch from project remotes even if the re-
visions appear to be available locally, either use -f always or set the update.fetch configuration
option to always. SHAs may be given as unique prefixes as long as they are acceptable to Git1.

If the project revision is a Git ref that is neither a tag nor a SHA (i.e. if the project is tracking a
branch), west update always fetches, regardless of -f and update.fetch.

Some branch names might look like short SHAs, like deadbeef. West treats these like SHAs. You
can disambiguate by prefixing the revision value with refs/heads/, e.g. revision: refs/
heads/deadbeef.

For safety, west update uses git checkout --detach to check out a detached HEAD at the manifest
revision for each updated project, leaving behind any branches which were already checked out.
This is typically a safe operation that will not modify any of your local branches.

However, if you had added some local commits onto a previously detached HEAD checked out by
west, then git will warn you that you’ve left behind some commits which are no longer referred

1 West may fetch all refs from the Git server when given a SHA as a revision. This is because some Git servers have
historically not allowed fetching SHAs directly.

136 Chapter 2. Developing with Zephyr

https://git-scm.com/docs/git-checkout#_detached_head

Zephyr Project Documentation, Release 3.6.99

to by any branch. These may be garbage-collected and lost at some point in the future. To avoid
this if you have local commits in the project, make sure you have a local branch checked out
before running west update.

If you would rather rebase any locally checked out branches instead, use the -r (--rebase) op-
tion.

If you would like west update to keep local branches checked out as long as they point to commits
that are descendants of the new manifest-rev, use the -k (--keep-descendants) option.

Note: west update --rebase will fail in projects that have git conflicts between your branch
and new commits brought in by the manifest. You should immediately resolve these conflicts
as you usually do with git, or you can use git -C <project_path> rebase --abort to ignore
incoming changes for the moment.

With a clean working tree, a plain west update never fails because it does not try to hold on to
your commits and simply leaves them aside.

west update --keep-descendants offers an intermediate option that never fails either but does
not treat all projects the same:

• in projects where your branch diverged from the incoming commits, it does not even try to
rebase and leaves your branches behind just like a plain west update does;

• in all other projects where no rebase or merge is needed it keeps your branches in place.

One-time project group manipulation:
The --group-filter option can be used to change which project groups are enabled or disabled
for the duration of a single west update command. See Project Groups for details on the project
group feature.

The west update command behaves as if the --group-filter option’s value were appended to
the manifest.group-filter configuration option.

For example, running west update --group-filter=+foo,-bar would behave the same way as
if you had temporarily appended the string "+foo,-bar" to the value of manifest.group-filter,
run west update, then restored manifest.group-filter to its original value.

Note that using the syntax --group-filter=VALUE instead of --group-filter VALUE avoids
issues parsing command line options if you just want to disable a single group, e.g.
--group-filter=-bar.

Submodule update procedure:
If a project in the manifest has a submodules key, the submodules are updated as follows, de-
pending on the value of the submodules key.

If the project has submodules: true, west first synchronizes the project’s submodules with:

git submodule sync --recursive

West then runs one of the following in the project repository, depending on whether you run
west update with the --rebase option or without it:

without --rebase, e.g. "west update":
git submodule update --init --checkout --recursive

with --rebase, e.g. "west update --rebase":
git submodule update --init --rebase --recursive

Otherwise, the project has submodules: <list-of-submodules>. In this case, west synchronizes
the project’s submodules with:

2.11. West (Zephyr’s meta-tool) 137

Zephyr Project Documentation, Release 3.6.99

git submodule sync --recursive -- <submodule-path>

Then it updates each submodule in the list as follows, depending on whether you run west up-
date with the --rebase option or without it:

without --rebase, e.g. "west update":
git submodule update --init --checkout --recursive <submodule-path>

with --rebase, e.g. "west update --rebase":
git submodule update --init --rebase --recursive <submodule-path>

The git submodule sync commands are skipped if the update.sync-submodules Configuration
option is false.

Other project commands

West has a few more commands for managing the projects in the workspace, which are summa-
rized here. Run west <command> -h for detailed help.

• west compare: compare the state of the workspace against the manifest

• west diff: run git diff in local project repositories

• west forall: run an arbitrary command in local project repositories

• west grep: search for patterns in local project repositories

• west list: print a line of information about each project in the manifest, according to a
format string

• west manifest: manage the manifest file. See Manifest Command.

• west status: run git status in local project repositories

Other built-in commands

Finally, here is a summary of other built-in commands.

• west config: get or set configuration options

• west topdir: print the top level directory of the west workspace

• west help: get help about a command, or print information about all commands in the
workspace, including Extensions

2.11.6 Workspaces

This page describes the west workspace concept introduced in Basics in more detail.

The manifest-rev branch

West creates and controls a Git branch named manifest-rev in each project. This branch points
to the revision that the manifest file specified for the project at the time west update was last
run. Other workspace management commands may use manifest-rev as a reference point for
the upstream revision as of this latest update. Among other purposes, the manifest-rev branch
allows the manifest file to use SHAs as project revisions.

Although manifest-rev is a normal Git branch, west will recreate and/or reset it on the next
update. For this reason, it is dangerous to check it out or otherwise modify it yourself. For

138 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

instance, any commits you manually add to this branch may be lost the next time you run west
update. Instead, check out a local branch with another name, and either rebase it on top of a
new manifest-rev, or merge manifest-rev into it.

Note: West does not create a manifest-rev branch in the manifest repository, since west does
not manage the manifest repository’s branches or revisions.

The refs/west/* Git refs

West also reserves all Git refs that begin with refs/west/ (such as refs/west/foo) for itself in lo-
cal project repositories. Unlike manifest-rev, these refs are not regular branches. West’s behav-
ior here is an implementation detail; users should not rely on these refs’ existence or behavior.

Private repositories

You can use west to fetch from private repositories. There is nothing west-specific about this.

The west update command essentially runs git fetch YOUR_PROJECT_URL when a project’s
manifest-rev branch must be updated to a newly fetched commit. It’s up to your environment
to make sure the fetch succeeds.

You can either enter the password manually or use any of the credential helpers built in to Git.
Since Git has credential storage built in, there is no need for a west-specific feature.

The following sections cover common cases for running west update without having to enter
your password, as well as how to troubleshoot issues.

Fetching via HTTPS On Windows when fetching from GitHub, recent versions of Git prompt
you for your GitHub password in a graphical window once, then store it for future use (in a
default installation). Passwordless fetching from GitHub should therefore work “out of the box”
on Windows after you have done it once.

In general, you can store your credentials on disk using the “store” git credential helper. See the
git-credential-store manual page for details.

To use this helper for all the repositories in your workspace, run:

west forall -c "git config credential.helper store"

To use this helper on just the projects foo and bar, run:

west forall -c "git config credential.helper store" foo bar

To use this helper by default on your computer, run:

git config --global credential.helper store

On GitHub, you can set up a personal access token to use in place of your account password. (This
may be required if your account has two-factor authentication enabled, and may be preferable
to storing your account password in plain text even if two-factor authentication is disabled.)

You can use the Git credential store to authenticate with a GitHub PAT (Personal Access Token)
like so:

echo "https://x-access-token:$GH_TOKEN@github.com" >> ~/.git-credentials

2.11. West (Zephyr’s meta-tool) 139

https://git-scm.com/docs/gitcredentials
https://git-scm.com/docs/git-credential-store#_examples
https://docs.github.com/en/github/authenticating-to-github/creating-a-personal-access-token

Zephyr Project Documentation, Release 3.6.99

If you don’t want to store any credentials on the file system, you can store them in memory
temporarily using git-credential-cache instead.

If you setup fetching via SSH, you can use Git URL rewrite feature. The following command
instructs Git to use SSH URLs for GitHub instead of HTTPS ones:

git config --global url."git@github.com:".insteadOf "https://github.com/"

Fetching via SSH If your SSH key has no password, fetching should just work. If it does have
a password, you can avoid entering it manually every time using ssh-agent.

On GitHub, see Connecting to GitHub with SSH for details on configuration and key creation.

Project locations

Projects can be located anywhere inside the workspace, but they may not “escape” it.

In other words, project repositories need not be located in subdirectories of the manifest reposi-
tory or as immediate subdirectories of the topdir. However, projects must have paths inside the
workspace.

You may replace a project’s repository directory within the workspace with a symbolic link to
elsewhere on your computer, but west will not do this for you.

Topologies supported

The following are example source code topologies supported by west.

• T1: star topology, zephyr is the manifest repository

• T2: star topology, a Zephyr application is the manifest repository

• T3: forest topology, freestanding manifest repository

T1: Star topology, zephyr is the manifest repository
• The zephyr repository acts as the central repository and specifies its Modules (External
projects) in its west.yml

• Analogy with existing mechanisms: Git submodules with zephyr as the super-project

This is the default. See Workspace concepts for how mainline Zephyr is an example of this topol-
ogy.

T2: Star topology, application is the manifest repository
• Useful for those focused on a single application

• A repository containing a Zephyr application acts as the central repository and names other
projects required to build it in its west.yml. This includes the zephyr repository and any
modules.

• Analogy with existing mechanisms: Git submodules with the application as the super-
project, zephyr and other projects as submodules

A workspace using this topology looks like this:

140 Chapter 2. Developing with Zephyr

https://git-scm.com/docs/git-credential-cache
https://www.ssh.com/ssh/agent
https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh

Zephyr Project Documentation, Release 3.6.99

west-workspace/
│
├── application/ # .git/ │
│ ├── CMakeLists.txt │
│ ├── prj.conf │ never modified by west
│ ├── src/ │
│ │ └── main.c │
│ └── west.yml # main manifest with optional import(s) and override(s)
│ │
├── modules/
│ └── lib/
│ └── zcbor/ # .git/ project from either the main manifest or some import.
│
└── zephyr/ # .git/ project

└── west.yml # This can be partially imported with lower precedence or ignored.
Only the 'manifest-rev' version can be imported.

Here is an example application/west.ymlwhich usesManifest Imports, available since west 0.7,
to import Zephyr v2.5.0 and its modules into the application manifest file:

Example T2 west.yml, using manifest imports.
manifest:
remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
projects:
- name: zephyr

remote: zephyrproject-rtos
revision: v2.5.0
import: true

self:
path: application

You can still selectively “override” individual Zephyr modules if you use import: in this way; see
Example 1.3: Downstream of a Zephyr release, with module fork for an example.

Another way to do the same thing is to copy/paste zephyr/west.yml to application/west.yml,
adding an entry for the zephyr project itself, like this:

Equivalent to the above, but with manually maintained Zephyr modules.
manifest:
remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
defaults:
remote: zephyrproject-rtos

projects:
- name: zephyr

revision: v2.5.0
west-commands: scripts/west-commands.yml

- name: net-tools
revision: some-sha-goes-here
path: tools/net-tools

... other Zephyr modules go here ...
self:
path: application

(The west-commands is there for Building, Flashing and Debugging and other Zephyr-specific Ex-
tensions. It’s not necessary when using import.)

The main advantage to using import is not having to track the revisions of imported projects
separately. In the above example, using import means Zephyr’s module versions are automati-
cally determined from the zephyr/west.yml revision, instead of having to be copy/pasted (and

2.11. West (Zephyr’s meta-tool) 141

Zephyr Project Documentation, Release 3.6.99

maintained) on their own.

T3: Forest topology
• Useful for those supporting multiple independent applications or downstream distribu-

tions with no “central” repository

• A dedicated manifest repository which contains no Zephyr source code, and specifies a list
of projects all at the same “level”

• Analogy with existing mechanisms: Google repo-based source distribution

A workspace using this topology looks like this:

west-workspace/
├── app1/ # .git/ project
│ ├── CMakeLists.txt
│ ├── prj.conf
│ └── src/
│ └── main.c
├── app2/ # .git/ project
│ ├── CMakeLists.txt
│ ├── prj.conf
│ └── src/
│ └── main.c
├── manifest-repo/ # .git/ never modified by west
│ └── west.yml # main manifest with optional import(s) and override(s)
├── modules/
│ └── lib/
│ └── zcbor/ # .git/ project from either the main manifest or
│ # from some import
│
└── zephyr/ # .git/ project

└── west.yml # This can be partially imported with lower precedence or ignored.
Only the 'manifest-rev' version can be imported.

Here is an example T3 manifest-repo/west.yml which uses Manifest Imports, available since
west 0.7, to import Zephyr v2.5.0 and its modules, then add the app1 and app2 projects:

manifest:
remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
- name: your-git-server

url-base: https://git.example.com/your-company
defaults:
remote: your-git-server

projects:
- name: zephyr

remote: zephyrproject-rtos
revision: v2.5.0
import: true

- name: app1
revision: SOME_SHA_OR_BRANCH_OR_TAG

- name: app2
revision: ANOTHER_SHA_OR_BRANCH_OR_TAG

self:
path: manifest-repo

You can also do this “by hand” by copy/pasting zephyr/west.yml as shown above for the T2 topol-
ogy, with the same caveats.

142 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

2.11.7 West Manifests

This page contains detailed information about west’s multiple repository model, manifest files,
and the west manifest command. For API documentation on the west.manifest module, see
west-apis-manifest. For a more general introduction and command overview, see Basics.

Multiple Repository Model

West’s view of the repositories in a west workspace, and their history, looks like the following
figure (though some parts of this example are specific to upstream Zephyr’s use of west):

Fig. 3: West multi-repo history

The history of the manifest repository is the line of Git commits which is “floating” on top of the
gray plane. Parent commits point to child commits using solid arrows. The plane below contains
the Git commit history of the repositories in the workspace, with each project repository boxed
in by a rectangle. Parent/child commit relationships in each repository are also shown with solid
arrows.

The commits in the manifest repository (again, for upstream Zephyr this is the zephyr repository
itself) each have a manifest file. The manifest file in each commit specifies the corresponding
commits which it expects in each of the project repositories. This relationship is shown using
dotted line arrows in the diagram. Each dotted line arrow points from a commit in the manifest
repository to a corresponding commit in a project repository.

Notice the following important details:

• Projects can be added (like P1 between manifest repository commits D and E) and removed
(P2 between the same manifest repository commits)

• Project and manifest repository histories don’t have to move forwards or backwards to-
gether:

– P2 stays the same from A → B, as do P1 and P3 from F → G.

– P3 moves forward from A → B.

– P3 moves backward from C → D.

2.11. West (Zephyr’s meta-tool) 143

Zephyr Project Documentation, Release 3.6.99

One use for moving backward in project history is to “revert” a regression by going back to
a revision before it was introduced.

• Project repository commits can be “skipped”: P3 moves forward multiple commits in its
history from B → C.

• In the above diagram, no project repository has two revisions “at the same time”: every
manifest file refers to exactly one commit in the projects it cares about. This can be relaxed
by using a branch name as a manifest revision, at the cost of being able to bisect manifest
repository history.

Manifest Files

West manifests are YAML files. Manifests have a top-level manifest section with some subsec-
tions, like this:

manifest:
remotes:
short names for project URLs

projects:
a list of projects managed by west

defaults:
default project attributes

self:
configuration related to the manifest repository itself,
i.e. the repository containing west.yml

version: "<schema-version>"
group-filter:
a list of project groups to enable or disable

In YAML terms, the manifest file contains a mapping, with a manifest key. Any other keys and
their contents are ignored (west v0.5 also required a west key, but this is ignored starting with
v0.6).

The manifest contains subsections, like defaults, remotes, projects, and self. In YAML terms,
the value of the manifest key is also a mapping, with these “subsections” as keys. As of west
v0.10, all of these “subsection” keys are optional.

The projects value is a list of repositories managed by west and associated metadata. We’ll
discuss it soon, but first we will describe the remotes section, which can be used to save typing
in the projects list.

Remotes The remotes subsection contains a sequence which specifies the base URLs where
projects can be fetched from.

Each remotes element has a name and a “URL base”. These are used to form the complete Git
fetch URL for each project. A project’s fetch URL can be set by appending a project-specific path
onto a remote URL base. (As we’ll see below, projects can also specify their complete fetch URLs.)

For example:

manifest:
...
remotes:
- name: remote1

url-base: https://git.example.com/base1
- name: remote2

url-base: https://git.example.com/base2

The remotes keys and their usage are in the following table.

144 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Table 2: remotes keys

Key Description
name Mandatory; a unique name for the remote.
url-base A prefix that is prepended to the fetch URL for each project with this remote.

Above, two remotes are given, with names remote1 and remote2. Their URL bases are respec-
tively https://git.example.com/base1 and https://git.example.com/base2. You can use SSH
URL bases as well; for example, you might use git@example.com:base1 if remote1 supported Git
over SSH as well. Anything acceptable to Git will work.

Projects The projects subsection contains a sequence describing the project repositories in
the west workspace. Every project has a unique name. You can specify what Git remote URLs
to use when cloning and fetching the projects, what revisions to track, and where the project
should be stored on the local file system. Note that west projects are different from modules.

Here is an example. We’ll assume the remotes given above.

manifest:
[... same remotes as above...]
projects:
- name: proj1

description: the first example project
remote: remote1
path: extra/project-1

- name: proj2
description: |
A multi-line description of the second example
project.

repo-path: my-path
remote: remote2
revision: v1.3

- name: proj3
url: https://github.com/user/project-three
revision: abcde413a111

In this manifest:

• proj1 has remote remote1, so its Git fetch URL is https://git.example.com/base1/proj1.
The remote url-base is appended with a / and the project name to form the URL.

Locally, this project will be cloned at path extra/project-1 relative to the west workspace’s
root directory, since it has an explicit path attribute with this value.

Since the project has no revision specified, master is used by default. The current tip of
this branch will be fetched and checked out as a detached HEAD when west next updates
this project.

• proj2 has a remote and a repo-path, so its fetch URL is https://git.example.com/base2/
my-path. The repo-path attribute, if present, overrides the default name when forming the
fetch URL.

Since the project has no path attribute, its name is used by default. It will be cloned into a
directory named proj2. The commit pointed to by the v1.3 tag will be checked out when
west updates the project.

• proj3 has an explicit url, so it will be fetched from https://github.com/user/
project-three.

Its local path defaults to its name, proj3. Commit abcde413a111 will be checked out when
it is next updated.

2.11. West (Zephyr’s meta-tool) 145

Zephyr Project Documentation, Release 3.6.99

The available project keys and their usage are in the following table. Sometimes we’ll refer to
the defaults subsection; it will be described next.

Table 3: projects elements keys

Key(s) Description
name Mandatory; a unique name for the project. The name cannot be one of the re-

served values “west” or “manifest”. The name must be unique in the manifest
file.

description Optional, an informational description of the project. Added in west v1.2.0.
remote, url Mandatory (one of the two, but not both).

If the project has a remote, that remote’s url-base will be combined with the
project’s name (or repo-path, if it has one) to form the fetch URL instead.
If the project has a url, that’s the complete fetch URL for the remote Git repos-
itory.
If the project has neither, the defaults section must specify a remote, which
will be used as the project’s remote. Otherwise, the manifest is invalid.

repo-path Optional. If given, this is concatenated on to the remote’s url-base instead of
the project’s name to form its fetch URL. Projects may not have both url and
repo-path attributes.

revision Optional. The Git revision that west update should check out. This will be
checked out as a detached HEAD by default, to avoid conflicting with local
branch names. If not given, the revision value from the defaults subsection
will be used if present.
A project revision can be a branch, tag, or SHA.
The default revision is master if not otherwise specified.
Using HEAD~01 as the revision will cause west to keep the current state of the
project.

path Optional. Relative path specifying where to clone the repository locally, rela-
tive to the top directory in the west workspace. If missing, the project’s name
is used as a directory name.

clone-depth Optional. If given, a positive integer which creates a shallow history in the
cloned repository limited to the given number of commits. This can only be
used if the revision is a branch or tag.

west-commands Optional. If given, a relative path to a YAML file within the project which de-
scribes additional west commands provided by that project. This file is named
west-commands.yml by convention. See Extensions for details.

import Optional. If true, imports projects from manifest files in the given repository
into the current manifest. See Manifest Imports for details.

groups Optional, a list of groups the project belongs to. See Project Groups for details.
submodules Optional. You can use this to make west update also update Git submodules

defined by the project. See Git Submodules in Projects for details.
userdata Optional. The value is an arbitrary YAML value. See Repository user data.

Defaults The defaults subsection can provide default values for project attributes. In particu-
lar, the default remote name and revision can be specified here. Another way to write the same
manifest we have been describing so far using defaults is:

manifest:
defaults:
remote: remote1
revision: v1.3

(continues on next page)

1 In git, HEAD is a reference, whereas HEAD~<n> is a valid revision but not a reference. West fetches references, such
as refs/heads/main or HEAD, and commits not available locally, but will not fetch commits if they are already available.
HEAD~0 is resolved to a specific commit that is locally available, and therefore west will simply checkout the locally
available commit, identified by HEAD~0.

146 Chapter 2. Developing with Zephyr

https://git-scm.com/book/en/v2/Git-Tools-Submodules

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)

remotes:
- name: remote1

url-base: https://git.example.com/base1
- name: remote2

url-base: https://git.example.com/base2

projects:
- name: proj1

description: the first example project
path: extra/project-1
revision: master

- name: proj2
description: |
A multi-line description of the second example
project.

repo-path: my-path
remote: remote2

- name: proj3
url: https://github.com/user/project-three
revision: abcde413a111

The available defaults keys and their usage are in the following table.

Table 4: defaults keys

Key Description
remote Optional. This will be used for a project’s remote if it does not have a url or

remote key set.
revision Optional. This will be used for a project’s revision if it does not have one set.

If not given, the default is master.

Self The self subsection can be used to control the manifest repository itself.

As an example, let’s consider this snippet from the zephyr repository’s west.yml:

manifest:
...
self:
path: zephyr
west-commands: scripts/west-commands.yml

This ensures that the zephyr repository is cloned into path zephyr, though as explained above
that would have happened anyway if cloning from the default manifest URL, https://github.
com/zephyrproject-rtos/zephyr. Since the zephyr repository does contain extension com-
mands, its self entry declares the location of the corresponding west-commands.yml relative to
the repository root.

The available self keys and their usage are in the following table.

2.11. West (Zephyr’s meta-tool) 147

Zephyr Project Documentation, Release 3.6.99

Table 5: self keys

Key Description
path Optional. The path west init should clone the manifest repository into, rela-

tive to the west workspace topdir.
If not given, the basename of the path component in the manifest repository
URL will be used by default. For example, if the URL is https://git.example.
com/project-repo, the manifest repository would be cloned to the directory
project-repo.

west-commands Optional. This is analogous to the same key in a project sequence element.
import Optional. This is also analogous to the projects key, but allows importing

projects from other files in the manifest repository. See Manifest Imports.

Version The version subsection declares that the manifest file uses features which were intro-
duced in some version of west. Attempts to load the manifest with older versions of west will fail
with an error message that explains the minimum required version of west which is needed.

Here is an example:

manifest:
Marks that this file uses version 0.10 of the west manifest
file format.
#
An attempt to load this manifest file with west v0.8.0 will
fail with an error message saying that west v0.10.0 or
later is required.
version: "0.10"

The pykwalify schema manifest-schema.yml in the west source code repository is used to vali-
date the manifest section.

Here is a table with the valid version values, along with information about the manifest file
features that were introduced in that version.

148 Chapter 2. Developing with Zephyr

https://github.com/zephyrproject-rtos/west

Zephyr Project Documentation, Release 3.6.99

version New features
"0.7" Initial support for the version feature. All manifest file features that are

not otherwise mentioned in this table were introduced in west v0.7.0 or
earlier.

"0.8" Support for import: path-prefix: (Option 3: Mapping)
"0.9" Use of west v0.9.x is discouraged.

This schema version is provided to allow users to explicitly request com-
patibility with west v0.9.0. However, west v0.10.0 and later have incompat-
ible behavior for features that were introduced in west v0.9.0. You should
ignore version “0.9” if possible.

"0.10" Support for:
• submodules: in projects: (Git Submodules in Projects)
• manifest: group-filter:, and groups: in projects: (Project
Groups)

• The import: feature now supports allowlist: and blocklist:; these
are respectively recommended as replacements for older names as
part of a general Zephyr-wide inclusive language change. The older
key names are still supported for backwards compatibility. (Manifest
Imports, Option 3: Mapping)

"0.12" Support for userdata: in projects: (Repository user data)
"0.13" Support for self: userdata: (Repository user data)
"1.0" Identical to "0.13", but available for use by users that do not wish to use a

"0.x" version field.
"1.2" Support for description: in projects: (Projects)

Note: Versions of west without any new features in the manifest file format do not change the
list of valid version values. For example, version: "0.11" is not valid, because west v0.11.x
did not introduce new manifest file format features.

Quoting the version value as shown above forces the YAML parser to treat it as a string. Without
quotes, 0.10 in YAML is just the floating point value 0.1. You can omit the quotes if the value is
the same when cast to string, but it’s best to include them. Always use quotes if you’re not sure.

If you do not include a version in your manifest, each new release of west assumes that it should
try to load it using the features that were available in that release. This may result in error
messages that are harder to understand if that version of west is too old to load the manifest.

Group-filter See Project Groups.

Active and Inactive Projects

Projects defined in the west manifest can be inactive or active. The difference is that an inac-
tive project is generally ignored by west. For example, west update will not update inactive
projects, and west list will not print information about them by default. As another example,
any Manifest Imports in an inactive project will be ignored by west.

There are two ways to make a project inactive:

1. Using the manifest.project-filter configuration option. If a project is made active or
inactive using this option, then the rules related to making a project inactive using its
groups: are ignored. That is, if a regular expression in manifest.project-filter applies
to a project, the project’s groups have no effect on whether it is active or inactive.

See the entry for this option in Built-in Configuration Options for details.

2.11. West (Zephyr’s meta-tool) 149

Zephyr Project Documentation, Release 3.6.99

2. Otherwise, if a project has groups, and they are all disabled, then the project is inactive.

See the following section for details.

Project Groups

You can use the groups and group-filter keys briefly described above to place projects into
groups, and to enable or disable groups.

For example, this lets you run a west forall command only on the projects in the group by using
west forall --group. This can also let you make projects inactive; see the previous section for
more information on inactive projects.

The next section introduces project groups. The following section describes Enabled andDisabled
Project Groups. There are some basic examples in Project Group Examples. Finally, Group Filters
and Imports provides a simplified overview of how group-filter interacts with the Manifest
Imports feature.

Groups Basics The groups: and group-filter: keys appear in the manifest like this:

manifest:
projects:
- name: some-project

groups: ...
group-filter: ...

The groups key’s value is a list of group names. Group names are strings.

You can enable or disable project groups using group-filter. Projects whose groups are all
disabled, and which are not otherwise made active by a manifest.project-filter configuration
option, are inactive.

For example, in this manifest fragment:

manifest:
projects:
- name: project-1

groups:
- groupA

- name: project-2
groups:
- groupB
- groupC

- name: project-3

The projects are in these groups:

• project-1: one group, named groupA
• project-2: two groups, named groupB and groupC
• project-3: no groups

Project group names must not contain commas (,), colons (:), or whitespace.

Group names must not begin with a dash (-) or the plus sign (+), but they may contain these
characters elsewhere in their names. For example, foo-bar and foo+bar are valid groups, but
-foobar and +foobar are not.

Group names are otherwise arbitrary strings. Group names are case sensitive.

As a restriction, no project may use both import: and groups:. (This is necessary to avoid some
pathological edge cases.)

150 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Enabled and Disabled Project Groups All project groups are enabled by default. You can
enable or disable groups in both your manifest file and Configuration.

Within a manifest file, manifest: group-filter: is a YAML list of groups to enable and disable.

To enable a group, prefix its name with a plus sign (+). For example, groupA is enabled in this
manifest fragment:

manifest:
group-filter: [+groupA]

Although this is redundant for groups that are already enabled by default, it can be used to over-
ride settings in an imported manifest file. See Group Filters and Imports for more information.

To disable a group, prefix its name with a dash (-). For example, groupA and groupB are disabled
in this manifest fragment:

manifest:
group-filter: [-groupA,-groupB]

Note: Since group-filter is a YAML list, you could have written this fragment as follows:

manifest:
group-filter:
- -groupA
- -groupB

However, this syntax is harder to read and therefore discouraged.

In addition to the manifest file, you can control which groups are enabled and disabled using the
manifest.group-filter configuration option. This option is a comma-separated list of groups to
enable and/or disable.

To enable a group, add its name to the list prefixed with +. To disable a group, add its name pre-
fixed with -. For example, setting manifest.group-filter to +groupA,-groupB enables groupA,
and disables groupB.

The value of the configuration option overrides any data in the manifest file. You can think
of this as if the manifest.group-filter configuration option is appended to the manifest:
group-filter: list from YAML, with “last entry wins” semantics.

Project Group Examples This section contains example situations involving project groups
and active projects. The examples use both manifest: group-filter: YAML lists and manifest.
group-filter configuration lists, to show how they work together.

Note that the defaults and remotes data in the following manifests isn’t relevant except to make
the examples complete and self-contained.

Note: In all of the examples that follow, the manifest.project-filter option is assumed to be
unset.

Example 1: no disabled groups The entire manifest file is:

manifest:
projects:
- name: foo

groups:
(continues on next page)

2.11. West (Zephyr’s meta-tool) 151

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
- groupA

- name: bar
groups:
- groupA
- groupB

- name: baz

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is not set (you can ensure this by running west
config -D manifest.group-filter).

No groups are disabled, because all groups are enabled by default. Therefore, all three projects
(foo, bar, and baz) are active. Note that there is no way to make project baz inactive, since it has
no groups.

Example 2: Disabling one group via manifest The entire manifest file is:

manifest:
projects:
- name: foo

groups:
- groupA

- name: bar
groups:
- groupA
- groupB

group-filter: [-groupA]

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is not set (you can ensure this by running west
config -D manifest.group-filter).

Since groupA is disabled, project foo is inactive. Project bar is active, because groupB is enabled.

Example 3: Disabling multiple groups via manifest The entire manifest file is:

manifest:
projects:
- name: foo

groups:
- groupA

- name: bar
groups:
- groupA
- groupB

group-filter: [-groupA,-groupB]

(continues on next page)

152 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is not set (you can ensure this by running west
config -D manifest.group-filter).

Both foo and bar are inactive, because all of their groups are disabled.

Example 4: Disabling a group via configuration The entire manifest file is:

manifest:
projects:
- name: foo

groups:
- groupA

- name: bar
groups:
- groupA
- groupB

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is set to -groupA (you can ensure this by run-
ning west config manifest.group-filter -- -groupA; the extra -- is required so the argument
parser does not treat -groupA as a command line option -g with value roupA).

Project foo is inactive because groupA has been disabled by the manifest.group-filter config-
uration option. Project bar is active because groupB is enabled.

Example 5: Overriding a disabled group via configuration The entire manifest file is:

manifest:
projects:
- name: foo
- name: bar

groups:
- groupA

- name: baz
groups:
- groupA
- groupB

group-filter: [-groupA]

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is set to +groupA (you can ensure this by run-
ning west config manifest.group-filter +groupA).

2.11. West (Zephyr’s meta-tool) 153

Zephyr Project Documentation, Release 3.6.99

In this case, groupA is enabled: the manifest.group-filter configuration option has higher
precedence than the manifest: group-filter: [-groupA] content in the manifest file.

Therefore, projects foo and bar are both active.

Example 6: Overriding multiple disabled groups via configuration The entire manifest file
is:

manifest:
projects:
- name: foo
- name: bar

groups:
- groupA

- name: baz
groups:
- groupA
- groupB

group-filter: [-groupA,-groupB]

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is set to +groupA,+groupB (you can ensure this
by running west config manifest.group-filter "+groupA,+groupB").

In this case, both groupA and groupB are enabled, because the configuration value overrides the
manifest file for both groups.

Therefore, projects foo and bar are both active.

Example 7: Disabling multiple groups via configuration The entire manifest file is:

manifest:
projects:
- name: foo
- name: bar

groups:
- groupA

- name: baz
groups:
- groupA
- groupB

defaults:
remote: example-remote

remotes:
- name: example-remote

url-base: https://git.example.com

The manifest.group-filter configuration option is set to -groupA,-groupB (you can ensure this
by running west config manifest.group-filter -- "-groupA,-groupB").

In this case, both groupA and groupB are disabled.

Therefore, projects foo and bar are both inactive.

154 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Group Filters and Imports This section provides a simplified description of how the mani-
fest: group-filter: value behaves when combined with Manifest Imports. For complete de-
tails, see Manifest Import Details.

Warning: The below semantics apply to west v0.10.0 and later. West v0.9.x semantics are
different, and combining group-filter with import in west v0.9.x is discouraged.

In short:

• if you only import one manifest, any groups it disables in its group-filter are also disabled
in your manifest

• you can override this in your manifest file’s manifest: group-filter: value, your
workspace’s manifest.group-filter configuration option, or both

Here are some examples.

Example 1: no overrides You are using this parent/west.yml manifest:

parent/west.yml:
manifest:
projects:
- name: child

url: https://git.example.com/child
import: true

- name: project-1
url: https://git.example.com/project-1
groups:
- unstable

And child/west.yml contains:

child/west.yml:
manifest:
group-filter: [-unstable]
projects:
- name: project-2

url: https://git.example.com/project-2
- name: project-3

url: https://git.example.com/project-3
groups:
- unstable

Only child and project-2 are active in the resolved manifest.

The unstable group is disabled in child/west.yml, and that is not overridden in parent/west.
yml. Therefore, the final group-filter for the resolved manifest is [-unstable].

Since project-1 and project-3 are in the unstable group and are not in any other group, they
are inactive.

Example 2: overriding an imported group-filter via manifest You are using this parent/
west.yml manifest:

parent/west.yml:
manifest:
group-filter: [+unstable,-optional]
projects:
- name: child

(continues on next page)

2.11. West (Zephyr’s meta-tool) 155

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
url: https://git.example.com/child
import: true

- name: project-1
url: https://git.example.com/project-1
groups:
- unstable

And child/west.yml contains:

child/west.yml:
manifest:
group-filter: [-unstable]
projects:
- name: project-2

url: https://git.example.com/project-2
groups:
- optional

- name: project-3
url: https://git.example.com/project-3
groups:
- unstable

Only the child, project-1, and project-3 projects are active.

The [-unstable] group filter in child/west.yml is overridden in parent/west.yml, so the un-
stable group is enabled. Since project-1 and project-3 are in the unstable group, they are
active.

The same parent/west.yml file disables the optional group, so project-2 is inactive.

The final group filter specified by parent/west.yml is [+unstable,-optional].

Example 3: overriding an imported group-filter via configuration You are using this
parent/west.yml manifest:

parent/west.yml:
manifest:
projects:
- name: child

url: https://git.example.com/child
import: true

- name: project-1
url: https://git.example.com/project-1
groups:
- unstable

And child/west.yml contains:

child/west.yml:
manifest:
group-filter: [-unstable]
projects:
- name: project-2

url: https://git.example.com/project-2
groups:
- optional

- name: project-3
url: https://git.example.com/project-3
groups:
- unstable

If you run:

156 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

west config manifest.group-filter +unstable,-optional

Then only the child, project-1, and project-3 projects are active.

The -unstable group filter in child/west.yml is overridden in the manifest.group-filter con-
figuration option, so the unstable group is enabled. Since project-1 and project-3 are in the
unstable group, they are active.

The same configuration option disables the optional group, so project-2 is inactive.

The final group filter specified by parent/west.yml and the manifest.group-filter configura-
tion option is [+unstable,-optional].

Git Submodules in Projects

You can use the submodules keys briefly described above to force west update to also handle
any Git submodules configured in project’s git repository. The submodules key can appear inside
projects, like this:

manifest:
projects:
- name: some-project

submodules: ...

The submodules key can be a boolean or a list of mappings. We’ll describe these in order.

Option 1: Boolean This is the easiest way to use submodules.

If submodules is true as a projects attribute, west update will recursively update the project’s
Git submodules whenever it updates the project itself. If it’s false or missing, it has no effect.

For example, let’s say you have a source code repository foo, which has some submodules, and
you want west update to keep all of them in sync, along with another project named bar in the
same workspace.

You can do that with this manifest file:

manifest:
projects:
- name: foo

submodules: true
- name: bar

Here, west update will initialize and update all submodules in foo. If bar has any submodules,
they are ignored, because bar does not have a submodules value.

Option 2: List of mappings The submodules key may be a list of mappings, one list element
for each desired submodule. Each submodule listed is updated recursively. You can still track
and update unlisted submodules with git commands manually; present or not they will be com-
pletely ignored by west.

The path key must match exactly the path of one submodule relative to its parent west project,
as shown in the output of git submodule status. The name key is optional and not used by west
for now; it’s not passed to git submodule commands either. The name key was briefly mandatory
in west version 0.9.0, but was made optional in 0.9.1.

For example, let’s say you have a source code repository foo, which has many submodules, and
you want west update to keep some but not all of them in sync, along with another project named
bar in the same workspace.

You can do that with this manifest file:

2.11. West (Zephyr’s meta-tool) 157

https://git-scm.com/book/en/v2/Git-Tools-Submodules

Zephyr Project Documentation, Release 3.6.99

manifest:
projects:
- name: foo

submodules:
- path: path/to/foo-first-sub
- name: foo-second-sub
path: path/to/foo-second-sub

- name: bar

Here, west update will recursively initialize and update just the submodules in foo with paths
path/to/foo-first-sub and path/to/foo-second-sub. Any submodules in bar are still ignored.

Repository user data

West versions v0.12 and later support an optional userdata key in projects.

West versions v0.13 and later supports this key in the manifest: self: section.

It is meant for consumption by programs that require user-specific project metadata. Beyond
parsing it as YAML, west itself ignores the value completely.

The key’s value is arbitrary YAML. West parses the value and makes it accessible to programs
using west-apis as the userdata attribute of the corresponding west.manifest.Project object.

Example manifest fragment:

manifest:
projects:
- name: foo
- name: bar

userdata: a-string
- name: baz

userdata:
key: value

self:
userdata: blub

Example Python usage:

manifest = west.manifest.Manifest.from_file()

foo, bar, baz = manifest.get_projects(['foo', 'bar', 'baz'])

foo.userdata # None
bar.userdata # 'a-string'
baz.userdata # {'key': 'value'}
manifest.userdata # 'blub'

Manifest Imports

You can use the import key briefly described above to include projects from other manifest files
in your west.yml. This key can be either a project or self section attribute:

manifest:
projects:
- name: some-project

import: ...
self:
import: ...

158 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

You can use a “self: import:” to load additional files from the repository containing your west.
yml. You can use a “project: … import:” to load additional files defined in that project’s Git history.

West resolves the final manifest from individual manifest files in this order:

1. imported files in self
2. your west.yml file

3. imported files in projects
During resolution, west ignores projects which have already been defined in other files. For
example, a project named foo in your west.yml makes west ignore other projects named foo
imported from your projects list.

The import key can be a boolean, path, mapping, or sequence. We’ll describe these in order,
using examples:

• Boolean
– Example 1.1: Downstream of a Zephyr release

– Example 1.2: “Rolling release” Zephyr downstream

– Example 1.3: Downstream of a Zephyr release, with module fork

• Relative path
– Example 2.1: Downstream of a Zephyr release with explicit path

– Example 2.2: Downstream with directory of manifest files

– Example 2.3: Continuous Integration overrides

• Mapping with additional configuration
– Example 3.1: Downstream with name allowlist

– Example 3.2: Downstream with path allowlist

– Example 3.3: Downstream with path blocklist

– Example 3.4: Import into a subdirectory

• Sequence of paths and mappings
– Example 4.1: Downstream with sequence of manifest files

– Example 4.2: Import order illustration

A more formal description of how this works is last, after the examples.

Troubleshooting Note If you’re using this feature and find west’s behavior confusing, try re-
solving your manifest to see the final results after imports are done.

Option 1: Boolean This is the easiest way to use import.

If import is true as a projects attribute, west imports projects from the west.yml file in that
project’s root directory. If it’s false or missing, it has no effect. For example, this manifest would
import west.yml from the p1 git repository at revision v1.0:

manifest:
...
projects:
- name: p1

revision: v1.0
import: true # Import west.yml from p1's v1.0 git tag

- name: p2
(continues on next page)

2.11. West (Zephyr’s meta-tool) 159

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
import: false # Nothing is imported from p2.

- name: p3 # Nothing is imported from p3 either.

It’s an error to set import to either true or false inside self, like this:

manifest:
...
self:
import: true # Error

Example 1.1: Downstream of a Zephyr release You have a source code repository you want
to use with Zephyr v1.14.1 LTS. You want to maintain the whole thing using west. You don’t want
to modify any of the mainline repositories.

In other words, the west workspace you want looks like this:

my-downstream/
├── .west/ # west directory
├── zephyr/ # mainline zephyr repository
│ └── west.yml # the v1.14.1 version of this file is imported
├── modules/ # modules from mainline zephyr
│ ├── hal/
│ └── [...other directories..]
├── [... other projects ...] # other mainline repositories
└── my-repo/ # your downstream repository

├── west.yml # main manifest importing zephyr/west.yml v1.14.1
└── [...other files..]

You can do this with the following my-repo/west.yml:

my-repo/west.yml:
manifest:
remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
projects:
- name: zephyr

remote: zephyrproject-rtos
revision: v1.14.1
import: true

You can then create the workspace on your computer like this, assuming my-repo is hosted at
https://git.example.com/my-repo:

west init -m https://git.example.com/my-repo my-downstream
cd my-downstream
west update

After west init, my-downstream/my-repo will be cloned.

After west update, all of the projects defined in the zephyr repository’s west.yml at revision
v1.14.1 will be cloned into my-downstream as well.

You can add and commit any code to my-repo you please at this point, including your own Zephyr
applications, drivers, etc. See Application Development.

Example 1.2: “Rolling release” Zephyr downstream This is similar to Example 1.1: Down-
stream of a Zephyr release, except we’ll use revision: main for the zephyr repository:

160 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

my-repo/west.yml:
manifest:
remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
projects:
- name: zephyr

remote: zephyrproject-rtos
revision: main
import: true

You can create the workspace in the same way:

west init -m https://git.example.com/my-repo my-downstream
cd my-downstream
west update

This time, whenever you run west update, the special manifest-rev branch in the zephyr reposi-
tory will be updated to point at a newly fetched main branch tip from the URL https://github.com/
zephyrproject-rtos/zephyr.

The contents of zephyr/west.yml at the new manifest-rev will then be used to import projects
from Zephyr. This lets you stay up to date with the latest changes in the Zephyr project. The cost
is that running west update will not produce reproducible results, since the remote main branch
can change every time you run it.

It’s also important to understand that west ignores your working tree’s zephyr/west.yml en-
tirely when resolving imports. West always uses the contents of imported manifests as they were
committed to the latest manifest-rev when importing from a project.

You can only import manifest from the file system if they are in your manifest repository’s work-
ing tree. See Example 2.2: Downstream with directory of manifest files for an example.

Example 1.3: Downstream of a Zephyr release, with module fork This manifest is similar
to the one in Example 1.1: Downstream of a Zephyr release, except it:

• is a downstream of Zephyr 2.0

• includes a downstream fork of the modules/hal/nordicmodule which was included in that
release

my-repo/west.yml:
manifest:
remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
- name: my-remote

url-base: https://git.example.com
projects:
- name: hal_nordic # higher precedence

remote: my-remote
revision: my-sha
path: modules/hal/nordic

- name: zephyr
remote: zephyrproject-rtos
revision: v2.0.0
import: true # imported projects have lower precedence

subset of zephyr/west.yml contents at v2.0.0:
manifest:
defaults:
remote: zephyrproject-rtos

(continues on next page)

2.11. West (Zephyr’s meta-tool) 161

https://github.com/zephyrproject-rtos/zephyr
https://github.com/zephyrproject-rtos/zephyr

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
projects:
...
- name: hal_nordic # lower precedence, values ignored
path: modules/hal/nordic
revision: another-sha

With this manifest file, the project named hal_nordic:

• is cloned from https://git.example.com/hal_nordic instead of https://github.com/
zephyrproject-rtos/hal_nordic.

• is updated to commit my-sha by west update, instead of the mainline commit another-sha
In other words, when your top-level manifest defines a project, like hal_nordic, west will ignore
any other definition it finds later on while resolving imports.

This does mean you have to copy the path: modules/hal/nordic value into my-repo/west.
yml when defining hal_nordic there. The value from zephyr/west.yml is ignored entirely. See
Resolving Manifests for troubleshooting advice if this gets confusing in practice.

When you run west update, west will:

• update zephyr’s manifest-rev to point at the v2.0.0 tag

• import zephyr/west.yml at that manifest-rev
• locally check out the v2.0.0 revisions for all zephyr projects except hal_nordic
• update hal_nordic to my-sha instead of another-sha

Option 2: Relative path The import value can also be a relative path to a manifest file or a
directory containing manifest files. The path is relative to the root directory of the projects or
self repository the import key appears in.

Here is an example:

manifest:
projects:
- name: project-1

revision: v1.0
import: west.yml

- name: project-2
revision: main
import: p2-manifests

self:
import: submanifests

This will import the following:

• the contents of project-1/west.yml at manifest-rev, which points at tag v1.0 after run-
ning west update

• any YAML files in the directory tree project-2/p2-manifests at the latest commit in the
main branch, as fetched by west update, sorted by file name

• YAML files in submanifests in your manifest repository, as they appear on your file system,
sorted by file name

Notice how projects imports get data from Git using manifest-rev, while self imports get data
from your file system. This is because as usual, west leaves version control for your manifest
repository up to you.

162 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Example 2.1: Downstream of a Zephyr release with explicit path This is an explicit way to
write an equivalent manifest to the one in Example 1.1: Downstream of a Zephyr release.

manifest:
remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
projects:
- name: zephyr

remote: zephyrproject-rtos
revision: v1.14.1
import: west.yml

The setting import: west.yml means to use the file west.yml inside the zephyr project. This
example is contrived, but shows the idea.

This can be useful in practice when the name of the manifest file you want to import is not west.
yml.

Example 2.2: Downstream with directory of manifest files Your Zephyr downstream has
a lot of additional repositories. So many, in fact, that you want to split them up into multiple
manifest files, but keep track of them all in a single manifest repository, like this:

my-repo/
├── submanifests
│ ├── 01-libraries.yml
│ ├── 02-vendor-hals.yml
│ └── 03-applications.yml
└── west.yml

You want to add all the files in my-repo/submanifests to the main manifest file, my-repo/west.
yml, in addition to projects in zephyr/west.yml. You want to track the latest development code
in the Zephyr repository’s main branch instead of using a fixed revision.

Here’s how:

my-repo/west.yml:
manifest:
remotes:
- name: zephyrproject-rtos

url-base: https://github.com/zephyrproject-rtos
projects:
- name: zephyr

remote: zephyrproject-rtos
revision: main
import: true

self:
import: submanifests

Manifest files are imported in this order during resolution:

1. my-repo/submanifests/01-libraries.yml
2. my-repo/submanifests/02-vendor-hals.yml
3. my-repo/submanifests/03-applications.yml
4. my-repo/west.yml
5. zephyr/west.yml

Note: The .yml file names are prefixed with numbers in this example to make sure they are
imported in the specified order.

2.11. West (Zephyr’s meta-tool) 163

Zephyr Project Documentation, Release 3.6.99

You can pick arbitrary names. West sorts files in a directory by name before importing.

Notice how the manifests in submanifests are imported before my-repo/west.yml and zephyr/
west.yml. In general, an import in the self section is processed before the manifest files in
projects and the main manifest file.

This means projects defined in my-repo/submanifests take highest precedence. For example,
if 01-libraries.yml defines hal_nordic, the project by the same name in zephyr/west.yml is
simply ignored. As usual, see Resolving Manifests for troubleshooting advice.

This may seem strange, but it allows you to redefine projects “after the fact”, as we’ll see in the
next example.

Example 2.3: Continuous Integration overrides Your continuous integration system needs
to fetch and test multiple repositories in your west workspace from a developer’s forks instead
of your mainline development trees, to see if the changes all work well together.

Starting with Example 2.2: Downstream with directory of manifest files, the CI scripts add a file
00-ci.yml in my-repo/submanifests, with these contents:

my-repo/submanifests/00-ci.yml:
manifest:
projects:
- name: a-vendor-hal

url: https://github.com/a-developer/hal
revision: a-pull-request-branch

- name: an-application
url: https://github.com/a-developer/application
revision: another-pull-request-branch

The CI scripts run west update after generating this file in my-repo/submanifests. The projects
defined in 00-ci.yml have higher precedence than other definitions in my-repo/submanifests,
because the name 00-ci.yml comes before the other file names.

Thus, west update always checks out the developer’s branches in the projects named
a-vendor-hal and an-application, even if those same projects are also defined elsewhere.

Option 3: Mapping The import key can also contain a mapping with the following keys:

• file: Optional. The name of the manifest file or directory to import. This defaults to west.
yml if not present.

• name-allowlist: Optional. If present, a name or sequence of project names to include.

• path-allowlist: Optional. If present, a path or sequence of project paths to match against.
This is a shell-style globbing pattern, currently implemented with pathlib. Note that this
means case sensitivity is platform specific.

• name-blocklist: Optional. Like name-allowlist, but contains project names to exclude
rather than include.

• path-blocklist: Optional. Like path-allowlist, but contains project paths to exclude
rather than include.

• path-prefix: Optional (new in v0.8.0). If given, this will be prepended to the project’s path
in the workspace, as well as the paths of any imported projects. This can be used to place
these projects in a subdirectory of the workspace.

Allowlists override blocklists if both are given. For example, if a project is blocked by path, then
allowed by name, it will still be imported.

164 Chapter 2. Developing with Zephyr

https://docs.python.org/3/library/pathlib.html#pathlib.PurePath.match

Zephyr Project Documentation, Release 3.6.99

Example 3.1: Downstream with name allowlist Here is a pair of manifest files, representing
a mainline and a downstream. The downstream doesn’t want to use all the mainline projects,
however. We’ll assume the mainline west.yml is hosted at https://git.example.com/mainline/
manifest.

mainline west.yml:
manifest:
projects:
- name: mainline-app # included

path: examples/app
url: https://git.example.com/mainline/app

- name: lib
path: libraries/lib
url: https://git.example.com/mainline/lib

- name: lib2 # included
path: libraries/lib2
url: https://git.example.com/mainline/lib2

downstream west.yml:
manifest:
projects:
- name: mainline

url: https://git.example.com/mainline/manifest
import:
name-allowlist:
- mainline-app
- lib2

- name: downstream-app
url: https://git.example.com/downstream/app

- name: lib3
path: libraries/lib3
url: https://git.example.com/downstream/lib3

An equivalent manifest in a single file would be:

manifest:
projects:
- name: mainline

url: https://git.example.com/mainline/manifest
- name: downstream-app

url: https://git.example.com/downstream/app
- name: lib3

path: libraries/lib3
url: https://git.example.com/downstream/lib3

- name: mainline-app # imported
path: examples/app
url: https://git.example.com/mainline/app

- name: lib2 # imported
path: libraries/lib2
url: https://git.example.com/mainline/lib2

If an allowlist had not been used, the lib project from the mainline manifest would have been
imported.

Example 3.2: Downstream with path allowlist Here is an example showing how to allowlist
mainline’s libraries only, using path-allowlist.

mainline west.yml:
manifest:
projects:
- name: app

(continues on next page)

2.11. West (Zephyr’s meta-tool) 165

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
path: examples/app
url: https://git.example.com/mainline/app

- name: lib
path: libraries/lib # included
url: https://git.example.com/mainline/lib

- name: lib2
path: libraries/lib2 # included
url: https://git.example.com/mainline/lib2

downstream west.yml:
manifest:
projects:
- name: mainline

url: https://git.example.com/mainline/manifest
import:
path-allowlist: libraries/*

- name: app
url: https://git.example.com/downstream/app

- name: lib3
path: libraries/lib3
url: https://git.example.com/downstream/lib3

An equivalent manifest in a single file would be:

manifest:
projects:
- name: lib # imported

path: libraries/lib
url: https://git.example.com/mainline/lib

- name: lib2 # imported
path: libraries/lib2
url: https://git.example.com/mainline/lib2

- name: mainline
url: https://git.example.com/mainline/manifest

- name: app
url: https://git.example.com/downstream/app

- name: lib3
path: libraries/lib3
url: https://git.example.com/downstream/lib3

Example 3.3: Downstream with path blocklist Here’s an example showing how to block all
vendor HALs from mainline by common path prefix in the workspace, add your own version for
the chip you’re targeting, and keep everything else.

mainline west.yml:
manifest:
defaults:
remote: mainline

remotes:
- name: mainline

url-base: https://git.example.com/mainline
projects:
- name: app
- name: lib

path: libraries/lib
- name: lib2

path: libraries/lib2
- name: hal_foo

path: modules/hals/foo # excluded
(continues on next page)

166 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
- name: hal_bar

path: modules/hals/bar # excluded
- name: hal_baz

path: modules/hals/baz # excluded

downstream west.yml:
manifest:
projects:
- name: mainline

url: https://git.example.com/mainline/manifest
import:
path-blocklist: modules/hals/*

- name: hal_foo
path: modules/hals/foo
url: https://git.example.com/downstream/hal_foo

An equivalent manifest in a single file would be:

manifest:
defaults:
remote: mainline

remotes:
- name: mainline

url-base: https://git.example.com/mainline
projects:
- name: app # imported
- name: lib # imported

path: libraries/lib
- name: lib2 # imported

path: libraries/lib2
- name: mainline

repo-path: https://git.example.com/mainline/manifest
- name: hal_foo

path: modules/hals/foo
url: https://git.example.com/downstream/hal_foo

Example 3.4: Import into a subdirectory You want to import a manifest and its projects,
placing everything into a subdirectory of your west workspace.

For example, suppose you want to import this manifest from project foo, adding this project and
its projects bar and baz to your workspace:

foo/west.yml:
manifest:
defaults:
remote: example

remotes:
- name: example

url-base: https://git.example.com
projects:
- name: bar
- name: baz

Instead of importing these into the top level workspace, you want to place all three project repos-
itories in an external-code subdirectory, like this:

workspace/
└── external-code/

├── foo/
(continues on next page)

2.11. West (Zephyr’s meta-tool) 167

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
├── bar/
└── baz/

You can do this using this manifest:

manifest:
projects:
- name: foo

url: https://git.example.com/foo
import:
path-prefix: external-code

An equivalent manifest in a single file would be:

foo/west.yml:
manifest:
defaults:
remote: example

remotes:
- name: example

url-base: https://git.example.com
projects:
- name: foo

path: external-code/foo
- name: bar

path: external-code/bar
- name: baz

path: external-code/baz

Option 4: Sequence The import key can also contain a sequence of files, directories, and map-
pings.

Example 4.1: Downstreamwith sequence ofmanifest files This example manifest is equiva-
lent to the manifest in Example 2.2: Downstream with directory of manifest files, with a sequence
of explicitly named files.

my-repo/west.yml:
manifest:
projects:
- name: zephyr

url: https://github.com/zephyrproject-rtos/zephyr
import: west.yml

self:
import:

- submanifests/01-libraries.yml
- submanifests/02-vendor-hals.yml
- submanifests/03-applications.yml

Example 4.2: Import order illustration This more complicated example shows the order that
west imports manifest files:

my-repo/west.yml
manifest:
...
projects:
- name: my-library

(continues on next page)

168 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
- name: my-app
- name: zephyr

import: true
- name: another-manifest-repo

import: submanifests
self:
import:

- submanifests/libraries.yml
- submanifests/vendor-hals.yml
- submanifests/applications.yml

defaults:
remote: my-remote

For this example, west resolves imports in this order:

1. the listed files in my-repo/submanifests are first, in the order they occur (e.g. libraries.
yml comes before applications.yml, since this is a sequence of files), since the self: im-
port: is always imported first

2. my-repo/west.yml is next (with projects my-library etc. as long as they weren’t already
defined somewhere in submanifests)

3. zephyr/west.yml is after that, since that’s the first import key in the projects list in
my-repo/west.yml

4. files in another-manifest-repo/submanifests are last (sorted by file name), since that’s the
final project import

Manifest Import Details This section describes how west resolves a manifest file that uses
import a bit more formally.

Overview The import key can appear in a west manifest’s projects and self sections. The
general case looks like this:

Top-level manifest file.
manifest:
projects:
- name: foo

import:
... # import-1

- name: bar
import:
... # import-2

...
- name: baz

import:
... # import-N

self:
import:

... # self-import

Import keys are optional. If any of import-1, ..., import-N are missing, west will not import
additional manifest data from that project. If self-import is missing, no additional files in the
manifest repository (beyond the top-level file) are imported.

The ultimate outcomes of resolving manifest imports are:

• a projects list, which is produced by combining the projects defined in the top-level file
with those defined in imported files

2.11. West (Zephyr’s meta-tool) 169

Zephyr Project Documentation, Release 3.6.99

• a set of extension commands, which are drawn from the west-commands keys in the top-
level file and any imported files

• a group-filter list, which is produced by combining the top-level and any imported filters

Importing is done in this order:

1. Manifests from self-import are imported first.

2. The top-level manifest file’s definitions are handled next.

3. Manifests from import-1, …, import-N, are imported in that order.

When an individual import key refers to multiple manifest files, they are processed in this order:

• If the value is a relative path naming a directory (or a map whose file is a directory), the
manifest files it contains are processed in lexicographic order – i.e., sorted by file name.

• If the value is a sequence, its elements are recursively imported in the order they appear.

This process recurses if necessary. E.g., if import-1 produces a manifest file that contains an
import key, it is resolved recursively using the same rules before its contents are processed fur-
ther.

The following sections describe these outcomes.

Projects This section describes how the final projects list is created.

Projects are identified by name. If the same name occurs in multiple manifests, the first defini-
tion is used, and subsequent definitions are ignored. For example, if import-1 contains a project
named bar, that is ignored, because the top-level west.yml has already defined a project by that
name.

The contents of files named by import-1 through import-N are imported from Git at the latest
manifest-rev revisions in their projects. These revisions can be updated to the values rev-1
through rev-N by running west update. If any manifest-rev reference is missing or out of date,
west update also fetches project data from the remote fetch URL and updates the reference.

Also note that all imported manifests, from the root manifest to the repository which defines
a project P, must be up to date in order for west to update P itself. For example, this means
west update P would update manifest-rev in the baz project if baz/west.yml defines P, as well
as updating the manifest-rev branch in the local git clone of P. Confusingly, updating baz may
result in the removal of P from baz/west.yml, which “should” cause west update P to fail with
an unrecognized project!

For this reason, it’s not possible to run west update P if P is defined in an imported manifest;
you must update this project along with all the others with a plain west update.

By default, west won’t fetch any project data over the network if a project’s revision is a SHA
or tag which is already available locally, so updating the extra projects shouldn’t take too much
time unless it’s really needed. See the documentation for the update.fetch configuration option
for more information.

Extensions All extension commands defined using west-commands keys discovered while han-
dling imports are available in the resolved manifest.

If an imported manifest file has a west-commands: definition in its self: section, the extension
commands defined there are added to the set of available extensions at the time the manifest is
imported. They will thus take precedence over any extension commands with the same names
added later on.

170 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Group filters The resolved manifest has a group-filter value which is the result of concate-
nating the group-filter values in the top-level manifest and any imported manifests.

Manifest files which appear earlier in the import order have higher precedence and are therefore
concatenated later into the final group-filter.

In other words, let:

• the submanifest resolved from self-import have group filter self-filter
• the top-level manifest file have group filter top-filter
• the submanifests resolved from import-1 through import-N have group filters filter-1

through filter-N respectively

The final resolved group-filter value is then filterN + ... + filter-2 + filter-1 +
top-filter + self-filter, where + here refers to list concatenation.

Important: The order that filters appear in the above list matters.

The last filter element in the final concatenated list “wins” and determines if the group is enabled
or disabled.

For example, in [-foo] + [+foo], group foo is enabled. However, in [+foo] + [-foo], group foo
is disabled.

For simplicity, west and this documentation may elide concatenated group filter elements which
are redundant using these rules. For example, [+foo] + [-foo] could be written more simply
as [-foo], for the reasons given above. As another example, [-foo] + [+foo] could be written
as the empty list [], since all groups are enabled by default.

Manifest Command

The west manifest command can be used to manipulate manifest files. It takes an action, and
action-specific arguments.

The following sections describe each action and provides a basic signature for simple uses. Run
west manifest --help for full details on all options.

Resolving Manifests The --resolve action outputs a single manifest file equivalent to your
current manifest and all its imported manifests:

west manifest --resolve [-o outfile]

The main use for this action is to see the “final” manifest contents after performing any imports.

To print detailed information about each imported manifest file and how projects are handled
during manifest resolution, set the maximum verbosity level using -v:

west -v manifest --resolve

Freezing Manifests The --freeze action outputs a frozen manifest:

west manifest --freeze [-o outfile]

A “frozen” manifest is a manifest file where every project’s revision is a SHA. You can use
--freeze to produce a frozen manifest that’s equivalent to your current manifest file. The -o
option specifies an output file; if not given, standard output is used.

2.11. West (Zephyr’s meta-tool) 171

Zephyr Project Documentation, Release 3.6.99

Validating Manifests The --validate action either succeeds if the current manifest file is
valid, or fails with an error:

west manifest --validate

The error message can help diagnose errors.

Here, “invalid” means that the syntax of the manifest file doesn’t follow the rules documented
on this page.

If your manifest is valid but it’s not working the way you want it to, turning up the verbosity
with -v is a good way to get detailed information about what decisions west made about your
manifest, and why:

west -v manifest --validate

Get the manifest path The --path action prints the path to the top level manifest file:

west manifest --path

The output is something like /path/to/workspace/west.yml. The path format depends on your
operating system.

2.11.8 Configuration

This page documents west’s configuration file system, the west config command, and configu-
ration options used by built-in commands. For API documentation on the west.configuration
module, see west-apis-configuration.

West Configuration Files

West’s configuration file syntax is INI-like; here is an example file:

[manifest]
path = zephyr

[zephyr]
base = zephyr

Above, the manifest section has option path set to zephyr. Another way to say the same thing is
that manifest.path is zephyr in this file.

There are three types of configuration file:

1. System: Settings in this file affect west’s behavior for every user logged in to the computer.
Its location depends on the platform:

• Linux: /etc/westconfig
• macOS: /usr/local/etc/westconfig
• Windows: %PROGRAMDATA%\west\config

2. Global (per user): Settings in this file affect how west behaves when run by a particular
user on the computer.

• All platforms: the default is .westconfig in the user’s home directory.

• Linux note: if the environment variable XDG_CONFIG_HOME is set, then
$XDG_CONFIG_HOME/west/config is used.

172 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

• Windows note: the following environment variables are tested to find the home direc-
tory: %HOME%, then %USERPROFILE%, then a combination of %HOMEDRIVE% and %HOMEPATH%.

3. Local: Settings in this file affect west’s behavior for the current west workspace. The file is
.west/config, relative to the workspace’s root directory.

A setting in a file which appears lower down on this list overrides an earlier setting. For example,
if color.ui is true in the system’s configuration file, but false in the workspace’s, then the final
value is false. Similarly, settings in the user configuration file override system settings, and so
on.

west config

The built-in config command can be used to get and set configuration values. You can pass west
config the options --system, --global, or --local to specify which configuration file to use.
Only one of these can be used at a time. If none is given, then writes default to --local, and
reads show the final value after applying overrides.

Some examples for common uses follow; run west config -h for detailed help, and see Built-in
Configuration Options for more details on built-in options.

To set manifest.path to some-other-manifest:

west config manifest.path some-other-manifest

Doing the above means that commands like west update will look for the west manifest inside
the some-other-manifest directory (relative to the workspace root directory) instead of the di-
rectory given to west init, so be careful!

To read zephyr.base, the value which will be used as ZEPHYR_BASE if it is unset in the calling
environment (also relative to the workspace root):

west config zephyr.base

You can switch to another zephyr repository without changing manifest.path – and thus the
behavior of commands like west update – using:

west config zephyr.base some-other-zephyr

This can be useful if you use commands like git worktree to create your own zephyr directories,
and want commands like west build to use them instead of the zephyr repository specified in
the manifest. (You can go back to using the directory in the upstream manifest by running west
config zephyr.base zephyr.)

To set color.ui to false in the global (user-wide) configuration file, so that west will no longer
print colored output for that user when run in any workspace:

west config --global color.ui false

To undo the above change:

west config --global color.ui true

Built-in Configuration Options

The following table documents configuration options supported by west’s built-in commands.
Configuration options supported by Zephyr’s extension commands are documented in the pages
for those commands.

2.11. West (Zephyr’s meta-tool) 173

Zephyr Project Documentation, Release 3.6.99

Option Description
color.ui Boolean. If true (the default), then west output is colorized when std-

out is a terminal.
commands.
allow_extensions

Boolean, default true, disables Extensions if false

grep.color String, default empty. Set this to never to disable west grep color out-
put. If set, west grep passes the value to the grep tool’s --color option.

grep.tool String, one of "git-grep" (default), "ripgrep", or "grep". The grep
tool that west grep should use.

grep.<TOOL>-args String, default empty. The <TOOL> part is a pattern that can be any
grep.tool value, so grep.ripgrep-args is an example configuration
option. If set, arguments that west grep should pass to the corre-
sponding grep tool. Run west help grep for details.

grep.<TOOL>-path String, default empty. The <TOOL> part is a pattern that can be any
grep.tool value, so grep.ripgrep-path is an example configuration
option. The path to the corresponding tool that west grep should use
instead of searching for the command. Run west help grep for details.

manifest.file String, default west.yml. Relative path from the manifest repository
root directory to the manifest file used by west init and other com-
mands which parse the manifest.

manifest.
group-filter

String, default empty. A comma-separated list of project groups to en-
able and disable within the workspace. Prefix enabled groups with +
and disabled groups with -. For example, the value "+foo,-bar" en-
ables group foo and disables bar. See Project Groups.

manifest.path String, relative path from the west workspace root directory to the
manifest repository used by west update and other commands which
parse the manifest. Set locally by west init.

manifest.
project-filter

Comma-separated list of strings.
The option’s value is a comma-separated list of regular expressions,
each prefixed with + or -, like this:
+re1,-re2,-re3
Project names are matched against each regular expression (re1, re2,
re3, …) in the list, in order. If the entire project name matches the reg-
ular expression, that element of the list either deactivates or activates
the project. The project is deactivated if the element begins with -.
The project is activated if the element begins with +. (Project names
cannot contain , if this option is used, so the regular expressions do
not need to contain a literal , character.)
If a project’s name matches multiple regular expressions in the list,
the result from the last regular expression is used. For example, if
manifest.project-filter is:
-hal_.*,+hal_foo
Then a project named hal_bar is inactive, but a project named
hal_foo is active.
If a project is made inactive or active by a list element, the project is
active or not regardless of whether any or all of its groups are dis-
abled. (This is currently the only way to make a project that has no
groups inactive.)
Otherwise, i.e. if a project does not match any regular expressions in
the list, it is active or inactive according to the usual rules related to
its groups (see Project Group Examples for examples in that case).
Within an element of a manifest.project-filter list, leading and
trailing whitespace are ignored. That means these example values
are equivalent:
+foo,-bar
+foo , -bar
Any empty elements are ignored. That means these example values
are equivalent:
+foo,,-bar
+foo,-bar

update.fetch String, one of "smart" (the default behavior starting in v0.6.1) or "al-
ways" (the previous behavior). If set to "smart", the west update com-
mand will skip fetching from project remotes when those projects’ re-
visions in the manifest file are SHAs or tags which are already avail-
able locally. The "always" behavior is to unconditionally fetch from
the remote.

update.name-cache String. If non-empty, west update will use its value as the
--name-cache option’s value if not given on the command line.

update.narrow Boolean. If true, west update behaves as if --narrow was given on
the command line. The default is false.

update.path-cache String. If non-empty, west update will use its value as the
--path-cache option’s value if not given on the command line.

update.
sync-submodules

Boolean. If true (the default), west update will synchronize Git sub-
modules before updating them.

zephyr.base String, default value to set for the ZEPHYR_BASE environment variable
while the west command is running. By default, this is set to the path
to the manifest project with path zephyr (if there is one) during west
init. If the variable is already set, then this setting is ignored unless
zephyr.base-prefer is "configfile".

zephyr.base-prefer String, one the values "env" and "configfile". If set to "env" (the
default), setting ZEPHYR_BASE in the calling environment overrides the
value of the zephyr.base configuration option. If set to "configfile",
the configuration option wins instead.

174 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

2.11.9 Extensions

West is “pluggable”: you can add your own commands to west without editing its source code.
These are called west extension commands, or just “extensions” for short. Extensions show
up in the west --help output in a special section for the project which defines them. This page
provides general information on west extension commands, and has a tutorial for writing your
own.

Some commands you can run when using west with Zephyr, like the ones used to build, flash, and
debug and the ones described here , are extensions. That’s why help for them shows up like this
in west --help:

commands from project at "zephyr":
completion: display shell completion scripts
boards: display information about supported boards
build: compile a Zephyr application
sign: sign a Zephyr binary for bootloader chain-loading
flash: flash and run a binary on a board
debug: flash and interactively debug a Zephyr application
debugserver: connect to board and launch a debug server
attach: interactively debug a board

See zephyr/scripts/west-commands.yml and the zephyr/scripts/west_commands directory for
the implementation details.

Disabling Extension Commands

To disable support for extension commands, set the commands.allow_extensions configuration
option to false. To set this globally for whenever you run west, use:

west config --global commands.allow_extensions false

If you want to, you can then re-enable them in a particular west workspace with:

west config --local commands.allow_extensions true

Note that the files containing extension commands are not imported by west unless the com-
mands are explicitly run. See below for details.

Adding a West Extension

There are three steps to adding your own extension:

1. Write the code implementing the command.

2. Add information about it to a west-commands.yml file.

3. Make sure the west-commands.yml file is referenced in the west manifest.

Note that west ignores extension commands whose names are the same as a built-in command.

Step 1: Implement Your Command Create a Python file to contain your command implemen-
tation (see the “Meta > Requires” information on the west PyPI page for details on the currently
supported versions of Python). You can put it in anywhere in any project tracked by your west
manifest, or the manifest repository itself. This file must contain a subclass of the west.commands.
WestCommand class; this class will be instantiated and used when your extension is run.

Here is a basic skeleton you can use to get started. It contains a subclass of WestCommand, with
implementations for all the abstract methods. For more details on the west APIs you can use, see
west-apis.

2.11. West (Zephyr’s meta-tool) 175

https://pypi.org/project/west/

Zephyr Project Documentation, Release 3.6.99

'''my_west_extension.py

Basic example of a west extension.'''

from textwrap import dedent # just for nicer code indentation

from west.commands import WestCommand # your extension must subclass this
from west import log # use this for user output

class MyCommand(WestCommand):

def __init__(self):
super().__init__(

'my-command-name', # gets stored as self.name
'one-line help for what my-command-name does', # self.help
self.description:
dedent('''
A multi-line description of my-command.

You can split this up into multiple paragraphs and they'll get
reflowed for you. You can also pass
formatter_class=argparse.RawDescriptionHelpFormatter when calling
parser_adder.add_parser() below if you want to keep your line
endings.'''))

def do_add_parser(self, parser_adder):
This is a bit of boilerplate, which allows you full control over the
type of argparse handling you want. The "parser_adder" argument is
the return value of an argparse.ArgumentParser.add_subparsers() call.
parser = parser_adder.add_parser(self.name,

help=self.help,
description=self.description)

Add some example options using the standard argparse module API.
parser.add_argument('-o', '--optional', help='an optional argument')
parser.add_argument('required', help='a required argument')

return parser # gets stored as self.parser

def do_run(self, args, unknown_args):
This gets called when the user runs the command, e.g.:
#
$ west my-command-name -o FOO BAR
--optional is FOO
required is BAR
log.inf('--optional is', args.optional)
log.inf('required is', args.required)

You can ignore the second argument to do_run() (unknown_args above), as WestCommand will re-
ject unknown arguments by default. If you want to be passed a list of unknown arguments
instead, add accepts_unknown_args=True to the super().__init__() arguments.

Step 2: Add or Update Your west-commands.yml You now need to add a west-commands.yml
file to your project which describes your extension to west.

Here is an example for the above class definition, assuming it’s in my_west_extension.py at the
project root directory:

west-commands:
- file: my_west_extension.py
commands:

(continues on next page)

176 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
- name: my-command-name

class: MyCommand
help: one-line help for what my-command-name does

The top level of this YAML file is a map with a west-commands key. The key’s value is a sequence of
“command descriptors”. Each command descriptor gives the location of a file implementing west
extensions, along with the names of those extensions, and optionally the names of the classes
which define them (if not given, the class value defaults to the same thing as name).

Some information in this file is redundant with definitions in the Python code. This is because
west won’t import my_west_extension.py until the user runs west my-command-name, since:

• It allows users to run west update with a manifest from an untrusted source, then use
other west commands without your code being imported along the way. Since importing a
Python module is shell-equivalent, this provides some peace of mind.

• It’s a small optimization, since your code will only be imported if it is needed.

So, unless your command is explicitly run, west will just load the west-commands.yml file to get
the basic information it needs to display information about your extension to the user in west
--help output, etc.

If you have multiple extensions, or want to split your extensions across multiple files, your
west-commands.yml will look something like this:

west-commands:
- file: my_west_extension.py
commands:

- name: my-command-name
class: MyCommand
help: one-line help for what my-command-name does

- file: another_file.py
commands:

- name: command2
help: another cool west extension

- name: a-third-command
class: ThirdCommand
help: a third command in the same file as command2

Above:

• my_west_extension.py defines extension my-command-name with class MyCommand
• another_file.py defines two extensions:

1. command2 with class command2
2. a-third-command with class ThirdCommand

See the file west-commands-schema.yml in the west repository for a schema describing the con-
tents of a west-commands.yml.

Step 3: Update Your Manifest Finally, you need to specify the location of the west-commands.
yml you just edited in your west manifest. If your extension is in a project, add it like this:

manifest:
[... other contents ...]

projects:
- name: your-project
west-commands: path/to/west-commands.yml

[... other projects ...]

2.11. West (Zephyr’s meta-tool) 177

https://github.com/zephyrproject-rtos/west/

Zephyr Project Documentation, Release 3.6.99

Where path/to/west-commands.yml is relative to the root of the project. Note that the name
west-commands.yml, while encouraged, is just a convention; you can name the file something
else if you need to.

Alternatively, if your extension is in the manifest repository, just do the same thing in the man-
ifest’s self section, like this:

manifest:
[... other contents ...]

self:
west-commands: path/to/west-commands.yml

That’s it; you can now run west my-command-name. Your command’s name, help, and the project
which contains its code will now also show up in the west --help output. If you share the
updated repositories with others, they’ll be able to use it, too.

2.11.10 Building, Flashing and Debugging

Zephyr provides several west extension commands for building, flashing, and interacting with
Zephyr programs running on a board: build, flash, debug, debugserver and attach.

For information on adding board support for the flashing and debugging commands, see Flash
and debug support in the board porting guide.

Building: west build

Tip: Run west build -h for a quick overview.

The build command helps you build Zephyr applications from source. You can use west config
to configure its behavior.

Its default behavior tries to “do what you mean”:

• If there is a Zephyr build directory named build in your current working directory, it is
incrementally re-compiled. The same is true if you run west build from a Zephyr build
directory.

• Otherwise, if you run west build from a Zephyr application’s source directory and no build
directory is found, a new one is created and the application is compiled in it.

Basics The easiest way to use west build is to go to an application’s root directory (i.e. the
folder containing the application’s CMakeLists.txt) and then run:

west build -b <BOARD>

Where <BOARD> is the name of the board you want to build for. This is exactly the same name
you would supply to CMake if you were to invoke it with: cmake -DBOARD=<BOARD>.

Tip: You can use the west boards command to list all supported boards.

A build directory named build will be created, and the application will be compiled there after
west build runs CMake to create a build system in that directory. If west build finds an existing
build directory, the application is incrementally re-compiled there without re-running CMake.
You can force CMake to run again with --cmake.

178 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

You don’t need to use the --board option if you’ve already got an existing build directory; west
build can figure out the board from the CMake cache. For new builds, the --board option, BOARD
environment variable, or build.board configuration option are checked (in that order).

Sysbuild (multi-domain builds) Sysbuild (System build) can be used to create a multi-domain
build system combining multiple images for a single or multiple boards.

Use --sysbuild to select the Sysbuild (System build) build infrastructure with west build to build
multiple domains.

More detailed information regarding the use of sysbuild can be found in the Sysbuild (System
build) guide.

Tip: The build.sysbuild configuration option can be enabled to tell west build to default build
using sysbuild. --no-sysbuild can be used to disable sysbuild for a specific build.

west build will build all domains through the top-level build folder of the domains specified by
sysbuild.

A single domain from a multi-domain project can be built by using --domain argument.

Examples Here are some west build usage examples, grouped by area.

Forcing CMake to Run Again To force a CMake re-run, use the --cmake (or -c) option:

west build -c

Setting a Default Board To configure west build to build for the reel_board by default:

west config build.board reel_board

(You can use any other board supported by Zephyr here; it doesn’t have to be reel_board.)

Setting Source and Build Directories To set the application source directory explicitly, give
its path as a positional argument:

west build -b <BOARD> path/to/source/directory

To set the build directory explicitly, use --build-dir (or -d):

west build -b <BOARD> --build-dir path/to/build/directory

To change the default build directory from build, use the build.dir-fmt configuration option.
This lets you name build directories using format strings, like this:

west config build.dir-fmt "build/{board}/{app}"

With the above, running west build -b reel_board samples/hello_world will use build direc-
tory build/reel_board/hello_world. See Configuration Options for more details on this option.

2.11. West (Zephyr’s meta-tool) 179

Zephyr Project Documentation, Release 3.6.99

Setting the Build System Target To specify the build system target to run, use --target (or
-t).

For example, on host platforms with QEMU, you can use the run target to build and run the
hello_world sample for the emulated qemu_x86 board in one command:

west build -b qemu_x86 -t run samples/hello_world

As another example, to use -t to list all build system targets:

west build -t help

As a final example, to use -t to run the pristine target, which deletes all the files in the build
directory:

west build -t pristine

Pristine Builds A pristine build directory is essentially a new build directory. All byproducts
from previous builds have been removed.

To force west build make the build directory pristine before re-running CMake to generate a
build system, use the --pristine=always (or -p=always) option.

Giving --pristine or -p without a value has the same effect as giving it the value always. For
example, these commands are equivalent:

west build -p -b reel_board samples/hello_world
west build -p=always -b reel_board samples/hello_world

By default, west buildmakes no attempt to detect if the build directory needs to be made pristine.
This can lead to errors if you do something like try to reuse a build directory for a different
--board.

Using --pristine=auto makes west build detect some of these situations and make the build
directory pristine before trying the build.

Tip: You can run west config build.pristine always to always do a pristine build, or west
config build.pristine never to disable the heuristic. See the west build Configuration Options
for details.

Verbose Builds To print the CMake and compiler commands run by west build, use the global
west verbosity option, -v:

west -v build -b reel_board samples/hello_world

One-Time CMake Arguments To pass additional arguments to the CMake invocation per-
formed by west build, pass them after a -- at the end of the command line.

Important: Passing additional CMake arguments like this forces west build to re-run the CMake
build configuration step, even if a build system has already been generated. This will make
incremental builds slower (but still much faster than building from scratch).

After using -- once to generate the build directory, use west build -d <build-dir> on subse-
quent runs to do incremental builds.

180 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Alternatively, make your CMake arguments permanent as described in the next section; it will
not slow down incremental builds.

For example, to use the Unix Makefiles CMake generator instead of Ninja (which west build uses
by default), run:

west build -b reel_board -- -G'Unix Makefiles'

To use Unix Makefiles and set CMAKE_VERBOSE_MAKEFILE to ON:

west build -b reel_board -- -G'Unix Makefiles' -DCMAKE_VERBOSE_MAKEFILE=ON

Notice how the -- only appears once, even though multiple CMake arguments are given. All
command-line arguments to west build after a -- are passed to CMake.

To set DTC_OVERLAY_FILE to enable-modem.overlay, using that file as a devicetree overlay:

west build -b reel_board -- -DDTC_OVERLAY_FILE=enable-modem.overlay

To merge the file.conf Kconfig fragment into your build’s .config:

west build -- -DEXTRA_CONF_FILE=file.conf

Permanent CMake Arguments The previous section describes how to add CMake arguments
for a single west build command. If you want to save CMake arguments for west build to
use every time it generates a new build system instead, you should use the build.cmake-args
configuration option. Whenever west build runs CMake to generate a build system, it splits this
option’s value according to shell rules and includes the results in the cmake command line.

Remember that, by default, west build tries to avoid generating a new build system if one is
present in your build directory. Therefore, you need to either delete any existing build directo-
ries or do a pristine build after setting build.cmake-args to make sure it will take effect.

For example, to always enable CMAKE_EXPORT_COMPILE_COMMANDS, you can run:

west config build.cmake-args -- -DCMAKE_EXPORT_COMPILE_COMMANDS=ON

(The extra -- is used to force the rest of the command to be treated as a positional argument.
Without it, west config would treat the -DVAR=VAL syntax as a use of its -D option.)

To enable CMAKE_VERBOSE_MAKEFILE, so CMake always produces a verbose build system:

west config build.cmake-args -- -DCMAKE_VERBOSE_MAKEFILE=ON

To save more than one argument in build.cmake-args, use a single string whose value can be
split into distinct arguments (west build uses the Python function shlex.split() internally to split
the value).

For example, to enable both CMAKE_EXPORT_COMPILE_COMMANDS and CMAKE_VERBOSE_MAKEFILE:

west config build.cmake-args -- "-DCMAKE_EXPORT_COMPILE_COMMANDS=ON -DCMAKE_VERBOSE_
↪→MAKEFILE=ON"

If you want to save your CMake arguments in a separate file instead, you can combine CMake’s
-C <initial-cache> option with build.cmake-args. For instance, another way to set the options
used in the previous example is to create a file named ~/my-cache.cmake with the following
contents:

set(CMAKE_EXPORT_COMPILE_COMMANDS ON CACHE BOOL "")
set(CMAKE_VERBOSE_MAKEFILE ON CACHE BOOL "")

Then run:

2.11. West (Zephyr’s meta-tool) 181

https://cmake.org/cmake/help/latest/variable/CMAKE_VERBOSE_MAKEFILE.html
https://docs.python.org/3/library/shlex.html#shlex.split

Zephyr Project Documentation, Release 3.6.99

west config build.cmake-args "-C ~/my-cache.cmake"

See the cmake(1) manual page and the set() command documentation for more details.

Build tool arguments Use -o to pass options to the underlying build tool.

This works with both ninja (the default) and make based build systems.

For example, to pass -dexplain to ninja:

west build -o=-dexplain

As another example, to pass --keep-going to make:

west build -o=--keep-going

Note that using -o=--foo instead of -o --foo is required to prevent --foo from being treated as
a west build option.

Build parallelism By default, ninja uses all of your cores to build, while make uses only one.
You can control this explicitly with the -j option supported by both tools.

For example, to build with 4 cores:

west build -o=-j4

The -o option is described further in the previous section.

Build a single domain In a multi-domain build with hello_world and MCUboot, you can use
--domain hello_world to only build this domain:

west build --sysbuild --domain hello_world

The --domain argument can be combined with the --target argument to build the specific target
for the target, for example:

west build --sysbuild --domain hello_world --target help

Use a snippet See Using Snippets.

Configuration Options You can configure west build using these options.

182 Chapter 2. Developing with Zephyr

https://cmake.org/cmake/help/latest/manual/cmake.1.html
https://cmake.org/cmake/help/latest/command/set.html
https://mcuboot.com/

Zephyr Project Documentation, Release 3.6.99

Option Description
build.board String. If given, this the board used by west build when --board is not

given and BOARD is unset in the environment.
build.board_warn Boolean, default true. If false, disables warnings when west build

can’t figure out the target board.
build.cmake-args String. If present, the value will be split according to shell rules and

passed to CMake whenever a new build system is generated. See Per-
manent CMake Arguments.

build.dir-fmt String, default build. The build folder format string, used by west
whenever it needs to create or locate a build folder. The currently
available arguments are:

• board: The board name
• source_dir: The relative path from the current working direc-

tory to the source directory. If the current working directory is
inside the source directory this will be set to an empty string.

• app: The name of the source directory.

build.generator String, default Ninja. The CMake Generator to use to create a build
system. (To set a generator for a single build, see the above example)

build.guess-dir String, instructs west whether to try to guess what build folder to use
when build.dir-fmt is in use and not enough information is available
to resolve the build folder name. Can take these values:

• never (default): Never try to guess, bail out instead and require
the user to provide a build folder with -d.

• runners: Try to guess the folder when using any of the ‘runner’
commands. These are typically all commands that invoke an ex-
ternal tool, such as flash and debug.

build.pristine String. Controls the way in which west build may clean the build
folder before building. Can take the following values:

• never (default): Never automatically make the build folder pris-
tine.

• auto: west build will automatically make the build folder pris-
tine before building, if a build system is present and the build
would fail otherwise (e.g. the user has specified a different board
or application from the one previously used to make the build di-
rectory).

• always: Always make the build folder pristine before building,
if a build system is present.

build.sysbuild Boolean, default false. If true, build application using the sysbuild
infrastructure.

Flashing: west flash

Tip: Run west flash -h for additional help.

Basics From a Zephyr build directory, re-build the binary and flash it to your board:

west flash

Without options, the behavior is the same as ninja flash (or make flash, etc.).

2.11. West (Zephyr’s meta-tool) 183

https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html

Zephyr Project Documentation, Release 3.6.99

To specify the build directory, use --build-dir (or -d):

west flash --build-dir path/to/build/directory

If you don’t specify the build directory, west flash searches for one in build, then the current
working directory. If you set the build.dir-fmt configuration option (see Setting Source and
Build Directories), west flash searches there instead of build.

Choosing a Runner If your board’s Zephyr integration supports flashing with multiple pro-
grams, you can specify which one to use using the --runner (or -r) option. For example, if West
flashes your board with nrfjprog by default, but it also supports JLink, you can override the
default with:

west flash --runner jlink

You can override the default flash runner at build time by using the BOARD_FLASH_RUNNER CMake
variable, and the debug runner with BOARD_DEBUG_RUNNER.

For example:

Set the default runner to "jlink", overriding the board's
usual default.
west build [...] -- -DBOARD_FLASH_RUNNER=jlink

See One-Time CMake Arguments and Permanent CMake Arguments for more information on set-
ting CMake arguments.

See Flash and debug runners below for more information on the runner library used by West.
The list of runners which support flashing can be obtained with west flash -H; if run from a
build directory or with --build-dir, this will print additional information on available runners
for your board.

Configuration Overrides The CMake cache contains default values West uses while flashing,
such as where the board directory is on the file system, the path to the zephyr binaries to flash in
several formats, and more. You can override any of this configuration at runtime with additional
options.

For example, to override the HEX file containing the Zephyr image to flash (assuming your run-
ner expects a HEX file), but keep other flash configuration at default values:

west flash --hex-file path/to/some/other.hex

The west flash -h output includes a complete list of overrides supported by all runners.

Runner-Specific Overrides Each runner may support additional options related to flashing.
For example, some runners support an --erase flag, which mass-erases the flash storage on your
board before flashing the Zephyr image.

To view all of the available options for the runners your board supports, as well as their usage
information, use --context (or -H):

west flash --context

Important: Note the capital H in the short option name. This re-runs the build in order to
ensure the information displayed is up to date!

184 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

When running West outside of a build directory, west flash -H just prints a list of runners. You
can use west flash -H -r <runner-name> to print usage information for options supported by
that runner.

For example, to print usage information about the jlink runner:

west flash -H -r jlink

Multi-domain flashing When a Sysbuild (multi-domain builds) folder is detected, then west
flash will flash all domains in the order defined by sysbuild.

It is possible to flash the image from a single domain in a multi-domain project by using --domain.

For example, in a multi-domain build with hello_world and MCUboot, you can use the --domain
hello_world domain to only flash only the image from this domain:

west flash --domain hello_world

Debugging: west debug, west debugserver

Tip: Run west debug -h or west debugserver -h for additional help.

Basics From a Zephyr build directory, to attach a debugger to your board and open up a debug
console (e.g. a GDB session):

west debug

To attach a debugger to your board and open up a local network port you can connect a debugger
to (e.g. an IDE debugger):

west debugserver

Without options, the behavior is the same as ninja debug and ninja debugserver (or make debug,
etc.).

To specify the build directory, use --build-dir (or -d):

west debug --build-dir path/to/build/directory
west debugserver --build-dir path/to/build/directory

If you don’t specify the build directory, these commands search for one in build, then the current
working directory. If you set the build.dir-fmt configuration option (see Setting Source and
Build Directories), west debug searches there instead of build.

Choosing a Runner If your board’s Zephyr integration supports debugging with multiple pro-
grams, you can specify which one to use using the --runner (or -r) option. For example, if West
debugs your board with pyocd-gdbserver by default, but it also supports JLink, you can override
the default with:

west debug --runner jlink
west debugserver --runner jlink

See Flash and debug runners below for more information on the runner library used by West.
The list of runners which support debugging can be obtained with west debug -H; if run from a
build directory or with --build-dir, this will print additional information on available runners
for your board.

2.11. West (Zephyr’s meta-tool) 185

https://mcuboot.com/

Zephyr Project Documentation, Release 3.6.99

Configuration Overrides The CMake cache contains default values West uses for debugging,
such as where the board directory is on the file system, the path to the zephyr binaries containing
symbol tables, and more. You can override any of this configuration at runtime with additional
options.

For example, to override the ELF file containing the Zephyr binary and symbol tables (assuming
your runner expects an ELF file), but keep other debug configuration at default values:

west debug --elf-file path/to/some/other.elf
west debugserver --elf-file path/to/some/other.elf

The west debug -h output includes a complete list of overrides supported by all runners.

Runner-SpecificOverrides Each runner may support additional options related to debugging.
For example, some runners support flags which allow you to set the network ports used by debug
servers.

To view all of the available options for the runners your board supports, as well as their usage
information, use --context (or -H):

west debug --context

(The command west debugserver --context will print the same output.)

Important: Note the capital H in the short option name. This re-runs the build in order to
ensure the information displayed is up to date!

When running West outside of a build directory, west debug -H just prints a list of runners. You
can use west debug -H -r <runner-name> to print usage information for options supported by
that runner.

For example, to print usage information about the jlink runner:

west debug -H -r jlink

Multi-domain debugging west debug can only debug a single domain at a time. When a Sys-
build (multi-domain builds) folder is detected, west debug will debug the default domain speci-
fied by sysbuild.

The default domain will be the application given as the source directory. See the following ex-
ample:

west build --sysbuild path/to/source/directory

For example, when building hello_world with MCUboot using sysbuild, hello_world becomes
the default domain:

west build --sysbuild samples/hello_world

So to debug hello_world you can do:

west debug

or:

west debug --domain hello_world

If you wish to debug MCUboot, you must explicitly specify MCUboot as the domain to debug:

186 Chapter 2. Developing with Zephyr

https://mcuboot.com/

Zephyr Project Documentation, Release 3.6.99

west debug --domain mcuboot

Flash and debug runners

The flash and debug commands use Python wrappers around various Flash & Debug Host Tools.
These wrappers are all defined in a Python library at scripts/west_commands/runners. Each
wrapper is called a runner. Runners can flash and/or debug Zephyr programs.

The central abstraction within this library is ZephyrBinaryRunner, an abstract class which rep-
resents runners. The set of available runners is determined by the imported subclasses of
ZephyrBinaryRunner. ZephyrBinaryRunner is available in the runners.core module; individual
runner implementations are in other submodules, such as runners.nrfjprog, runners.openocd,
etc.

Hacking

This section documents the runners.core module used by the flash and debug commands. This
is the core abstraction used to implement support for these features.

Warning: These APIs are provided for reference, but they are more “shared code” used to
implement multiple extension commands than a stable API.

Developers can add support for new ways to flash and debug Zephyr programs by implementing
additional runners. To get this support into upstream Zephyr, the runner should be added into
a new or existing runners module, and imported from runners/__init__.py.

Note: The test cases in scripts/west_commands/tests add unit test coverage for the runners
package and individual runner classes.

Please try to add tests when adding new runners. Note that if your changes break existing test
cases, CI testing on upstream pull requests will fail.

Zephyr binary runner core interfaces

This provides the core ZephyrBinaryRunner class meant for public use, as well as some other
helpers for concrete runner classes.

class runners.core.BuildConfiguration(build_dir: str)
This helper class provides access to build-time configuration.

Configuration options can be read as if the object were a dict, either object[‘CONFIG_FOO’]
or object.get(‘CONFIG_FOO’).

Kconfig configuration values are available (parsed from .config).

getboolean(option)
If a boolean option is explicitly set to y or n, returns its value. Otherwise, falls back to
False.

class runners.core.DeprecatedAction(option_strings, dest, nargs=None, const=None,
default=None, type=None, choices=None,
required=False, help=None, metavar=None)

class runners.core.FileType(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

2.11. West (Zephyr’s meta-tool) 187

https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/west_commands/runners
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/west_commands/tests

Zephyr Project Documentation, Release 3.6.99

exception runners.core.MissingProgram(program)
FileNotFoundError subclass for missing program dependencies.

No significant changes from the parent FileNotFoundError; this is useful for explicitly sig-
naling that the file in question is a program that some class requires to proceed.

The filename attribute contains the missing program.

class runners.core.NetworkPortHelper
Helper class for dealing with local IP network ports.

get_unused_ports(starting_from)
Find unused network ports, starting at given values.

starting_from is an iterable of ports the caller would like to use.

The return value is an iterable of ports, in the same order, using the given values if
they were unused, or the next sequentially available unused port otherwise.

Ports may be bound between this call’s check and actual usage, so callers still need to
handle errors involving returned ports.

class runners.core.RunnerCaps(commands: ~typing.Set[str] = <factory>, dev_id: bool = False,
flash_addr: bool = False, erase: bool = False, reset: bool =
False, tool_opt: bool = False, file: bool = False)

This class represents a runner class’s capabilities.

Each capability is represented as an attribute with the same name. Flag attributes are True
or False.

Available capabilities:

• commands: set of supported commands; default is {‘flash’, ‘debug’, ‘debugserver’, ‘at-
tach’}.

• dev_id: whether the runner supports device identifiers, in the form of an -i, –dev-id
option. This is useful when the user has multiple debuggers connected to a single com-
puter, in order to select which one will be used with the command provided.

• flash_addr: whether the runner supports flashing to an arbitrary address. Default is
False. If true, the runner must honor the –dt-flash option.

• erase: whether the runner supports an –erase option, which does a mass-erase of the
entire addressable flash on the target before flashing. On multi-core SoCs, this may
only erase portions of flash specific the actual target core. (This option can be useful
for things like clearing out old settings values or other subsystem state that may affect
the behavior of the zephyr image. It is also sometimes needed by SoCs which have
flash-like areas that can’t be sector erased by the underlying tool before flashing; UICR
on nRF SoCs is one example.)

• reset: whether the runner supports a –reset option, which resets the device after a
flash operation is complete.

• tool_opt: whether the runner supports a –tool-opt (-O) option, which can be given mul-
tiple times and is passed on to the underlying tool that the runner wraps.

• file: whether the runner supports a –file option, which specifies exactly the file that
should be used to flash, overriding any default discovered in the build directory.

class runners.core.RunnerConfig(build_dir: str, board_dir: str, elf_file: str | None, exe_file: str
| None, hex_file: str | None, bin_file: str | None, uf2_file: str
| None, file: str | None, file_type: FileType | None =
FileType.OTHER, gdb: str | None = None, openocd: str |
None = None, openocd_search: List[str] = [])

Runner execution-time configuration.

188 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

This is a common object shared by all runners. Individual runners can register specific
configuration options using their do_add_parser() hooks.

bin_file: str | None
Alias for field number 5

board_dir: str
Alias for field number 1

build_dir: str
Alias for field number 0

elf_file: str | None
Alias for field number 2

exe_file: str | None
Alias for field number 3

file: str | None
Alias for field number 7

file_type: FileType | None
Alias for field number 8

gdb: str | None
Alias for field number 9

hex_file: str | None
Alias for field number 4

openocd: str | None
Alias for field number 10

openocd_search: List[str]
Alias for field number 11

uf2_file: str | None
Alias for field number 6

class runners.core.ZephyrBinaryRunner(cfg: RunnerConfig)
Abstract superclass for binary runners (flashers, debuggers).

Note: this class’s API has changed relatively rarely since it as added, but it is not considered
a stable Zephyr API, and may change without notice.

With some exceptions, boards supported by Zephyr must provide generic means to be
flashed (have a Zephyr firmware binary permanently installed on the device for running)
and debugged (have a breakpoint debugger and program loader on a host workstation at-
tached to a running target).

This is supported by four top-level commands managed by the Zephyr build system:

• ‘flash’: flash a previously configured binary to the board, start execution on the target,
then return.

• ‘debug’: connect to the board via a debugging protocol, program the flash, then drop
the user into a debugger interface with symbol tables loaded from the current binary,
and block until it exits.

• ‘debugserver’: connect via a board-specific debugging protocol, then reset and halt the
target. Ensure the user is now able to connect to a debug server with symbol tables
loaded from the binary.

• ‘attach’: connect to the board via a debugging protocol, then drop the user into a de-
bugger interface with symbol tables loaded from the current binary, and block until it
exits. Unlike ‘debug’, this command does not program the flash.

2.11. West (Zephyr’s meta-tool) 189

Zephyr Project Documentation, Release 3.6.99

This class provides an API for these commands. Every subclass is called a ‘runner’ for short.
Each runner has a name (like ‘pyocd’), and declares commands it can handle (like ‘flash’).
Boards (like ‘nrf52dk/nrf52832’) declare which runner(s) are compatible with them to the
Zephyr build system, along with information on how to configure the runner to work with
the board.

The build system will then place enough information in the build directory to create and
use runners with this class’s create() method, which provides a command line argument
parsing API. You can also create runners by instantiating subclasses directly.

In order to define your own runner, you need to:

1. Define a ZephyrBinaryRunner subclass, and implement its abstract methods. You may
need to override capabilities().

2. Make sure the Python module defining your runner class is imported, e.g. by editing
this package’s __init__.py (otherwise, get_runners() won’t work).

3. Give your runner’s name to the Zephyr build system in your board’s board.cmake.

Additional advice:

• If you need to import any non-standard-library modules, make sure to catch ImportEr-
ror and defer complaints about it to a RuntimeError if one is missing. This avoids
affecting users that don’t require your runner, while still making it clear what went
wrong to users that do require it that don’t have the necessary modules installed.

• If you need to ask the user something (e.g. using input()), do it in your create() class-
method, not do_run(). That ensures your __init__() really has everything it needs to call
do_run(), and also avoids calling input() when not instantiating within a command line
application.

• Use self.logger to log messages using the standard library’s logging API; your logger is
named “runner.<your-runner-name()>”

For command-line invocation from the Zephyr build system, runners define their
own argparse-based interface through the common add_parser() (and runner-specific
do_add_parser() it delegates to), and provide a way to create instances of themselves from
a RunnerConfig and parsed runner-specific arguments via create().

Runners use a variety of host tools and configuration values, the user interface to which is
abstracted by this class. Each runner subclass should take any values it needs to execute
one of these commands in its constructor. The actual command execution is handled in the
run() method.

classmethod add_parser(parser)
Adds a sub-command parser for this runner.

The given object, parser, is a sub-command parser from the argparse module. For more
details, refer to the documentation for argparse.ArgumentParser.add_subparsers().

The lone common optional argument is:

• –dt-flash (if the runner capabilities includes flash_addr)

Runner-specific options are added through the do_add_parser() hook.

property build_conf: BuildConfiguration
Get a BuildConfiguration for the build directory.

call(cmd: List[str], **kwargs)→ int
Subclass subprocess.call() wrapper.

Subclasses should use this method to run command in a subprocess and get its return
code, rather than using subprocess directly, to keep accurate debug logs.

190 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

classmethod capabilities()→ RunnerCaps
Returns a RunnerCaps representing this runner’s capabilities.

This implementation returns the default capabilities.

Subclasses should override appropriately if needed.

cfg
RunnerConfig for this instance.

check_call(cmd: List[str], **kwargs)
Subclass subprocess.check_call() wrapper.

Subclasses should use this method to run command in a subprocess and check that it
executed correctly, rather than using subprocess directly, to keep accurate debug logs.

check_output(cmd: List[str], **kwargs)→ bytes
Subclass subprocess.check_output() wrapper.

Subclasses should use this method to run command in a subprocess and check that it
executed correctly, rather than using subprocess directly, to keep accurate debug logs.

classmethod create(cfg: RunnerConfig, args: Namespace)→ ZephyrBinaryRunner
Create an instance from command-line arguments.

• cfg: runner configuration (pass to superclass __init__)

• args: arguments parsed from execution environment, as specified by
add_parser().

classmethod dev_id_help()→ str
Get the ArgParse help text for the –dev-id option.

abstract classmethod do_add_parser(parser)
Hook for adding runner-specific options.

abstract classmethod do_create(cfg: RunnerConfig, args: Namespace)→
ZephyrBinaryRunner

Hook for instance creation from command line arguments.

abstract do_run(command: str, **kwargs)
Concrete runner; run() delegates to this. Implement in subclasses.

In case of an unsupported command, raise a ValueError.

ensure_output(output_type: str)→ None
Ensure self.cfg has a particular output artifact.

For example, ensure_output(‘bin’) ensures that self.cfg.bin_file refers to an existing file.
Errors out if it’s missing or undefined.

Parameters
output_type – string naming the output type

static flash_address_from_build_conf(build_conf: BuildConfiguration)
If CONFIG_HAS_FLASH_LOAD_OFFSET is n in build_conf, return
the CONFIG_FLASH_BASE_ADDRESS value. Otherwise, return CON-
FIG_FLASH_BASE_ADDRESS + CONFIG_FLASH_LOAD_OFFSET.

static get_flash_address(args: Namespace, build_conf: BuildConfiguration, default: int
= 0)→ int

Helper method for extracting a flash address.

If args.dt_flash is true, returns the address obtained from ZephyrBinaryRun-
ner.flash_address_from_build_conf(build_conf).

Otherwise (when args.dt_flash is False), the default value is returned.

2.11. West (Zephyr’s meta-tool) 191

Zephyr Project Documentation, Release 3.6.99

static get_runners()→ List[Type[ZephyrBinaryRunner]]
Get a list of all currently defined runner classes.

logger
logging.Logger for this instance.

abstract classmethod name()→ str
Return this runner’s user-visible name.

When choosing a name, pick something short and lowercase, based on the name of the
tool (like openocd, jlink, etc.) or the target architecture/board (like xtensa etc.).

popen_ignore_int(cmd: List[str], **kwargs)→ Popen
Spawn a child command, ensuring it ignores SIGINT.

The returned subprocess.Popen object must be manually terminated.

static require(program: str, path: str | None = None)→ str
Require that a program is installed before proceeding.

Parameters
• program – name of the program that is required, or path to a program

binary.

• path – PATH where to search for the program binary. By default check
on the system PATH.

If program is an absolute path to an existing program binary, this call succeeds. Oth-
erwise, try to find the program by name on the system PATH or in the given PATH, if
provided.

If the program can be found, its path is returned. Otherwise, raises MissingProgram.

run(command: str, **kwargs)
Runs command (‘flash’, ‘debug’, ‘debugserver’, ‘attach’).

This is the main entry point to this runner.

run_client(client, **kwargs)
Run a client that handles SIGINT.

run_server_and_client(server, client, **kwargs)
Run a server that ignores SIGINT, and a client that handles it.

This routine portably:

• creates a Popen object for the server command which ignores SIGINT

• runs client in a subprocess while temporarily ignoring SIGINT

• cleans up the server after the client exits.

• the keyword arguments, if any, will be passed down to both server and client sub-
process calls

It’s useful to e.g. open a GDB server and client.

property thread_info_enabled: bool
Returns True if self.build_conf has CONFIG_DEBUG_THREAD_INFO enabled.

classmethod tool_opt_help()→ str
Get the ArgParse help text for the –tool-opt option.

192 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Doing it By Hand

If you prefer not to use West to flash or debug your board, simply inspect the build directory for
the binaries output by the build system. These will be named something like zephyr/zephyr.elf,
zephyr/zephyr.hex, etc., depending on your board’s build system integration. These binaries
may be flashed to a board using alternative tools of your choice, or used for debugging as needed,
e.g. as a source of symbol tables.

By default, these West commands rebuild binaries before flashing and debugging. This can of
course also be accomplished using the usual targets provided by Zephyr’s build system (in fact,
that’s how these commands do it).

2.11.11 Signing Binaries

The west sign extension command can be used to sign a Zephyr application binary for con-
sumption by a bootloader using an external tool. In some configurations, west sign is also used
to invoke an external, post-processing tool that “stitches” the final components of the image to-
gether. Run west sign -h for command line help.

MCUboot / imgtool

The Zephyr build system has special support for signing binaries for use with the MCUboot boot-
loader using the imgtool program provided by its developers. You can both build and sign this
type of application binary in one step by setting some Kconfig options. If you do, west flash will
use the signed binaries.

If you use this feature, you don’t need to run west sign yourself; the build system will do it for
you.

Here is an example workflow, which builds and flashes MCUboot, as well as the hello_world
application for chain-loading by MCUboot. Run these commands from the zephyrproject
workspace you created in the Getting Started Guide.

west build -b YOUR_BOARD bootloader/mcuboot/boot/zephyr -d build-mcuboot
west build -b YOUR_BOARD zephyr/samples/hello_world -d build-hello-signed -- \

-DCONFIG_BOOTLOADER_MCUBOOT=y \
-DCONFIG_MCUBOOT_SIGNATURE_KEY_FILE=\"bootloader/mcuboot/root-rsa-2048.pem\"

west flash -d build-mcuboot
west flash -d build-hello-signed

Notes on the above commands:

• YOUR_BOARD should be changed to match your board

• The CONFIG_MCUBOOT_SIGNATURE_KEY_FILE value is the insecure default provided and used
by MCUboot for development and testing

• You can change the hello_world application directory to any other application that can be
loaded by MCUboot, such as the smp-svr sample.

For more information on these and other related configuration options, see:

• CONFIG_BOOTLOADER_MCUBOOT: build the application for loading by MCUboot

• CONFIG_MCUBOOT_SIGNATURE_KEY_FILE: the key file to use with west sign. If you have your
own key, change this appropriately

• CONFIG_MCUBOOT_EXTRA_IMGTOOL_ARGS: optional additional command line arguments for
imgtool

2.11. West (Zephyr’s meta-tool) 193

https://mcuboot.com/
https://pypi.org/project/imgtool/

Zephyr Project Documentation, Release 3.6.99

• CONFIG_MCUBOOT_GENERATE_CONFIRMED_IMAGE: also generate a confirmed image, which may
be more useful for flashing in production environments than the OTA-able default image

• On Windows, if you get “Access denied” issues, the recommended fix is to run pip3 install
imgtool, then retry with a pristine build directory.

If your west flash runner uses an image format supported by imgtool, you should see something
like this on your device’s serial console when you run west flash -d build-mcuboot:

*** Booting Zephyr OS build zephyr-v2.3.0-2310-gcebac69c8ae1 ***
[00:00:00.004,669] <inf> mcuboot: Starting bootloader
[00:00:00.011,169] <inf> mcuboot: Primary image: magic=unset, swap_type=0x1, copy_done=0x3,␣
↪→image_ok=0x3
[00:00:00.021,636] <inf> mcuboot: Boot source: none
[00:00:00.027,313] <wrn> mcuboot: Failed reading image headers; Image=0
[00:00:00.035,064] <err> mcuboot: Unable to find bootable image

Then, you should see something like this when you run west flash -d build-hello-signed:

*** Booting Zephyr OS build zephyr-v2.3.0-2310-gcebac69c8ae1 ***
[00:00:00.004,669] <inf> mcuboot: Starting bootloader
[00:00:00.011,169] <inf> mcuboot: Primary image: magic=unset, swap_type=0x1, copy_done=0x3,␣
↪→image_ok=0x3
[00:00:00.021,636] <inf> mcuboot: Boot source: none
[00:00:00.027,374] <inf> mcuboot: Swap type: none
[00:00:00.115,142] <inf> mcuboot: Bootloader chainload address offset: 0xc000
[00:00:00.123,168] <inf> mcuboot: Jumping to the first image slot
*** Booting Zephyr OS build zephyr-v2.3.0-2310-gcebac69c8ae1 ***
Hello World! nrf52840dk_nrf52840

Whether west flash supports this feature depends on your runner. The nrfjprog and pyocd
runners work with the above flow. If your runner does not support this flow and you would like
it to, please send a patch or file an issue for adding support.

Extending signing externally

The signing script used when running west flash can be extended or replaced to change features
or introduce different signing mechanisms. By default with MCUboot enabled, signing is setup
by the cmake/mcuboot.cmakefile in Zephyr which adds extra post build commands for generating
the signed images. The file used for signing can be replaced from a sysbuild scope (if being used)
or from a zephyr/zephyr module scope, the priority of which is:

• Sysbuild

• Zephyr property

• Default MCUboot script (if enabled)

From sysbuild, -D<target>_SIGNING_SCRIPT can be used to set a signing script for a specific im-
age or -DSIGNING_SCRIPT can be used to set a signing script for all images, for example:

west build -b <board> <application> -DSIGNING_SCRIPT=<file>

The zephyr property method is achieved by adjusting the SIGNING_SCRIPT property on the
zephyr_property_target, ideally from by a module by using:

if(CONFIG_BOOTLOADER_MCUBOOT)
set_target_properties(zephyr_property_target PROPERTIES SIGNING_SCRIPT ${CMAKE_CURRENT_

↪→LIST_DIR}/custom_signing.cmake)
endif()

194 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

This will include the custom signing CMake file instead of the default Zephyr one when projects
are built with MCUboot signing support enabled. The base Zephyr MCUboot signing file can be
used as a reference for creating a new signing system or extending the default behaviour.

rimage

rimage configuration uses a different approach that does not rely on Kconfig or CMake but on
west config instead, similar to Permanent CMake Arguments.

Signing involves a number of “wrapper” scripts stacked on top of each other: west flash invokes
west build which invokes cmake and ninja which invokes west sign which invokes imgtool or
rimage. As long as the signing parameters desired are the default ones and fairly static, these
indirections are not a problem. On the other hand, passing imgtool or rimage options through all
these layers can causes issues typical when the layers don’t abstract anything. First, this usually
requires boilerplate code in each layer. Quoting whitespace or other special characters through
all the wrappers can be difficult. Reproducing a lower west sign command to debug some build-
time issue can be very time-consuming: it requires at least enabling and searching verbose build
logs to find which exact options were used. Copying these options from the build logs can be
unreliable: it may produce different results because of subtle environment differences. Last
and worst: new signing feature and options are impossible to use until more boilerplate code
has been added in each layer.

To avoid these issues, rimage parameters can bet set in west config instead. Here’s a workspace/
.west/config example:

[sign]
Not needed when invoked from CMake
tool = rimage

[rimage]
Quoting is optional and works like in Unix shells
Not needed when rimage can be found in the default PATH
path = "/home/me/zworkspace/build-rimage/rimage"

Not needed when using the default development key
extra-args = -i 4 -k 'keys/key argument with space.pem'

In order to support quoting, values are parsed by Python’s shlex.split() like inOne-Time CMake
Arguments.

The extra-args are passed directly to the rimage command. The example above has the same
effect as appending them on command line after -- like this: west sign --tool rimage -- -i 4
-k 'keys/key argument with space.pem'. In case both are used, the command-line arguments
go last.

2.11.12 Additional Zephyr extension commands

This page documents miscellaneous Zephyr Extensions.

Listing boards: west boards

The boards command can be used to list the boards that are supported by Zephyr without having
to resort to additional sources of information.

It can be run by typing:

west boards

2.11. West (Zephyr’s meta-tool) 195

https://github.com/thesofproject/rimage

Zephyr Project Documentation, Release 3.6.99

This command lists all supported boards in a default format. If you prefer to specify the display
format yourself you can use the --format (or -f) flag:

west boards -f "{arch}:{name}"

Additional help about the formatting options can be found by running:

west boards -h

Shell completion scripts: west completion

The completion extension command outputs shell completion scripts that can then be used di-
rectly to enable shell completion for the supported shells.

It currently supports the following shells:

• bash

• zsh

Additional instructions are available in the command’s help:

west help completion

Installing CMake packages: west zephyr-export

This command registers the current Zephyr installation as a CMake config package in the CMake
user package registry.

In Windows, the CMake user package registry is found in HKEY_CURRENT_USER\Software\
Kitware\CMake\Packages.

In Linux and MacOS, the CMake user package registry is found in. ~/.cmake/packages.

You may run this command when setting up a Zephyr workspace. If you do, application CMake-
Lists.txt files that are outside of your workspace will be able to find the Zephyr repository with
the following:

find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})

See share/zephyr-package/cmake for details.

Software bill of materials: west spdx

This command generates SPDX 2.2 tag-value documents, creating relationships from source files
to the corresponding generated build files. SPDX-License-Identifier comments in source files
are scanned and filled into the SPDX documents.

To use this command:

1. Pre-populate a build directory BUILD_DIR like this:

west spdx --init -d BUILD_DIR

This step ensures the build directory contains CMake metadata required for SPDX docu-
ment generation.

2. Enable CONFIG_BUILD_OUTPUT_META in your project.

3. Build your application using this pre-created build directory, like so:

196 Chapter 2. Developing with Zephyr

https://github.com/zephyrproject-rtos/zephyr/blob/main/share/zephyr-package/cmake

Zephyr Project Documentation, Release 3.6.99

west build -d BUILD_DIR [...]

4. Generate SPDX documents using this build directory:

west spdx -d BUILD_DIR

This generates the following SPDX bill-of-materials (BOM) documents in BUILD_DIR/spdx/:

• app.spdx: BOM for the application source files used for the build

• zephyr.spdx: BOM for the specific Zephyr source code files used for the build

• build.spdx: BOM for the built output files

Each file in the bill-of-materials is scanned, so that its hashes (SHA256 and SHA1) can be recorded,
along with any detected licenses if an SPDX-License-Identifier comment appears in the file.

SPDX Relationships are created to indicate dependencies between CMake build targets, build
targets that are linked together, and source files that are compiled to generate the built library
files.

west spdx accepts these additional options:

• -n PREFIX: a prefix for the Document Namespaces that will be included in the generated
SPDX documents. See SPDX specification clause 6 for details. If -n is omitted, a default
namespace will be generated according to the default format described in section 2.5 using
a random UUID.

• -s SPDX_DIR: specifies an alternate directory where the SPDX documents should be written
instead of BUILD_DIR/spdx/.

• --analyze-includes: in addition to recording the compiled source code files (e.g. .c, .S) in
the bills-of-materials, also attempt to determine the specific header files that are included
for each .c file.

This takes longer, as it performs a dry run using the C compiler for each .c file using the
same arguments that were passed to it for the actual build.

• --include-sdk: with --analyze-includes, also create a fourth SPDX document, sdk.spdx,
which lists header files included from the SDK.

Working with binary blobs: west blobs

The blobs command allows users to interact with binary blobs declared in one or more modules
via their module.yml file.

The blobs command has three sub-commands, used to list, fetch or clean (i.e. delete) the binary
blobs themselves.

You can list binary blobs while specifying the format of the output:

west blobs list -f '{module}: {type} {path}'

For the full set of variables available in -f/--format run west blobs -h.

Fetching blobs works in a similar manner:

west blobs fetch

Note that, as described in the modules section, fetched blobs are stored in a zephyr/blobs/ folder
relative to the root of the corresponding module repository.

As does deleting them:

2.11. West (Zephyr’s meta-tool) 197

https://spdx.github.io/spdx-spec/v2.2.2/document-creation-information/

Zephyr Project Documentation, Release 3.6.99

west blobs clean

Additionally the tool allows you to specify the modules you want to list, fetch or clean blobs for
by typing the module names as a command-line parameter.

Twister wrapper: west twister

This command is a wrapper for twister.

Twister can then be invoked via west as follows:

west twister -help
west twister -T tests/ztest/base

Working with binary descriptors: west bindesc

The bindesc command allows users to read binary descriptors of executable files. It currently
supports .bin, .hex, .elf and .uf2 files as input.

You can search for a specific descriptor in an image, for example:

west bindesc search KERNEL_VERSION_STRING build/zephyr/zephyr.bin

You can search for a custom descriptor by type and ID, for example:

west bindesc custom_search STR 0x200 build/zephyr/zephyr.bin

You can dump all of the descriptors in an image using:

west bindesc dump build/zephyr/zephyr.bin

You can list all known standard descriptor names using:

west bindesc list

2.11.13 History and Motivation

West was added to the Zephyr project to fulfill two fundamental requirements:

• The ability to work with multiple Git repositories

• The ability to provide an extensible and user-friendly command-line interface for basic
Zephyr workflows

During the development of west, a set of Design Constraints were identified to avoid the common
pitfalls of tools of this kind.

Requirements

Although the motivation behind splitting the Zephyr codebase into multiple repositories is out-
side of the scope of this page, the fundamental requirements, along with a clear justification of
the choice not to use existing tools and instead develop a new one, do belong here.

The basic requirements are:

• R1: Keep externally maintained code in separately maintained repositories outside of the
main zephyr repository, without requiring users to manually clone each of the external
repositories

198 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

• R2: Provide a tool that both Zephyr users and distributors can make use of to benefit from
and extend

• R3: Allow users and downstream distributions to override or remove repositories without
having to make changes to the zephyr repository

• R4: Support both continuous tracking and commit-based (bisectable) project updating

Rationale for a custom tool

Some of west’s features are similar to those provided by Git Submodules and Google’s repo.

Existing tools were considered during west’s initial design and development. None were found
suitable for Zephyr’s requirements. In particular, these were examined in detail:

• Google repo

– Does not cleanly support using zephyr as the manifest repository (R4)

– Python 2 only

– Does not play well with Windows

– Assumes Gerrit is used for code review

• Git submodules

– Does not fully supportR1, since the externally maintained repositories would still need
to be inside the main zephyr Git tree

– Does not support R3, since downstream copies would need to either delete or replace
submodule definitions

– Does not support continuous tracking of the latest HEAD in external repositories (R4)

– Requires hardcoding of the paths/locations of the external repositories

Multiple Git Repositories

Zephyr intends to provide all required building blocks needed to deploy complex IoT applica-
tions. This in turn means that the Zephyr project is much more than an RTOS kernel, and is
instead a collection of components that work together. In this context, there are a few reasons
to work with multiple Git repositories in a standardized manner within the project:

• Clean separation of Zephyr original code and imported projects and libraries

• Avoidance of license incompatibilities between original and imported code

• Reduction in size and scope of the core Zephyr codebase, with additional repositories con-
taining optional components instead of being imported directly into the tree

• Safety and security certifications

• Enforcement of modularization of the components

• Out-of-tree development based on subsets of the supported boards and SoCs

See Basics for information on how west workspaces manage multiple git repositories.

Design Constraints

West is:

2.11. West (Zephyr’s meta-tool) 199

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://gerrit.googlesource.com/git-repo/

Zephyr Project Documentation, Release 3.6.99

• Optional: it is always possible to drop back to “raw” command-line tools, i.e. use Zephyr
without using west (although west itself might need to be installed and accessible to the
build system). It may not always be convenient to do so, however. (If all of west’s features
were already conveniently available, there would be no reason to develop it.)

• Compatible with CMake: building, flashing and debugging, and emulator support will
always remain compatible with direct use of CMake.

• Cross-platform: West is written in Python 3, and works on all platforms supported by
Zephyr.

• Usable as a Library: whenever possible, west features are implemented as libraries that
can be used standalone in other programs, along with separate command line interfaces
that wrap them. West itself is a Python package named west; its libraries are implemented
as subpackages.

• Conservative about features: no features will be accepted without strong and compelling
motivation.

• Clearly specified: West’s behavior in cases where it wraps other commands is clearly spec-
ified and documented. This enables interoperability with third party tools, and means
Zephyr developers can always find out what is happening “under the hood” when using
west.

See Zephyr issue #6205 and for more details and discussion.

2.11.14 Moving to West

To convert a “pre-west” Zephyr setup on your computer to west, follow these steps. If you are
starting from scratch, use the Getting Started Guide instead. See TroubleshootingWest for advice
on common issues.

1. Install west.

On Linux:

pip3 install --user -U west

On Windows and macOS:

pip3 install -U west

For details, see Installing west.

2. Move your zephyr repository to a new zephyrproject parent directory, and change direc-
tory there.

On Linux and macOS:

mkdir zephyrproject
mv zephyr zephyrproject
cd zephyrproject

On Windows cmd.exe:

mkdir zephyrproject
move zephyr zephyrproject
chdir zephyrproject

The name zephyrproject is recommended, but you can choose any name with no spaces
anywhere in the path.

3. Create a west workspace using the zephyr repository as a local manifest repository:

200 Chapter 2. Developing with Zephyr

https://github.com/zephyrproject-rtos/zephyr/issues/6205

Zephyr Project Documentation, Release 3.6.99

west init -l zephyr

This creates zephyrproject/.west, marking the root of your workspace, and does some
other setup. It will not change the contents of the zephyr repository in any way.

4. Clone the rest of the repositories used by zephyr:

west update

Make sure to run this commandwhenever you pull zephyr. Otherwise, your local repos-
itories will get out of sync. (Run west list for current information on these repositories.)

You are done: zephyrproject is now set up to use west.

2.11.15 Using Zephyr without west

This page provides information on using Zephyr without west. This is not recommended for
beginners due to the extra effort involved. In particular, you will have to do work “by hand” to
replace these features:

• cloning the additional source code repositories used by Zephyr in addition to the main
zephyr repository, and keeping them up to date

• specifying the locations of these repositories to the Zephyr build system

• flashing and debugging without understanding detailed usage of the relevant host tools

Note: If you have previously installed west and want to stop using it, uninstall it first:

pip3 uninstall west

Otherwise, Zephyr’s build system will find it and may try to use it.

Getting the Source

In addition to downloading the zephyr source code repository itself, you will need to manually
clone the additional projects listed in the west manifest file inside that repository.

mkdir zephyrproject
cd zephyrproject
git clone https://github.com/zephyrproject-rtos/zephyr
clone additional repositories listed in zephyr/west.yml,
and check out the specified revisions as well.

As you pull changes in the zephyr repository, you will also need to maintain those additional
repositories, adding new ones as necessary and keeping existing ones up to date at the latest
revisions.

Building applications

You can build a Zephyr application using CMake and Ninja (or make) directly without west in-
stalled if you specify any modules manually.

cmake -Bbuild -GNinja -DZEPHYR_MODULES=module1;module2;... samples/hello_world
ninja -Cbuild

2.11. West (Zephyr’s meta-tool) 201

Zephyr Project Documentation, Release 3.6.99

When building with west installed, the Zephyr build system will use it to set ZEPHYR_MODULES.

If you don’t have west installed and your application does not need any of these repositories, the
build will still work.

If you don’t have west installed and your application does need one of these repositories, you
must set ZEPHYR_MODULES yourself as shown above.

See Modules (External projects) for more details.

Similarly, if your application requires binary blobs and you are not using west, you will need to
download and place those blobs in the right places instead of using west blobs. See Binary Blobs
for more details.

Flashing and Debugging

Running build system targets like ninja flash, ninja debug, etc. is just a call to the correspond-
ing west command. For example, ninja flash calls west flash1. If you don’t have west installed
on your system, running those targets will fail. You can of course still flash and debug using any
Flash & Debug Host Tools which work for your board (and which those west commands wrap).

If you want to use these build system targets but do not want to install west on your system using
pip, it is possible to do so by manually creating a west workspace:

cd into zephyrproject if not already there
git clone https://github.com/zephyrproject-rtos/west.git .west/west

Then create a file .west/config with the following contents:

[manifest]
path = zephyr

[zephyr]
base = zephyr

After that, and in order for ninja to be able to invoke west to flash and debug, you must specify
the west directory. This can be done by setting the environment variable WEST_DIR to point to
zephyrproject/.west/west before running CMake to set up a build directory.

For details on west’s Python APIs, see west-apis.

2.12 Testing

2.12.1 Test Framework

The Zephyr Test Framework (Ztest) provides a simple testing framework intended to be used
during development. It provides basic assertion macros and a generic test structure.

The framework can be used in two ways, either as a generic framework for integration testing,
or for unit testing specific modules.

1 Note that west build invokes ninja, among other tools. There’s no recursive invocation of either west or ninja
involved by default, however, as west build does not invoke ninja flash, debug, etc. The one exception is if you
specifically run one of these build system targets with a command line like west build -t flash. In that case, west
is run twice: once for west build, and in a subprocess, again for west flash. Even in this case, ninja is only run once,
as ninja flash. This is because these build system targets depend on an up to date build of the Zephyr application, so
it’s compiled before west flash is run.

202 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Creating a test suite

Using Ztest to create a test suite is as easy as calling the ZTEST_SUITE. The macro accepts the
following arguments:

• suite_name - The name of the suite. This name must be unique within a single binary.

• ztest_suite_predicate_t - An optional predicate function to allow choosing when the
test will run. The predicate will get a pointer to the global state passed in through
ztest_run_all() and should return a boolean to decide if the suite should run.

• ztest_suite_setup_t - An optional setup function which returns a test fixture. This will be
called and run once per test suite run.

• ztest_suite_before_t - An optional before function which will run before every single test
in this suite.

• ztest_suite_after_t - An optional after function which will run after every single test in
this suite.

• ztest_suite_teardown_t - An optional teardown function which will run at the end of all
the tests in the suite.

Below is an example of a test suite using a predicate:

#include <zephyr/ztest.h>
#include "test_state.h"

static bool predicate(const void *global_state)
{

return ((const struct test_state*)global_state)->x == 5;
}

ZTEST_SUITE(alternating_suite, predicate, NULL, NULL, NULL, NULL);

Adding tests to a suite

There are 4 macros used to add a test to a suite, they are:

• ZTEST (suite_name, test_name) - Which can be used to add a test by test_name to a given
suite by suite_name.

• ZTEST_USER (suite_name, test_name) - Which behaves the same as ZTEST, only that when
CONFIG_USERSPACE is enabled, then the test will be run in a userspace thread.

• ZTEST_F (suite_name, test_name) - Which behaves the same as ZTEST, only that
the test function will already include a variable named fixture with the type
<suite_name>_fixture.

• ZTEST_USER_F (suite_name, test_name) - Which combines the fixture feature of ZTEST_F
with the userspace threading for the test.

Test fixtures Test fixtures can be used to help simplify repeated test setup operations. In many
cases, tests in the same suite will require some initial setup followed by some form of reset be-
tween each test. This is achieved via fixtures in the following way:

#include <zephyr/ztest.h>

struct my_suite_fixture {
size_t max_size;
size_t size;
uint8_t buff[1];

(continues on next page)

2.12. Testing 203

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
};

static void *my_suite_setup(void)
{

/* Allocate the fixture with 256 byte buffer */
struct my_suite_fixture *fixture = malloc(sizeof(struct my_suite_fixture) + 255);

zassume_not_null(fixture, NULL);
fixture->max_size = 256;

return fixture;
}

static void my_suite_before(void *f)
{

struct my_suite_fixture *fixture = (struct my_suite_fixture *)f;
memset(fixture->buff, 0, fixture->max_size);
fixture->size = 0;

}

static void my_suite_teardown(void *f)
{

free(f);
}

ZTEST_SUITE(my_suite, NULL, my_suite_setup, my_suite_before, NULL, my_suite_teardown);

ZTEST_F(my_suite, test_feature_x)
{

zassert_equal(0, fixture->size);
zassert_equal(256, fixture->max_size);

}

Using memory allocated by a test fixture in a userspace thread, such as during execution of
ZTEST_USER or ZTEST_USER_F, requires that memory to be declared userspace accessible. This is
because the fixture memory is owned and initialized by kernel space. The Ztest framework pro-
vides the ZTEST_DMEM and ZTEST_BMEM macros for use of such user/kernel space shared memory.

Advanced features

Test result expectations Some tests were made to be broken. In cases where the test is ex-
pected to fail or skip due to the nature of the code, it’s possible to annotate the test as such. For
example:

#include <zephyr/ztest.h>

ZTEST_SUITE(my_suite, NULL, NULL, NULL, NULL, NULL);

ZTEST_EXPECT_FAIL(my_suite, test_fail);
ZTEST(my_suite, test_fail)
{
/** This will fail the test */
zassert_true(false, NULL);

}

ZTEST_EXPECT_SKIP(my_suite, test_skip);
ZTEST(my_suite, test_skip)
{
/** This will skip the test */

(continues on next page)

204 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
zassume_true(false, NULL);

}

In this example, the above tests should be marked as failed and skipped respectively. Instead,
Ztest will mark both as passed due to the expectation.

Test rules Test rules are a way to run the same logic for every test and every suite. There are a
lot of cases where you might want to reset some state for every test in the binary (regardless of
which suite is currently running). As an example, this could be to reset mocks, reset emulators,
flush the UART, etc.:

#include <zephyr/fff.h>
#include <zephyr/ztest.h>

#include "test_mocks.h"

DEFINE_FFF_GLOBALS;

DEFINE_FAKE_VOID_FUN(my_weak_func);

static void fff_reset_rule_before(const struct ztest_unit_test *test, void *fixture)
{

ARG_UNUSED(test);
ARG_UNUSED(fixture);

RESET_FAKE(my_weak_func);
}

ZTEST_RULE(fff_reset_rule, fff_reset_rule_before, NULL);

A custom test_main While the Ztest framework provides a default test_main() function, it’s
possible that some applications will want to provide custom behavior. This is particularly true
if there’s some global state that the tests depend on and that state either cannot be replicated
or is difficult to replicate without starting the process over. For example, one such state could
be a power sequence. Assuming there’s a board with several steps in the power-on sequence
a test suite can be written using the predicate to control when it would run. In that case, the
test_main() function can be written as follows:

#include <zephyr/ztest.h>

#include "my_test.h"

void test_main(void)
{

struct power_sequence_state state;

/* Only suites that use a predicate checking for phase == PWR_PHASE_0 will run. */
state.phase = PWR_PHASE_0;
ztest_run_all(&state, false, 1, 1);

/* Only suites that use a predicate checking for phase == PWR_PHASE_1 will run. */
state.phase = PWR_PHASE_1;
ztest_run_all(&state, false, 1, 1);

/* Only suites that use a predicate checking for phase == PWR_PHASE_2 will run. */
state.phase = PWR_PHASE_2;
ztest_run_all(&state, false, 1, 1);

(continues on next page)

2.12. Testing 205

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)

/* Check that all the suites in this binary ran at least once. */
ztest_verify_all_test_suites_ran();

}

Quick start - Integration testing

A simple working base is located at samples/subsys/testsuite/integration. Just copy the files to
tests/ and edit them for your needs. The test will then be automatically built and run by the
twister script. If you are testing the bar component of foo, you should copy the sample folder to
tests/foo/bar. It can then be tested with:

./scripts/twister -s tests/foo/bar/test-identifier

In the example above tests/foo/bar signifies the path to the test and the test-identifier ref-
erences a test defined in the testcase.yaml file.

To run all tests defined in a test project, run:

./scripts/twister -T tests/foo/bar/

The sample contains the following files:

CMakeLists.txt

1 # SPDX-License-Identifier: Apache-2.0
2

3 cmake_minimum_required(VERSION 3.20.0)
4 find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE})
5 project(integration)
6

7 FILE(GLOB app_sources src/*.c)
8 target_sources(app PRIVATE ${app_sources})

testcase.yaml

1 tests:
2 # section.subsection
3 sample.testing.ztest:
4 build_only: true
5 platform_allow:
6 - native_posix
7 - native_sim
8 integration_platforms:
9 - native_sim

10 tags: test_framework

prj.conf

1 CONFIG_ZTEST=y

src/main.c (see best practices)

1 /*
2 * Copyright (c) 2016 Intel Corporation
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6

7 #include <zephyr/ztest.h>
(continues on next page)

206 Chapter 2. Developing with Zephyr

https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/subsys/testsuite/integration

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
8

9

10 ZTEST_SUITE(framework_tests, NULL, NULL, NULL, NULL, NULL);
11

12 /**
13 * @brief Test Asserts
14 *
15 * This test verifies various assert macros provided by ztest.
16 *
17 */
18 ZTEST(framework_tests, test_assert)
19 {
20 zassert_true(1, "1 was false");
21 zassert_false(0, "0 was true");
22 zassert_is_null(NULL, "NULL was not NULL");
23 zassert_not_null("foo", "\"foo\" was NULL");
24 zassert_equal(1, 1, "1 was not equal to 1");
25 zassert_equal_ptr(NULL, NULL, "NULL was not equal to NULL");
26 }

• Listing Tests

• Skipping Tests

A test case project may consist of multiple sub-tests or smaller tests that either can be testing
functionality or APIs. Functions implementing a test should follow the guidelines below:

• Test cases function names should be prefix with test_
• Test cases should be documented using doxygen

• Test function names should be unique within the section or component being tested

For example:

/**
* @brief Test Asserts
*
* This test verifies the zassert_true macro.
*/

ZTEST(my_suite, test_assert)
{

zassert_true(1, "1 was false");
}

Listing Tests Tests (test projects) in the Zephyr tree consist of many testcases that run as part
of a project and test similar functionality, for example an API or a feature. The twister script can
parse the testcases in all test projects or a subset of them, and can generate reports on a granular
level, i.e. if cases have passed or failed or if they were blocked or skipped.

Twister parses the source files looking for test case names, so you can list all kernel test cases,
for example, by running:

twister --list-tests -T tests/kernel

Skipping Tests Special- or architecture-specific tests cannot run on all platforms and architec-
tures, however we still want to count those and report them as being skipped. Because the test
inventory and the list of tests is extracted from the code, adding conditionals inside the test suite

2.12. Testing 207

Zephyr Project Documentation, Release 3.6.99

is sub-optimal. Tests that need to be skipped for a certain platform or feature need to explicitly
report a skip using ztest_test_skip() or Z_TEST_SKIP_IFDEF. If the test runs, it needs to report
either a pass or fail. For example:

#ifdef CONFIG_TEST1
ZTEST(common, test_test1)
{

zassert_true(1, "true");
}
#else
ZTEST(common, test_test1)
{

ztest_test_skip();
}
#endif

ZTEST(common, test_test2)
{

Z_TEST_SKIP_IFDEF(CONFIG_BUGxxxxx);
zassert_equal(1, 0, NULL);

}

ZTEST_SUITE(common, NULL, NULL, NULL, NULL, NULL);

Quick start - Unit testing

Ztest can be used for unit testing. This means that rather than including the entire Zephyr OS for
testing a single function, you can focus the testing efforts into the specific module in question.
This will speed up testing since only the module will have to be compiled in, and the tested
functions will be called directly.

Since you won’t be including basic kernel data structures that most code depends on, you have to
provide function stubs in the test. Ztest provides some helpers for mocking functions, as demon-
strated below.

In a unit test, mock objects can simulate the behavior of complex real objects and are used to de-
cide whether a test failed or passed by verifying whether an interaction with an object occurred,
and if required, to assert the order of that interaction.

Best practices for declaring the test suite twister and other validation tools need to obtain
the list of subcases that a Zephyr ztest test image will expose.

Rationale
This all is for the purpose of traceability. It’s not enough to have only a semaphore test project.
We also need to show that we have testpoints for all APIs and functionality, and we trace back to
documentation of the API, and functional requirements.

The idea is that test reports show results for every sub-testcase as passed, failed, blocked, or
skipped. Reporting on only the high-level test project level, particularly when tests do too many
things, is too vague.

Other questions:

• Why not pre-scan with CPP and then parse? or post scan the ELF file?

If C pre-processing or building fails because of any issue, then we won’t be able to tell the
subcases.

208 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

• Why not declare them in the YAML testcase description?

A separate testcase description file would be harder to maintain than just keeping the in-
formation in the test source files themselves – only one file to update when changes are
made eliminates duplication.

Stress test framework

Zephyr stress test framework (Ztress) provides an environment for executing user functions in
multiple priority contexts. It can be used to validate that code is resilient to preemptions. The
framework tracks the number of executions and preemptions for each context. Execution can
have various completion conditions like timeout, number of executions or number of preemp-
tions.

The framework is setting up the environment by creating the requested number of threads (each
on different priority), optionally starting a timer. For each context, a user function (different for
each context) is called and then the context sleeps for a randomized amount of system ticks.
The framework is tracking CPU load and adjusts sleeping periods to achieve higher CPU load. In
order to increase the probability of preemptions, the system clock frequency should be relatively
high. The default 100 Hz on QEMU x86 is much too low and it is recommended to increase it to
100 kHz.

The stress test environment is setup and executed using ZTRESS_EXECUTE which accepts a vari-
able number of arguments. Each argument is a context that is specified by ZTRESS_TIMER or
ZTRESS_THREAD macros. Contexts are specified in priority descending order. Each context spec-
ifies completion conditions by providing the minimum number of executions and preemptions.
When all conditions are met and the execution has completed, an execution report is printed
and the macro returns. Note that while the test is executing, a progress report is periodically
printed.

Execution can be prematurely completed by specifying a test timeout (ztress_set_timeout())
or an explicit abort (ztress_abort()).

User function parameters contains an execution counter and a flag indicating if it is the last
execution.

The example below presents how to setup and run 3 contexts (one of which is k_timer interrupt
handler context). Completion criteria is set to at least 10000 executions of each context and 1000
preemptions of the lowest priority context. Additionally, the timeout is configured to complete
after 10 seconds if those conditions are not met. The last argument of each context is the initial
sleep time which will be adjusted throughout the test to achieve the highest CPU load.

ztress_set_timeout(K_MSEC(10000));
ZTRESS_EXECUTE(ZTRESS_TIMER(foo_0, user_data_0, 10000, Z_TIMEOUT_TICKS(20)),

ZTRESS_THREAD(foo_1, user_data_1, 10000, 0, Z_TIMEOUT_TICKS(20)),
ZTRESS_THREAD(foo_2, user_data_2, 10000, 1000, Z_TIMEOUT_

↪→TICKS(20)));

Configuration Static configuration of Ztress contains:

• ZTRESS_MAX_THREADS - number of supported threads.

• ZTRESS_STACK_SIZE - Stack size of created threads.

• ZTRESS_REPORT_PROGRESS_MS - Test progress report interval.

API reference

Running tests

2.12. Testing 209

Zephyr Project Documentation, Release 3.6.99

group ztest_test
This module eases the testing process by providing helpful macros and other testing struc-
tures.

Defines

ZTEST(suite, fn)
Create and register a new unit test.

Calling this macro will create a new unit test and attach it to the declared suite. The
suite does not need to be defined in the same compilation unit.

Parameters
• suite – The name of the test suite to attach this test

• fn – The test function to call.

ZTEST_USER(suite, fn)
Define a test function that should run as a user thread.

This macro behaves exactly the same as ZTEST, but calls the test function in user space
if CONFIG_USERSPACE was enabled.

Parameters
• suite – The name of the test suite to attach this test

• fn – The test function to call.

ZTEST_F(suite, fn)
Define a test function.

This macro behaves exactly the same as ZTEST(), but the function takes an argument
for the fixture of type struct suite##_fixture* named fixture.

Parameters
• suite – The name of the test suite to attach this test

• fn – The test function to call.

ZTEST_USER_F(suite, fn)
Define a test function that should run as a user thread.

If CONFIG_USERSPACE is not enabled, this is functionally identical to ZTEST_F(). The
test function takes a single fixture argument of type struct suite##_fixture* named
fixture.

Parameters
• suite – The name of the test suite to attach this test

• fn – The test function to call.

ZTEST_RULE(name, before_each_fn, after_each_fn)
Define a test rule that will run before/after each unit test.

Functions defined here will run before/after each unit test for every test suite. Along
with the callback, the test functions are provided a pointer to the test being run, and
the data. This provides a mechanism for tests to perform custom operations depending
on the specific test or the data (for example logging may use the test’s name).

Ordering:

210 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

• Test rule’s before function will run before the suite’s before function. This is done
to allow the test suite’s customization to take precedence over the rule which is
applied to all suites.

• Test rule’s after function is not guaranteed to run in any particular order.

Parameters
• name – The name for the test rule (must be unique within the compilation

unit)

• before_each_fn – The callback function (ztest_rule_cb) to call before
each test (may be NULL)

• after_each_fn – The callback function (ztest_rule_cb) to call after each
test (may be NULL)

ztest_run_test_suite(suite, shuffle, suite_iter, case_iter)
Run the specified test suite.

Parameters
• suite – Test suite to run.

• shuffle – Shuffle tests

• suite_iter – Test suite repetitions.

• case_iter – Test case repetitions.

Typedefs

typedef void (*ztest_rule_cb)(const struct ztest_unit_test *test, void *data)
Test rule callback function signature.

The function signature that can be used to register a test rule’s before/after callback.
This provides access to the test and the fixture data (if provided).

Param test
Pointer to the unit test in context

Param data
Pointer to the test’s fixture data (may be NULL)

Functions

void ztest_test_fail(void)
Fail the currently running test.

This is the function called from failed assertions and the like. You probably don’t need
to call it yourself.

void ztest_test_pass(void)
Pass the currently running test.

Normally a test passes just by returning without an assertion failure. However, if
the success case for your test involves a fatal fault, you can call this function from
k_sys_fatal_error_handler to indicate that the test passed before aborting the thread.

void ztest_test_skip(void)
Skip the current test.

2.12. Testing 211

Zephyr Project Documentation, Release 3.6.99

void ztest_skip_failed_assumption(void)

void ztest_simple_1cpu_before(void *data)
A ‘before’ function to use in test suites that just need to start 1cpu.

Ignores data, and calls z_test_1cpu_start()

Parameters
• data – The test suite’s data

void ztest_simple_1cpu_after(void *data)
A ‘after’ function to use in test suites that just need to stop 1cpu.

Ignores data, and calls z_test_1cpu_stop()

Parameters
• data – The test suite’s data

struct ztest_test_rule

struct ztest_arch_api
#include <ztest_test.h> Structure for architecture specific APIs.

Assertions These macros will instantly fail the test if the related assertion fails. When an as-
sertion fails, it will print the current file, line and function, alongside a reason for the failure
and an optional message. If the config CONFIG_ZTEST_ASSERT_VERBOSE is 0, the assertions will
only print the file and line numbers, reducing the binary size of the test.

Example output for a failed macro from zassert_equal(buf->ref, 2, "Invalid refcount"):

Assertion failed at main.c:62: test_get_single_buffer: Invalid refcount (buf->ref not equal␣
↪→to 2)
Aborted at unit test function

group ztest_assert
This module provides assertions when using Ztest.

Defines

zassert(cond, default_msg, ...)

zassume(cond, default_msg, ...)

zexpect(cond, default_msg, ...)

zassert_unreachable(...)
Assert that this function call won’t be reached.

Parameters
• ... – Optional message and variables to print if the assertion fails

zassert_true(cond, ...)
Assert that cond is true.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the assertion fails

212 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

zassert_false(cond, ...)
Assert that cond is false.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the assertion fails

zassert_ok(cond, ...)
Assert that cond is 0 (success)

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the assertion fails

zassert_not_ok(cond, ...)
Assert that cond is not 0 (failure)

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the assertion fails

zassert_is_null(ptr, ...)
Assert that ptr is NULL.

Parameters
• ptr – Pointer to compare

• ... – Optional message and variables to print if the assertion fails

zassert_not_null(ptr, ...)
Assert that ptr is not NULL.

Parameters
• ptr – Pointer to compare

• ... – Optional message and variables to print if the assertion fails

zassert_equal(a, b, ...)
Assert that a equals b.

a and b won’t be converted and will be compared directly.

Parameters
• a – Value to compare

• b – Value to compare

• ... – Optional message and variables to print if the assertion fails

zassert_not_equal(a, b, ...)
Assert that a does not equal b.

a and b won’t be converted and will be compared directly.

Parameters
• a – Value to compare

• b – Value to compare

• ... – Optional message and variables to print if the assertion fails

2.12. Testing 213

Zephyr Project Documentation, Release 3.6.99

zassert_equal_ptr(a, b, ...)
Assert that a equals b.

a and b will be converted to void * before comparing.

Parameters
• a – Value to compare

• b – Value to compare

• ... – Optional message and variables to print if the assertion fails

zassert_within(a, b, d, ...)
Assert that a is within b with delta d.

Parameters
• a – Value to compare

• b – Value to compare

• d – Delta

• ... – Optional message and variables to print if the assertion fails

zassert_between_inclusive(a, l, u, ...)
Assert that a is greater than or equal to l and less than or equal to u.

Parameters
• a – Value to compare

• l – Lower limit

• u – Upper limit

• ... – Optional message and variables to print if the assertion fails

zassert_mem_equal(...)
Assert that 2 memory buffers have the same contents.

This macro calls the final memory comparison assertion macro. Using double expan-
sion allows providing some arguments by macros that would expand to more than
one values (ANSI-C99 defines that all the macro arguments have to be expanded be-
fore macro call).

Parameters
• ... – Arguments, see zassert_mem_equal__ for real arguments accepted.

zassert_mem_equal__(buf, exp, size, ...)
Internal assert that 2 memory buffers have the same contents.

Note: This is internal macro, to be used as a second expansion. See
zassert_mem_equal.

Parameters
• buf – Buffer to compare

• exp – Buffer with expected contents

• size – Size of buffers

• ... – Optional message and variables to print if the assertion fails

214 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Expectations These macros will continue test execution if the related expectation fails and
subsequently fail the test at the end of its execution. When an expectation fails, it will print the
current file, line, and function, alongside a reason for the failure and an optional message but
continue executing the test. If the config CONFIG_ZTEST_ASSERT_VERBOSE is 0, the expectations
will only print the file and line numbers, reducing the binary size of the test.

For example, if the following expectations fail:

zexpect_equal(buf->ref, 2, "Invalid refcount");
zexpect_equal(buf->ref, 1337, "Invalid refcount");

The output will look something like:

START - test_get_single_buffer
Expectation failed at main.c:62: test_get_single_buffer: Invalid refcount (buf->ref not␣

↪→equal to 2)
Expectation failed at main.c:63: test_get_single_buffer: Invalid refcount (buf->ref not␣

↪→equal to 1337)
FAIL - test_get_single_buffer in 0.0 seconds

group ztest_expect
This module provides expectations when using Ztest.

Defines

zexpect_true(cond, ...)
Expect that cond is true, otherwise mark test as failed but continue its execution.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the expectation fails

zexpect_false(cond, ...)
Expect that cond is false, otherwise mark test as failed but continue its execution.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the expectation fails

zexpect_ok(cond, ...)
Expect that cond is 0 (success), otherwise mark test as failed but continue its execution.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the expectation fails

zexpect_not_ok(cond, ...)
Expect that cond is not 0 (failure), otherwise mark test as failed but continue its execu-
tion.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the expectation fails

2.12. Testing 215

Zephyr Project Documentation, Release 3.6.99

zexpect_is_null(ptr, ...)
Expect that ptr is NULL, otherwise mark test as failed but continue its execution.

Parameters
• ptr – Pointer to compare

• ... – Optional message and variables to print if the expectation fails

zexpect_not_null(ptr, ...)
Expect that ptr is not NULL, otherwise mark test as failed but continue its execution.

Parameters
• ptr – Pointer to compare

• ... – Optional message and variables to print if the expectation fails

zexpect_equal(a, b, ...)
Expect that a equals b, otherwise mark test as failed but continue its execution.

Parameters
• a – Value to compare

• b – Value to compare

• ... – Optional message and variables to print if the expectation fails

zexpect_not_equal(a, b, ...)
Expect that a does not equal b, otherwise mark test as failed but continue its execution.

a and b won’t be converted and will be compared directly.

Parameters
• a – Value to compare

• b – Value to compare

• ... – Optional message and variables to print if the expectation fails

zexpect_equal_ptr(a, b, ...)
Expect that a equals b, otherwise mark test as failed but continue its execution.

a and b will be converted to void * before comparing.

Parameters
• a – Value to compare

• b – Value to compare

• ... – Optional message and variables to print if the expectation fails

zexpect_within(a, b, delta, ...)
Expect that a is within b with delta d, otherwise mark test as failed but continue its
execution.

Parameters
• a – Value to compare

• b – Value to compare

• delta – Difference between a and b

• ... – Optional message and variables to print if the expectation fails

216 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

zexpect_between_inclusive(a, lower, upper, ...)
Expect that a is greater than or equal to l and less than or equal to u, otherwise mark
test as failed but continue its execution.

Parameters
• a – Value to compare

• lower – Lower limit

• upper – Upper limit

• ... – Optional message and variables to print if the expectation fails

zexpect_mem_equal(buf, exp, size, ...)
Expect that 2 memory buffers have the same contents, otherwise mark test as failed
but continue its execution.

Parameters
• buf – Buffer to compare

• exp – Buffer with expected contents

• size – Size of buffers

• ... – Optional message and variables to print if the expectation fails

Assumptions These macros will instantly skip the test or suite if the related assumption fails.
When an assumption fails, it will print the current file, line, and function, alongside a reason
for the failure and an optional message. If the config CONFIG_ZTEST_ASSERT_VERBOSE is 0, the
assumptions will only print the file and line numbers, reducing the binary size of the test.

Example output for a failed macro from zassume_equal(buf->ref, 2, "Invalid refcount"):

group ztest_assume
This module provides assumptions when using Ztest.

Defines

zassume_true(cond, ...)
Assume that cond is true.

If the assumption fails, the test will be marked as “skipped”.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the assumption fails

zassume_false(cond, ...)
Assume that cond is false.

If the assumption fails, the test will be marked as “skipped”.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the assumption fails

2.12. Testing 217

Zephyr Project Documentation, Release 3.6.99

zassume_ok(cond, ...)
Assume that cond is 0 (success)

If the assumption fails, the test will be marked as “skipped”.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the assumption fails

zassume_not_ok(cond, ...)
Assume that cond is not 0 (failure)

If the assumption fails, the test will be marked as “skipped”.

Parameters
• cond – Condition to check

• ... – Optional message and variables to print if the assumption fails

zassume_is_null(ptr, ...)
Assume that ptr is NULL.

If the assumption fails, the test will be marked as “skipped”.

Parameters
• ptr – Pointer to compare

• ... – Optional message and variables to print if the assumption fails

zassume_not_null(ptr, ...)
Assume that ptr is not NULL.

If the assumption fails, the test will be marked as “skipped”.

Parameters
• ptr – Pointer to compare

• ... – Optional message and variables to print if the assumption fails

zassume_equal(a, b, ...)
Assume that a equals b.

a and b won’t be converted and will be compared directly. If the assumption fails, the
test will be marked as “skipped”.

Parameters
• a – Value to compare

• b – Value to compare

• ... – Optional message and variables to print if the assumption fails

zassume_not_equal(a, b, ...)
Assume that a does not equal b.

a and b won’t be converted and will be compared directly. If the assumption fails, the
test will be marked as “skipped”.

Parameters
• a – Value to compare

• b – Value to compare

• ... – Optional message and variables to print if the assumption fails

218 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

zassume_equal_ptr(a, b, ...)
Assume that a equals b.

a and b will be converted to void * before comparing. If the assumption fails, the test
will be marked as “skipped”.

Parameters
• a – Value to compare

• b – Value to compare

• ... – Optional message and variables to print if the assumption fails

zassume_within(a, b, d, ...)
Assume that a is within b with delta d.

If the assumption fails, the test will be marked as “skipped”.

Parameters
• a – Value to compare

• b – Value to compare

• d – Delta

• ... – Optional message and variables to print if the assumption fails

zassume_between_inclusive(a, l, u, ...)
Assume that a is greater than or equal to l and less than or equal to u.

If the assumption fails, the test will be marked as “skipped”.

Parameters
• a – Value to compare

• l – Lower limit

• u – Upper limit

• ... – Optional message and variables to print if the assumption fails

zassume_mem_equal(...)
Assume that 2 memory buffers have the same contents.

This macro calls the final memory comparison assumption macro. Using double ex-
pansion allows providing some arguments by macros that would expand to more than
one values (ANSI-C99 defines that all the macro arguments have to be expanded before
macro call).

Parameters
• ... – Arguments, see zassume_mem_equal__ for real arguments accepted.

zassume_mem_equal__(buf, exp, size, ...)
Internal assume that 2 memory buffers have the same contents.

If the assumption fails, the test will be marked as “skipped”.

Note: This is internal macro, to be used as a second expansion. See zas-
sume_mem_equal.

Parameters
• buf – Buffer to compare

• exp – Buffer with expected contents

2.12. Testing 219

Zephyr Project Documentation, Release 3.6.99

• size – Size of buffers

• ... – Optional message and variables to print if the assumption fails

Ztress

group ztest_ztress
This module provides test stress when using Ztest.

Defines

ZTRESS_TIMER(handler, user_data, exec_cnt, init_timeout)
Descriptor of a k_timer handler execution context.

The handler is executed in the k_timer handler context which typically means inter-
rupt context. This context will preempt any other used in the set.

Note: There can only be up to one k_timer context in the set and it must be the first
argument of ZTRESS_EXECUTE.

Parameters
• handler – User handler of type ztress_handler.

• user_data – User data passed to the handler.

• exec_cnt – Number of handler executions to complete the test. If 0 then
this is not included in completion criteria.

• init_timeout – Initial backoff time base (given in k_timeout_t). It is ad-
justed during the test to optimize CPU load. The actual timeout used for
the timer is randomized.

ZTRESS_THREAD(handler, user_data, exec_cnt, preempt_cnt, init_timeout)
Descriptor of a thread execution context.

The handler is executed in the thread context. The priority of the thread is determined
based on the order in which contexts are listed in ZTRESS_EXECUTE.

Note: thread sleeps for random amount of time. Additionally, the thread busy-waits
for a random length of time to further increase randomization in the test.

Parameters
• handler – User handler of type ztress_handler.

• user_data – User data passed to the handler.

• exec_cnt – Number of handler executions to complete the test. If 0 then
this is not included in completion criteria.

• preempt_cnt – Number of preemptions of that context to complete the
test. If 0 then this is not included in completion criteria.

• init_timeout – Initial backoff time base (given in k_timeout_t). It is ad-
justed during the test to optimize CPU load. The actual timeout used for
sleeping is randomized.

220 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

ZTRESS_CONTEXT_INITIALIZER(_handler, _user_data, _exec_cnt, _preempt_cnt, _t)
Initialize context structure.

For argument types see ztress_context_data. For more details see ZTRESS_THREAD.

Parameters
• _handler – Handler.

• _user_data – User data passed to the handler.

• _exec_cnt – Execution count limit.

• _preempt_cnt – Preemption count limit.

• _t – Initial timeout.

ZTRESS_EXECUTE(...)
Setup and run stress test.

It initialises all contexts and calls ztress_execute.

Parameters
• ... – List of contexts. Contexts are configured using ZTRESS_TIMER and
ZTRESS_THREAD macros. ZTRESS_TIMER must be the first argument if
used. Each thread context has an assigned priority. The priority is as-
signed in a descending order (first listed thread context has the highest
priority). The maximum number of supported thread contexts, including
the timer context, is configurable in Kconfig (ZTRESS_MAX_THREADS).

Typedefs

typedef bool (*ztress_handler)(void *user_data, uint32_t cnt, bool last, int prio)
User handler called in one of the configured contexts.

Param user_data
User data provided in the context descriptor.

Param cnt
Current execution counter. Counted from 0.

Param last
Flag set to true indicates that it is the last execution because completion
criteria are met, test timed out or was aborted.

Param prio
Context priority counting from 0 which indicates the highest priority.

Retval true
continue test.

Retval false
stop executing the current context.

Functions

int ztress_execute(struct ztress_context_data *timer_data, struct ztress_context_data
*thread_data, size_t cnt)

Execute contexts.

The test runs until all completion requirements are met or until the test times out (use
ztress_set_timeout to configure timeout) or until the test is aborted (ztress_abort).

2.12. Testing 221

Zephyr Project Documentation, Release 3.6.99

on test completion a report is printed (ztress_report is called internally).

Parameters
• timer_data – Timer context. NULL if timer context is not used.

• thread_data – List of thread contexts descriptors in priority descending
order.

• cnt – Number of thread contexts.

Return values
• -EINVAL – If configuration is invalid.

• 0 – if test is successfully performed.

void ztress_abort(void)
Abort ongoing stress test.

void ztress_set_timeout(k_timeout_t t)
Set test timeout.

Test is terminated after timeout disregarding completion criteria. Setting is persistent
between executions.

Parameters
• t – Timeout.

void ztress_report(void)
Print last test report.

Report contains number of executions and preemptions for each context, initial and
adjusted timeouts and CPU load during the test.

int ztress_exec_count(uint32_t id)
Get number of executions of a given context in the last test.

Parameters
• id – Context id. 0 means the highest priority.

Returns
Number of executions.

int ztress_preempt_count(uint32_t id)
Get number of preemptions of a given context in the last test.

Parameters
• id – Context id. 0 means the highest priority.

Returns
Number of preemptions.

uint32_t ztress_optimized_ticks(uint32_t id)
Get optimized timeout base of a given context in the last test.

Optimized value can be used to update initial value. It will improve the test since
optimal CPU load will be reach immediately.

Parameters
• id – Context id. 0 means the highest priority.

Returns
Optimized timeout base.

222 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

struct ztress_context_data
#include <ztress.h>

Mocking via FFF Zephyr has integrated with FFF for mocking. See FFF for documentation. To
use it, include the relevant header:

#include <zephyr/fff.h>

Zephyr provides several FFF-based fake drivers which can be used as either stubs or mocks.
Fake driver instances are configured via Devicetree and Configuration System (Kconfig). See the
following devicetree bindings for more information:

• zephyr,fake-can
• zephyr,fake-eeprom

Zephyr also has defined extensions to FFF for simplified declarations of fake functions. See FFF
Extensions.

Customizing Test Output

Customization is enabled by setting CONFIG_ZTEST_TC_UTIL_USER_OVERRIDE to “y” and adding a
file tc_util_user_override.h with your overrides.

Add the line zephyr_include_directories(my_folder) to your project’s CMakeLists.txt to let
Zephyr find your header file during builds.

See the file subsys/testsuite/include/zephyr/tc_util.h to see which macros and/or defines can be
overridden. These will be surrounded by blocks such as:

#ifndef SOMETHING
#define SOMETHING <default implementation>
#endif /* SOMETHING */

Shuffling Test Sequence

By default the tests are sorted and ran in alphanumerical order. Test cases may be dependent on
this sequence. Enable CONFIG_ZTEST_SHUFFLE to randomize the order. The output from the test
will display the seed for failed tests. For native simulator builds you can provide the seed as an
argument to twister with –seed

Static configuration of ZTEST_SHUFFLE contains:

• CONFIG_ZTEST_SHUFFLE_SUITE_REPEAT_COUNT - Number of iterations the test suite will run.

• CONFIG_ZTEST_SHUFFLE_TEST_REPEAT_COUNT - Number of iterations the test will run.

Test Selection

For tests built for native simulator, use command line arguments to list or select tests to run. The
test argument expects a comma separated list of suite::test . You can substitute the test name
with an * to run all tests within a suite.

For example

2.12. Testing 223

https://github.com/meekrosoft/fff
https://github.com/zephyrproject-rtos/zephyr/blob/main/subsys/testsuite/include/zephyr/tc_util.h

Zephyr Project Documentation, Release 3.6.99

$ zephyr.exe -list
$ zephyr.exe -test="fixture_tests::test_fixture_pointer,framework_tests::test_assert_mem_
↪→equal"
$ zephyr.exe -test="framework_tests::*"

FFF Extensions

group fff_extensions
This module provides extensions to FFF for simplifying the configuration and usage of
fakes.

Defines

RETURN_HANDLED_CONTEXT(FUNCNAME, CONTEXTTYPE, RESULTFIELD,
CONTEXTPTRNAME, HANDLERBODY)

Wrap custom fake body to extract defined context struct.

Add extension macro for simplified creation of fake functions needing call-specific con-
text data.

This macro enables a fake to be implemented as follows and requires no familiarity
with the inner workings of FFF.

struct FUNCNAME##_custom_fake_context
{

struct instance * const instance;
int result;

};

int FUNCNAME##_custom_fake(
const struct instance **instance_out)

{
RETURN_HANDLED_CONTEXT(

FUNCNAME,
struct FUNCNAME##_custom_fake_context,
result,
context,
{

if (context != NULL)
{

if (context->result == 0)
{

if (instance_out != NULL)
{

*instance_out = context->instance;
}

}
return context->result;

}
return FUNCNAME##_fake.return_val;

}
);

}

Parameters
• FUNCNAME – Name of function being faked

224 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

• CONTEXTTYPE – type of custom defined fake context struct

• RESULTFIELD – name of field holding the return type & value

• CONTEXTPTRNAME – expected name of pointer to custom defined fake con-
text struct

• HANDLERBODY – in-line custom fake handling logic

2.12.2 Test Runner (Twister)

This script scans for the set of unit test applications in the git repository and attempts to exe-
cute them. By default, it tries to build each test case on boards marked as default in the board
definition file.

The default options will build the majority of the tests on a defined set of boards and will run in
an emulated environment if available for the architecture or configuration being tested.

In normal use, twister runs a limited set of kernel tests (inside an emulator). Because of its limited
test execution coverage, twister cannot guarantee local changes will succeed in the full build
environment, but it does sufficient testing by building samples and tests for different boards
and different configurations to help keep the complete code tree buildable.

When using (at least) one -v option, twister’s console output shows for every test how the test is
run (qemu, native_sim, etc.) or whether the binary was just built. There are a few reasons why
twister only builds a test and doesn’t run it:

• The test is marked as build_only: true in its .yaml configuration file.

• The test configuration has defined a harness but you don’t have it or haven’t set it up.

• The target device is not connected and not available for flashing

• You or some higher level automation invoked twister with --build-only.

To run the script in the local tree, follow the steps below:

Linux

$ source zephyr-env.sh
$./scripts/twister

Windows

zephyr-env.cmd
python .\scripts\twister

If you have a system with a large number of cores and plenty of free storage space, you can build
and run all possible tests using the following options:

Linux

$./scripts/twister --all --enable-slow

Windows

python .\scripts\twister --all --enable-slow

This will build for all available boards and run all applicable tests in a simulated (for example
QEMU) environment.

If you want to run tests on one or more specific platforms, you can use the --platform option,
it is a platform filter for testing, with this option, test suites will only be built/run on the plat-
forms specified. This option also supports different revisions of one same board, you can use
--platform board@revision to test on a specific revision.

2.12. Testing 225

Zephyr Project Documentation, Release 3.6.99

The list of command line options supported by twister can be viewed using:

Linux

$./scripts/twister --help

Windows

python .\scripts\twister --help

Board Configuration

To build tests for a specific board and to execute some of the tests on real hardware or in an
emulation environment such as QEMU a board configuration file is required which is generic
enough to be used for other tasks that require a board inventory with details about the board
and its configuration that is only available during build time otherwise.

The board metadata file is located in the board directory and is structured using the YAML
markup language. The example below shows a board with a data required for best test coverage
for this specific board:

identifier: frdm_k64f
name: NXP FRDM-K64F
type: mcu
arch: arm
toolchain:
- zephyr
- gnuarmemb
- xtools

supported:
- arduino_gpio
- arduino_i2c
- netif:eth
- adc
- i2c
- nvs
- spi
- gpio
- usb_device
- watchdog
- can
- pwm

testing:
default: true

identifier:
A string that matches how the board is defined in the build system. This same string is used
when building, for example when calling west build or cmake:

with west
west build -b reel_board
with cmake
cmake -DBOARD=reel_board ..

name:
The actual name of the board as it appears in marketing material.

type:
Type of the board or configuration, currently we support 2 types: mcu, qemu

simulation:
Simulator used to simulate the platform, e.g. qemu.

226 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

arch:
Architecture of the board

toolchain:
The list of supported toolchains that can build this board. This should match one of the
values used for ZEPHYR_TOOLCHAIN_VARIANT when building on the command line

ram:
Available RAM on the board (specified in KB). This is used to match testcase requirements.
If not specified we default to 128KB.

flash:
Available FLASH on the board (specified in KB). This is used to match testcase requirements.
If not specified we default to 512KB.

supported:
A list of features this board supports. This can be specified as a single word feature or as a
variant of a feature class. For example:

supported:
- pci

This indicates the board does support PCI. You can make a testcase build or run only on
such boards, or:

supported:
- netif:eth
- sensor:bmi16

A testcase can both depend on ‘eth’ to only test ethernet or on ‘netif’ to run on any board
with a networking interface.

testing:
testing relating keywords to provide best coverage for the features of this board.

default: [True|False]:
This is a default board, it will tested with the highest priority and is covered when
invoking the simplified twister without any additional arguments.

ignore_tags:
Do not attempt to build (and therefore run) tests marked with this list of tags.

only_tags:
Only execute tests with this list of tags on a specific platform.

timeout_multiplier: <float> (default 1)
Multiply each test case timeout by specified ratio. This option allows to tune timeouts
only for required platform. It can be useful in case naturally slow platform I.e.: HW
board with power-efficient but slow CPU or simulation platform which can perform
instruction accurate simulation but does it slowly.

Test Cases

Test cases are detected by the presence of a testcase.yaml or a sample.yaml files in the appli-
cation’s project directory. This file may contain one or more entries in the test section each
identifying a test scenario.

The name of each testcase needs to be unique in the context of the overall testsuite and has to
follow basic rules:

1. The format of the test identifier shall be a string without any spaces or special characters
(allowed characters: alphanumeric and [_=]) consisting of multiple sections delimited with
a dot (.).

2.12. Testing 227

Zephyr Project Documentation, Release 3.6.99

2. Each test identifier shall start with a section followed by a subsection separated by a dot.
For example, a test that covers semaphores in the kernel shall start with kernel.semaphore.

3. All test identifiers within a testcase.yaml file need to be unique. For example a testcase.yaml
file covering semaphores in the kernel can have:

• kernel.semaphore: For general semaphore tests

• kernel.semaphore.stress: Stress testing semaphores in the kernel.

4. Depending on the nature of the test, an identifier can consist of at least two sections:

• Ztest tests: The individual testcases in the ztest testsuite will be concatenated to iden-
tifier in the testcase.yaml file generating unique identifiers for every testcase in the
suite.

• Standalone tests and samples: This type of test should at least have 3 sections in the
test identifier in the testcase.yaml (or sample.yaml) file. The last section of the name
shall signify the test itself.

Test cases are written using the YAML syntax and share the same structure as samples. The
following is an example test with a few options that are explained in this document.

tests:
bluetooth.gatt:

build_only: true
platform_allow: qemu_cortex_m3 qemu_x86
tags: bluetooth

bluetooth.gatt.br:
build_only: true
extra_args: CONF_FILE="prj_br.conf"
filter: not CONFIG_DEBUG
platform_exclude: up_squared
platform_allow: qemu_cortex_m3 qemu_x86
tags: bluetooth

A sample with tests will have the same structure with additional information related to the sam-
ple and what is being demonstrated:

sample:
name: hello world
description: Hello World sample, the simplest Zephyr application

tests:
sample.basic.hello_world:

build_only: true
tags: tests
min_ram: 16

sample.basic.hello_world.singlethread:
build_only: true
extra_args: CONF_FILE=prj_single.conf
filter: not CONFIG_BT
tags: tests
min_ram: 16

The full canonical name for each test case is:<path to test case>/<test entry>
Each test block in the testcase meta data can define the following key/value pairs:

tags: <list of tags> (required)
A set of string tags for the testcase. Usually pertains to functional domains but can be any-
thing. Command line invocations of this script can filter the set of tests to run based on
tag.

skip: <True|False> (default False)
skip testcase unconditionally. This can be used for broken tests.

228 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

slow: <True|False> (default False)
Don’t run this test case unless --enable-slow or --enable-slow-only was passed in on the
command line. Intended for time-consuming test cases that are only run under certain
circumstances, like daily builds. These test cases are still compiled.

extra_args: <list of extra arguments>
Extra arguments to pass to Make when building or running the test case.

extra_configs: <list of extra configurations>
Extra configuration options to be merged with a master prj.conf when building or running
the test case. For example:

common:
tags: drivers adc

tests:
test:

depends_on: adc
test_async:

extra_configs:
- CONFIG_ADC_ASYNC=y

Using namespacing, it is possible to apply a configuration only to some hardware. Currently
both architectures and platforms are supported:

common:
tags: drivers adc

tests:
test:

depends_on: adc
test_async:

extra_configs:
- arch:x86:CONFIG_ADC_ASYNC=y
- platform:qemu_x86:CONFIG_DEBUG=y

build_only: <True|False> (default False)
If true, twister will not try to run the test even if the test is runnable on the platform.

This keyword is reserved for tests that are used to test if some code actually builds. A
build_only test is not designed to be run in any environment and should not be testing
any functionality, it only verifies that the code builds.

This option is often used to test drivers and the fact that they are correctly enabled in Zephyr
and that the code builds, for example sensor drivers. Such test shall not be used to verify
the functionality of the driver.

build_on_all: <True|False> (default False)
If true, attempt to build test on all available platforms. This is mostly used in CI for increased
coverage. Do not use this flag in new tests.

depends_on: <list of features>
A board or platform can announce what features it supports, this option will enable the test
only those platforms that provide this feature.

levels: <list of levels>
Test levels this test should be part of. If a level is present, this test will be selectable using
the command line option --level <level name>

min_ram: <integer>
minimum amount of RAM in KB needed for this test to build and run. This is compared
with information provided by the board metadata.

min_flash: <integer>
minimum amount of ROM in KB needed for this test to build and run. This is compared
with information provided by the board metadata.

2.12. Testing 229

Zephyr Project Documentation, Release 3.6.99

timeout: <number of seconds>
Length of time to run test before automatically killing it. Default to 60 seconds.

arch_allow: <list of arches, such as x86, arm, arc>
Set of architectures that this test case should only be run for.

arch_exclude: <list of arches, such as x86, arm, arc>
Set of architectures that this test case should not run on.

platform_allow: <list of platforms>
Set of platforms that this test case should only be run for. Do not use this option to limit
testing or building in CI due to time or resource constraints, this option should only be
used if the test or sample can only be run on the allowed platform and nothing else.

integration_platforms: <YML list of platforms/boards>
This option limits the scope to the listed platforms when twister is invoked with the
--integration option. Use this instead of platform_allow if the goal is to limit scope due to
timing or resource constraints.

platform_exclude: <list of platforms>
Set of platforms that this test case should not run on.

extra_sections: <list of extra binary sections>
When computing sizes, twister will report errors if it finds extra, unexpected sections in the
Zephyr binary unless they are named here. They will not be included in the size calculation.

sysbuild: <True|False> (default False)
Build the project using sysbuild infrastructure. Only the main project’s generated device-
tree and Kconfig will be used for filtering tests. on device testing must use the hardware
map, or west flash to load the images onto the target. The --erase option of west flash is
not supported with this option. Usage of unsupported options will result in tests requiring
sysbuild support being skipped.

harness: <string>
A harness keyword in the testcase.yaml file identifies a Twister harness needed to run
a test successfully. A harness is a feature of Twister and implemented by Twister, some
harnesses are defined as placeholders and have no implementation yet.

A harness can be seen as the handler that needs to be implemented in Twister to be able
to evaluate if a test passes criteria. For example, a keyboard harness is set on tests that re-
quire keyboard interaction to reach verdict on whether a test has passed or failed, however,
Twister lack this harness implementation at the moment.

Supported harnesses:

• ztest

• test

• console

• pytest

• gtest

• robot

Harnesses ztest, gtest and console are based on parsing of the output and matching cer-
tain phrases. ztest and gtest harnesses look for pass/fail/etc. frames defined in those
frameworks. Use gtest harness if you’ve already got tests written in the gTest framework
and do not wish to update them to zTest. The console harness tells Twister to parse a test’s
text output for a regex defined in the test’s YAML file. The robot harness is used to execute
Robot Framework test suites in the Renode simulation framework.

Some widely used harnesses that are not supported yet:

• keyboard

230 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

• net

• bluetooth

Harness bsim is implemented in limited way - it helps only to copy the final exe-
cutable (zephyr.exe) from build directory to BabbleSim’s bindirectory (${BSIM_OUT_PATH}/
bin). This action is useful to allow BabbleSim’s tests to directly run after. By de-
fault, the executable file name is (with dots and slashes replaced by underscores):
bs_<platform_name>_<test_path>_<test_scenario_name>. This name can be overridden
with the bsim_exe_name option in harness_config section.

platform_key: <list of platform attributes>
Often a test needs to only be built and run once to qualify as passing. Imagine a library of
code that depends on the platform architecture where passing the test on a single platform
for each arch is enough to qualify the tests and code as passing. The platform_key attribute
enables doing just that.

For example to key on (arch, simulation) to ensure a test is run once per arch and simulation
(as would be most common):

platform_key:
- arch
- simulation

Adding platform (board) attributes to include things such as soc name, soc family, and per-
haps sets of IP blocks implementing each peripheral interface would enable other inter-
esting uses. For example, this could enable building and running SPI tests once for each
unique IP block.

harness_config: <harness configuration options>
Extra harness configuration options to be used to select a board and/or for handling generic
Console with regex matching. Config can announce what features it supports. This option
will enable the test to run on only those platforms that fulfill this external dependency.

The following options are currently supported:

type: <one_line|multi_line> (required)
Depends on the regex string to be matched

regex: <list of regular expressions> (required)
Strings with regular expressions to match with the test’s output to confirm the test runs
as expected.

ordered: <True|False> (default False)
Check the regular expression strings in orderly or randomly fashion

repeat: <integer>
Number of times to validate the repeated regex expression

record: <recording options> (optional)
regex: <regular expression> (required)

The regular expression with named subgroups to match data fields at the test’s
output lines where the test provides some custom data for further analysis. These
records will be written into the build directory ‘recording.csv’ file as well as
‘recording’ property of the test suite object in ‘twister.json’.

For example, to extract three data fields ‘metric’, ‘cycles’, ‘nanoseconds’:

record:
regex: "(?P<metric>.*):(?P<cycles>.*) cycles, (?P<nanoseconds>.*) ns"

fixture: <expression>
Specify a test case dependency on an external device(e.g., sensor), and identify se-
tups that fulfill this dependency. It depends on specific test setup and board selection
logic to pick the particular board(s) out of multiple boards that fulfill the dependency

2.12. Testing 231

Zephyr Project Documentation, Release 3.6.99

in an automation setup based on fixture keyword. Some sample fixture names are
i2c_hts221, i2c_bme280, i2c_FRAM, ble_fw and gpio_loop.

Only one fixture can be defined per testcase and the fixture name has to be unique
across all tests in the test suite.

pytest_root: <list of pytest testpaths> (default pytest)
Specify a list of pytest directories, files or subtests that need to be executed when
a test case begins to run. The default pytest directory is pytest. After the pytest
run is finished, Twister will check if the test case passed or failed according to the
pytest report. As an example, a list of valid pytest roots is presented below:

harness_config:
pytest_root:
- "pytest/test_shell_help.py"
- "../shell/pytest/test_shell.py"
- "/tmp/test_shell.py"
- "~/tmp/test_shell.py"
- "$ZEPHYR_BASE/samples/subsys/testsuite/pytest/shell/pytest/test_shell.

↪→py"
- "pytest/test_shell_help.py::test_shell2_sample" # select pytest␣

↪→subtest
- "pytest/test_shell_help.py::test_shell2_sample[param_a]" # select␣

↪→pytest parametrized subtest

pytest_args: <list of arguments> (default empty)
Specify a list of additional arguments to pass to pytest e.g.: pytest_args:
[‘-k=test_method’, ‘--log-level=DEBUG’]. Note that --pytest-args can be
passed multiple times to pass several arguments to the pytest.

pytest_dut_scope: <function|class|module|package|session> (default function)
The scope for which dut and shell pytest fixtures are shared. If the scope is set
to function, DUT is launched for every test case in python script. For session
scope, DUT is launched only once.

robot_test_path: <robot file path> (default empty)
Specify a path to a file containing a Robot Framework test suite to be run.

bsim_exe_name: <string>
If provided, the executable filename when copying to BabbleSim’s bin directory,
will be bs_<platform_name>_<bsim_exe_name> instead of the default based on the
test path and scenario name.

The following is an example yaml file with a few harness_config options.

sample:
name: HTS221 Temperature and Humidity Monitor

common:
tags: sensor
harness: console
harness_config:

type: multi_line
ordered: false
regex:
- "Temperature:(.*)C"
- "Relative Humidity:(.*)%"

fixture: i2c_hts221
tests:
test:

tags: sensors
depends_on: i2c

The following is an example yaml file with pytest harness_config options, default
pytest_root name “pytest” will be used if pytest_root not specified. please refer the

232 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

examples in samples/subsys/testsuite/pytest/.

common:
harness: pytest

tests:
pytest.example.directories:

harness_config:
pytest_root:
- pytest_dir1
- $ENV_VAR/samples/test/pytest_dir2

pytest.example.files_and_subtests:
harness_config:
pytest_root:
- pytest/test_file_1.py
- test_file_2.py::test_A
- test_file_2.py::test_B[param_a]

The following is an example yaml file with robot harness_config options.

tests:
robot.example:

harness: robot
harness_config:
robot_test_path: [robot file path]

filter: <expression>
Filter whether the testcase should be run by evaluating an expression against an environ-
ment containing the following values:

{ ARCH : <architecture>,
PLATFORM : <platform>,
<all CONFIG_* key/value pairs in the test's generated defconfig>,
*<env>: any environment variable available

}

Twister will first evaluate the expression to find if a “limited” cmake call, i.e. using pack-
age_helper cmake script, can be done. Existence of “dt_*” entries indicates devicetree is
needed. Existence of “CONFIG*” entries indicates kconfig is needed. If there are no other
types of entries in the expression a filtration can be done without creating a complete build
system. If there are entries of other types a full cmake is required.

The grammar for the expression language is as follows:

expression : expression 'and' expression
| expression 'or' expression
| 'not' expression
| '(' expression ')'
| symbol '==' constant
| symbol '!=' constant
| symbol '<' NUMBER
| symbol '>' NUMBER
| symbol '>=' NUMBER
| symbol '<=' NUMBER
| symbol 'in' list
| symbol ':' STRING
| symbol
;

list : '[' list_contents ']';

list_contents : constant (',' constant)*;

constant : NUMBER | STRING;

2.12. Testing 233

Zephyr Project Documentation, Release 3.6.99

For the case where expression ::= symbol, it evaluates to true if the symbol is defined to
a non-empty string.

Operator precedence, starting from lowest to highest:

• or (left associative)

• and (left associative)

• not (right associative)

• all comparison operators (non-associative)

arch_allow, arch_exclude, platform_allow, platform_exclude are all syntactic sugar for
these expressions. For instance:

arch_exclude = x86 arc

Is the same as:

filter = not ARCH in ["x86", "arc"]

The : operator compiles the string argument as a regular expression, and then returns a
true value only if the symbol’s value in the environment matches. For example, if CON-
FIG_SOC="stm32f107xc" then

filter = CONFIG_SOC : "stm.*"

Would match it.

required_snippets: <list of needed snippets>
Snippets are supported in twister for test cases that require them. As with normal appli-
cations, twister supports using the base zephyr snippet directory and test application di-
rectory for finding snippets. Listed snippets will filter supported tests for boards (snippets
must be compatible with a board for the test to run on them, they are not optional).

The following is an example yaml file with 2 required snippets.

tests:
snippet.example:

required_snippets:
- cdc-acm-console
- user-snippet-example

The set of test cases that actually run depends on directives in the testcase filed and options
passed in on the command line. If there is any confusion, running with -v or examining the
discard report (twister_discard.csv) can help show why particular test cases were skipped.

Metrics (such as pass/fail state and binary size) for the last code release are stored in scripts/
release/twister_last_release.csv. To update this, pass the --all --release options.

To load arguments from a file, add + before the file name, e.g., +file_name. File content must be
one or more valid arguments separated by line break instead of white spaces.

Most everyday users will run with no arguments.

Managing tests timeouts

There are several parameters which control tests timeouts on various levels:

• timeout option in each test case. See here for more details.

• timeout_multiplier option in board configuration. See here for more details.

234 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

• --timeout-multiplier twister option which can be used to adjust timeouts in exact twister
run. It can be useful in case of simulation platform as simulation time may depend on the
host speed & load or we may select different simulation method (i.e. cycle accurate but
slower one), etc…

Overall test case timeout is a multiplication of these three parameters.

Running in Integration Mode

This mode is used in continuous integration (CI) and other automated environments used to give
developers fast feedback on changes. The mode can be activated using the --integration option
of twister and narrows down the scope of builds and tests if applicable to platforms defined
under the integration keyword in the testcase definition file (testcase.yaml and sample.yaml).

Running tests on custom emulator

Apart from the already supported QEMU and other simulated environments, Twister supports
running any out-of-tree custom emulator defined in the board’s board.cmake. To use this type of
simulation, add the following properties to custom_board/custom_board.yaml:

simulation: custom
simulation_exec: <name_of_emu_binary>

This tells Twister that the board is using a custom emulator called <name_of_emu_binary>, make
sure this binary exists in the PATH.

Then, in custom_board/board.cmake, set the supported emulation platforms to custom:

set(SUPPORTED_EMU_PLATFORMS custom)

Finally, implement the run_custom target in custom_board/board.cmake. It should look some-
thing like this:

add_custom_target(run_custom
COMMAND
<name_of_emu_binary to invoke during 'run'>
<any args to be passed to the command, i.e. ${BOARD}, ${APPLICATION_BINARY_DIR}/zephyr/

↪→zephyr.elf>
WORKING_DIRECTORY ${APPLICATION_BINARY_DIR}
DEPENDS ${logical_target_for_zephyr_elf}
USES_TERMINAL
)

Running Tests on Hardware

Beside being able to run tests in QEMU and other simulated environments, twister supports run-
ning most of the tests on real devices and produces reports for each run with detailed FAIL/PASS
results.

Executing tests on a single device To use this feature on a single connected device, run twister
with the following new options:

Linux

scripts/twister --device-testing --device-serial /dev/ttyACM0 \
--device-serial-baud 115200 -p frdm_k64f -T tests/kernel

2.12. Testing 235

Zephyr Project Documentation, Release 3.6.99

Windows

python .\scripts\twister --device-testing --device-serial COM1 \
--device-serial-baud 115200 -p frdm_k64f -T tests/kernel

The --device-serial option denotes the serial device the board is connected to. This needs to
be accessible by the user running twister. You can run this on only one board at a time, specified
using the --platform option.

The --device-serial-baud option is only needed if your device does not run at 115200 baud.

To support devices without a physical serial port, use the --device-serial-pty option. In this
cases, log messages are captured for example using a script. In this case you can run twister with
the following options:

Linux

scripts/twister --device-testing --device-serial-pty "script.py" \
-p intel_adsp/cavs25 -T tests/kernel

Windows

Note: Not supported on Windows OS

The script is user-defined and handles delivering the messages which can be used by twister to
determine the test execution status.

The --device-flash-timeout option allows to set explicit timeout on the device flash operation,
for example when device flashing takes significantly large time.

The --device-flash-with-test option indicates that on the platform the flash operation also
executes a test case, so the flash timeout is increased by a test case timeout.

Executing tests onmultiple devices To build and execute tests on multiple devices connected
to the host PC, a hardware map needs to be created with all connected devices and their details
such as the serial device, baud and their IDs if available. Run the following command to produce
the hardware map:

Linux

./scripts/twister --generate-hardware-map map.yml

Windows

python .\scripts\twister --generate-hardware-map map.yml

The generated hardware map file (map.yml) will have the list of connected devices, for example:

Linux

- connected: true
id: OSHW000032254e4500128002ab98002784d1000097969900
platform: unknown
product: DAPLink CMSIS-DAP
runner: pyocd
serial: /dev/cu.usbmodem146114202

- connected: true
id: 000683759358
platform: unknown
product: J-Link
runner: unknown
serial: /dev/cu.usbmodem0006837593581

236 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Windows

- connected: true
id: OSHW000032254e4500128002ab98002784d1000097969900
platform: unknown
product: unknown
runner: unknown
serial: COM1

- connected: true
id: 000683759358
platform: unknown
product: unknown
runner: unknown
serial: COM2

Any options marked as unknown need to be changed and set with the correct values, in the above
example the platform names, the products and the runners need to be replaced with the correct
values corresponding to the connected hardware. In this example we are using a reel_board and
an nrf52840dk/nrf52840:

Linux

- connected: true
id: OSHW000032254e4500128002ab98002784d1000097969900
platform: reel_board
product: DAPLink CMSIS-DAP
runner: pyocd
serial: /dev/cu.usbmodem146114202
baud: 9600

- connected: true
id: 000683759358
platform: nrf52840dk/nrf52840
product: J-Link
runner: nrfjprog
serial: /dev/cu.usbmodem0006837593581
baud: 9600

Windows

- connected: true
id: OSHW000032254e4500128002ab98002784d1000097969900
platform: reel_board
product: DAPLink CMSIS-DAP
runner: pyocd
serial: COM1
baud: 9600

- connected: true
id: 000683759358
platform: nrf52840dk/nrf52840
product: J-Link
runner: nrfjprog
serial: COM2
baud: 9600

The baud entry is only needed if not running at 115200.

If the map file already exists, then new entries are added and existing entries will be updated.
This way you can use one single master hardware map and update it for every run to get the
correct serial devices and status of the devices.

With the hardware map ready, you can run any tests by pointing to the map

Linux

2.12. Testing 237

Zephyr Project Documentation, Release 3.6.99

./scripts/twister --device-testing --hardware-map map.yml -T samples/hello_world/

Windows

python .\scripts\twister --device-testing --hardware-map map.yml -T samples\hello_world

The above command will result in twister building tests for the platforms defined in the hard-
ware map and subsequently flashing and running the tests on those platforms.

Note: Currently only boards with support for pyocd, nrfjprog, jlink, openocd, or dediprog
are supported with the hardware map features. Boards that require other runners to flash the
Zephyr binary are still work in progress.

Hardware map allows to set --device-flash-timeout and --device-flash-with-test com-
mand line options as flash-timeout and flash-with-test fields respectively. These hardware
map values override command line options for the particular platform.

Serial PTY support using --device-serial-pty can also be used in the hardware map:

- connected: true
id: None
platform: intel_adsp/cavs25
product: None
runner: intel_adsp
serial_pty: path/to/script.py
runner_params:
- --remote-host=remote_host_ip_addr
- --key=/path/to/key.pem

The runner_params field indicates the parameters you want to pass to the west runner. For some
boards the west runner needs some extra parameters to work. It is equivalent to following west
and twister commands.

Linux

west flash --remote-host remote_host_ip_addr --key /path/to/key.pem

twister -p intel_adsp/cavs25 --device-testing --device-serial-pty script.py
--west-flash="--remote-host=remote_host_ip_addr,--key=/path/to/key.pem"

Windows

Note: Not supported on Windows OS

Note: For serial PTY, the “–generate-hardware-map” option cannot scan it out and generate a
correct hardware map automatically. You have to edit it manually according to above example.
This is because the serial port of the PTY is not fixed and being allocated in the system at runtime.

Fixtures Some tests require additional setup or special wiring specific to the test. Running the
tests without this setup or test fixture may fail. A testcase can specify the fixture it needs which
can then be matched with hardware capability of a board and the fixtures it supports via the
command line or using the hardware map file.

Fixtures are defined in the hardware map file as a list:

238 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

- connected: true
fixtures:
- gpio_loopback

id: 0240000026334e450015400f5e0e000b4eb1000097969900
platform: frdm_k64f
product: DAPLink CMSIS-DAP
runner: pyocd
serial: /dev/ttyACM9

When running twister with --device-testing, the configured fixture in the hardware map file
will be matched to testcases requesting the same fixtures and these tests will be executed on the
boards that provide this fixture.

Board

sensor XYZ

Testcase

harness: console...

Hardware Map...

Viewer does not support full SVG 1.1

Fixtures can also be provided via twister command option --fixture, this option can be used
multiple times and all given fixtures will be appended as a list. And the given fixtures will be
assigned to all boards, this means that all boards set by current twister command can run those
testcases which request the same fixtures.

Notes It may be useful to annotate board descriptions in the hardware map file with additional
information. Use the notes keyword to do this. For example:

- connected: false
fixtures:

(continues on next page)

2.12. Testing 239

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
- gpio_loopback

id: 000683290670
notes: An nrf5340dk/nrf5340 is detected as an nrf52840dk/nrf52840 with no serial
port, and three serial ports with an unknown platform. The board id of the serial
ports is not the same as the board id of the development kit. If you regenerate
this file you will need to update serial to reference the third port, and platform
to nrf5340dk/nrf5340/cpuapp or another supported board target.

platform: nrf52840dk/nrf52840
product: J-Link
runner: jlink
serial: null

Overriding Board Identifier When (re-)generated the hardware map file will contain an id
keyword that serves as the argument to --board-id when flashing. In some cases the detected
ID is not the correct one to use, for example when using an external J-Link probe. The probe_id
keyword overrides the id keyword for this purpose. For example:

- connected: false
id: 0229000005d9ebc600000000000000000000000097969905
platform: mimxrt1060_evk
probe_id: 000609301751
product: DAPLink CMSIS-DAP
runner: jlink
serial: null

Quarantine Twister allows user to provide configuration files defining a list of tests or plat-
forms to be put under quarantine. Such tests will be skipped and marked accordingly in the
output reports. This feature is especially useful when running larger test suits, where a failure
of one test can affect the execution of other tests (e.g. putting the physical board in a corrupted
state).

To use the quarantine feature one has to add the argument --quarantine-list
<PATH_TO_QUARANTINE_YAML> to a twister call. Multiple quarantine files can be used. The current
status of tests on the quarantine list can also be verified by adding --quarantine-verify to the
above argument. This will make twister skip all tests which are not on the given list.

A quarantine yaml has to be a sequence of dictionaries. Each dictionary has to have scenarios
and platforms entries listing combinations of scenarios and platforms to put under quarantine.
In addition, an optional entry comment can be used, where some more details can be given (e.g.
link to a reported issue). These comments will also be added to the output reports.

When quarantining a class of tests or many scenarios in a single testsuite or when dealing with
multiple issues within a subsystem, it is possible to use regular expressions, for example, ker-
nel.* would quarantine all kernel tests.

An example of entries in a quarantine yaml:

- scenarios:
- sample.basic.helloworld

comment: "Link to the issue: https://github.com/zephyrproject-rtos/zephyr/pull/33287"

- scenarios:
- kernel.common
- kernel.common.(misra|tls)
- kernel.common.nano64

platforms:
- .*_cortex_.*
- native_sim

240 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

To exclude a platform, use the following syntax:

- platforms:
- qemu_x86
comment: "broken qemu"

Additionally you can quarantine entire architectures or a specific simulator for executing tests.

Test Configuration

A test configuration can be used to customize various aspects of twister and the default enabled
options and features. This allows tweaking the filtering capabilities depending on the environ-
ment and makes it possible to adapt and improve coverage when targeting different sets of plat-
forms.

The test configuration also adds support for test levels and the ability to assign a specific test to
one or more levels. Using command line options of twister it is then possible to select a level and
just execute the tests included in this level.

Additionally, the test configuration allows defining level dependencies and additional inclusion
of tests into a specific level if the test itself does not have this information already.

In the configuration file you can include complete components using regular expressions and
you can specify which test level to import from the same file, making management of levels
easier.

To help with testing outside of upstream CI infrastructure, additional options are available in
the configuration file, which can be hosted locally. As of now, those options are available:

• Ability to ignore default platforms as defined in board definitions (Those are mostly emu-
lation platforms used to run tests in upstream CI)

• Option to specify your own list of default platforms overriding what upstream defines.

• Ability to override build_on_all options used in some testcases. This will treat tests or sample
as any other just build for default platforms you specify in the configuration file or on the
command line.

• Ignore some logic in twister to expand platform coverage in cases where default platforms
are not in scope.

Platform Configuration The following options control platform filtering in twister:

• override_default_platforms: override default key a platform sets in board configuration and
instead use the list of platforms provided in the configuration file as the list of default plat-
forms. This option is set to False by default.

• increased_platform_scope: This option is set to True by default, when disabled, twister will
not increase platform coverage automatically and will only build and run tests on the spec-
ified platforms.

• default_platforms: A list of additional default platforms to add. This list can either be used
to replace the existing default platforms or can extend it depending on the value of over-
ride_default_platforms.

And example platforms configuration:

platforms:
override_default_platforms: true
increased_platform_scope: false
default_platforms:
- qemu_x86

2.12. Testing 241

Zephyr Project Documentation, Release 3.6.99

Test Level Configuration The test configuration allows defining test levels, level dependen-
cies and additional inclusion of tests into a specific test level if the test itself does not have this
information already.

In the configuration file you can include complete components using regular expressions and
you can specify which test level to import from the same file, making management of levels
simple.

And example test level configuration:

levels:
- name: my-test-level
description: >

my custom test level
adds:

- kernel.threads.*
- kernel.timer.behavior
- arch.interrupt
- boards.*

Combined configuration To mix the Platform and level configuration, you can take an exam-
ple as below:

An example platforms plus level configuration:

platforms:
override_default_platforms: true
default_platforms:
- frdm_k64f

levels:
- name: smoke
description: >

A plan to be used verifying basic zephyr features.
- name: unit
description: >

A plan to be used verifying unit test.
- name: integration
description: >

A plan to be used verifying integration.
- name: acceptance
description: >

A plan to be used verifying acceptance.
- name: system
description: >

A plan to be used verifying system.
- name: regression
description: >

A plan to be used verifying regression.

To run with above test_config.yaml file, only default_platforms with given test level test cases
will run.

Linux

scripts/twister --test-config=<path to>/test_config.yaml
-T tests --level="smoke"

Running in Tests in Random Order

Enable ZTEST framework’s CONFIG_ZTEST_SHUFFLE config option to run your tests in random or-
der. This can be beneficial for identifying dependencies between test cases. For native_sim plat-

242 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

forms, you can provide the seed to the random number generator by providing -seed=value as
an argument to twister. See Shuffling Test Sequence for more details.

Robot Framework Tests

Zephyr supports Robot Framework as one of solutions for automated testing.

Robot files allow you to express interactive test scenarios in human-readable text format and
execute them in simulation or against hardware. At this moment Zephyr integration supports
running Robot tests in the Renode simulation framework.

To execute a Robot test suite with twister, run the following command:

Linux

$./scripts/twister --platform hifive1 --test samples/subsys/shell/shell_module/sample.
↪→shell.shell_module.robot

Windows

python .\scripts\twister --platform hifive1 --test samples/subsys/shell/shell_module/sample.
↪→shell.shell_module.robot

It’s also possible to run it by west directly, with:

$ ROBOT_FILES=shell_module.robot west build -p -b hifive1 -s samples/subsys/shell/shell_
↪→module -t run_renode_test

Writing Robot tests For the list of keywords provided by the Robot Framework itself, refer to
the official Robot documentation.

Information on writing and running Robot Framework tests in Renode can be found in the test-
ing section of Renode documentation. It provides a list of the most commonly used keywords
together with links to the source code where those are defined.

It’s possible to extend the framework by adding new keywords expressed directly in Robot test
suite files, as an external Python library or, like Renode does it, dynamically via XML-RPC. For
details see the extending Robot Framework section in the official Robot documentation.

Running a single testsuite To run a single testsuite instead of a whole group of test you can
run:

$ twister -p qemu_riscv32 -s tests/kernel/interrupt/arch.shared_interrupt

2.12.3 Twister blackbox tests

This guide aims to explain the structure of a test file so the reader will be able to understand
existing files and create their own. All developers should fix any tests they break and create new
ones when introducing new features, so this knowledge is important for any Twister developer.

Basics

Twister blackbox tests are written in python, using the pytest library. Read up on it here . Auxil-
iary test data follows whichever format it was in originally. Tests and data are wholly contained
in the scripts/tests/twister_blackbox directory and prepended with test_.

2.12. Testing 243

https://robotframework.org/
https://renode.io/
https://robotframework.org/robotframework/
https://renode.readthedocs.io/en/latest/introduction/testing.html
https://renode.readthedocs.io/en/latest/introduction/testing.html
https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#extending-robot-framework
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/tests/twister_blackbox

Zephyr Project Documentation, Release 3.6.99

Blackbox tests should not be aware of the internal twister code. Instead, they should call twister
as user would and check the results.

Sample test file

1 #!/usr/bin/env python3
2 # Copyright (c) 2024 Intel Corporation
3 #
4 # SPDX-License-Identifier: Apache-2.0
5

6 import importlib
7 import mock
8 import os
9 import pytest

10 import sys
11 import json
12

13 from conftest import ZEPHYR_BASE, TEST_DATA, testsuite_filename_mock
14 from twisterlib.testplan import TestPlan
15

16

17 class TestDummy:
18 TESTDATA_X = [
19 ("smoke", 5),
20 ("acceptance", 6),
21]
22

23 @classmethod
24 def setup_class(cls):
25 apath = os.path.join(ZEPHYR_BASE, "scripts", "twister")
26 cls.loader = importlib.machinery.SourceFileLoader("__main__", apath)
27 cls.spec = importlib.util.spec_from_loader(cls.loader.name, cls.loader)
28 cls.twister_module = importlib.util.module_from_spec(cls.spec)
29

30 @classmethod
31 def teardown_class(cls):
32 pass
33

34 @pytest.mark.parametrize(
35 "level, expected_tests", TESTDATA_X, ids=["smoke", "acceptance"]
36)
37 @mock.patch.object(TestPlan, "TESTSUITE_FILENAME", testsuite_filename_mock)
38 def test_level(self, capfd, out_path, level, expected_tests):
39 # Select platforms used for the tests
40 test_platforms = ["qemu_x86", "frdm_k64f"]
41 # Select test root
42 path = os.path.join(TEST_DATA, "tests")
43 config_path = os.path.join(TEST_DATA, "test_config.yaml")
44

45 # Set flags for our Twister command as a list of strs
46 args = (
47 # Flags related to the generic test setup:
48 # * Control the level of detail in stdout/err
49 # * Establish the output directory
50 # * Select Zephyr tests to use
51 # * Control whether to only build or build and run aforementioned tests
52 ["-i", "--outdir", out_path, "-T", path, "-y"]
53 # Flags under test
54 + ["--level", level]
55 # Flags required for the test
56 + ["--test-config", config_path]

(continues on next page)

244 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
57 # Flags related to platform selection
58 + [
59 val
60 for pair in zip(["-p"] * len(test_platforms), test_platforms)
61 for val in pair
62]
63)
64

65 # First, provide the args variable as our Twister command line arguments.
66 # Then, catch the exit code in the sys_exit variable.
67 with mock.patch.object(sys, "argv", [sys.argv[0]] + args), pytest.raises(
68 SystemExit
69) as sys_exit:
70 # Execute the Twister call itself.
71 self.loader.exec_module(self.twister_module)
72

73 # Check whether the Twister call succeeded
74 assert str(sys_exit.value) == "0"
75

76 # Access to the test file output
77 with open(os.path.join(out_path, "testplan.json")) as f:
78 j = json.load(f)
79 filtered_j = [
80 (ts["platform"], ts["name"], tc["identifier"])
81 for ts in j["testsuites"]
82 for tc in ts["testcases"]
83 if "reason" not in tc
84]
85

86 # Read stdout and stderr to out and err variables respectively
87 out, err = capfd.readouterr()
88 # Rewrite the captured buffers to stdout and stderr so the user can still read them
89 sys.stdout.write(out)
90 sys.stderr.write(err)
91

92 # Test-relevant checks
93 assert expected_tests == len(filtered_j)

Comparison with CLI

Test above runs the command

twister -i --outdir $OUTDIR -T $TEST_DATA/tests -y --level $LEVEL
--test-config $TEST_DATA/test_config.yaml -p qemu_x86 -p frdm_k64f

It presumes a CLI with the zephyr-env.sh or zephyr-env.cmd already run.

Such a test provides us with all the outputs we typically expect of a Twister run thanks to im-
portlib ‘s exec_module()1 . We can easily set up all flags that we expect from a Twister call via
args variable2 . We can check the standard output or stderr in out and err variables.

Beside the standard outputs, we can also investigate the file outputs, normally placed in
twister-out directories. Most of the time, we will use the out_path fixture in conjunction with
--outdir flag (L52) to keep test-generated files in temporary directories. Typical files read in
blackbox tests are testplan.json , twister.xml and twister.log .

1 Take note of the setup_class() class function, which allows us to run twister python file as if it were called directly
(bypassing the __name__ == '__main__' check).

2 We advise you to keep the first section of args definition intact in almost all of your tests, as it is used for the common
test setup.

2.12. Testing 245

Zephyr Project Documentation, Release 3.6.99

Other functionalities

Decorators
• @pytest.mark.usefixtures('clear_log')

– allows us to use clear_log fixture from conftest.py . The fixture is to become
autouse in the future. After that, this decorator can be removed.

• @pytest.mark.parametrize('level, expected_tests', TESTDATA_X, ids=['smoke',
'acceptance'])

– this is an example of pytest ‘s test parametrization. Read up on it here. TESTDATAs
are most often declared as class fields.

• @mock.patch.object(TestPlan, 'TESTSUITE_FILENAME', testsuite_filename_mock)
– this decorator allows us to use only tests defined in the test_data and ignore

the Zephyr testcases in the tests directory. Note that all “test_data“ tests use
test_data.yaml as a filename, not testcase.yaml ! Read up on the mock library
here.

Fixtures Blackbox tests use pytest ‘s fixtures, further reading on which is available here.

If you would like to add your own fixtures, consider whether they will be used in just one test
file, or in many.

• If in many, create such a fixture in the scripts/tests/twister_blackbox/conftest.py file.

– scripts/tests/twister_blackbox/conftest.py already contains some fixtures - take a look
there for an example.

• If in just one, declare it in that file.

– Consider using class fields instead - look at TESTDATAs for an example.

How do I…

Call Twister multiple times in one test? Sometimes we want to test something that requires
prior Twister use. --test-only flag would be a typical example, as it is to be coupled with pre-
vious --build-only Twister call. How should we approach that?

If we just call the importlib ‘s exec_module two times, we will experience log duplication.
twister.log will duplicate every line (triplicate if we call it three times, etc.) instead of over-
writing the log or appending to the end of it.

It is caused by the use of logger module variables in the Twister files. Thus us executing the
module again causes the loggers to have multiple handles.

To overcome this, between the calls you ought to use

capfd.readouterr() # To remove output from the buffer
Note that if you want output from all runs after each other,
skip this line.

clear_log_in_test() # To remove log duplication

2.12.4 Integration with pytest test framework

Please mind that integration of twister with pytest is still work in progress. Not every platform
type is supported in pytest (yet). If you find any issue with the integration or have an idea for an
improvement, please, let us know about it and open a GitHub issue/enhancement.

246 Chapter 2. Developing with Zephyr

https://docs.pytest.org/en/7.1.x/example/parametrize.html#different-options-for-test-ids
https://docs.python.org/3/library/unittest.mock.html
https://docs.pytest.org/en/6.2.x/fixture.html
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/tests/twister_blackbox/conftest.py
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/tests/twister_blackbox/conftest.py

Zephyr Project Documentation, Release 3.6.99

Introduction

Pytest is a python framework that “makes it easy to write small, readable tests, and can scale
to support complex functional testing for applications and libraries” (https://docs.pytest.org/en/
7.3.x/). Python is known for its free libraries and ease of using it for scripting. In addition,
pytest utilizes the concept of plugins and fixtures, increasing its expendability and reusability.
A pytest plugin pytest-twister-harness was introduced to provide an integration between pytest
and twister, allowing Zephyr’s community to utilize pytest functionality with keeping twister as
the main framework.

Integration with twister

By default, there is nothing to be done to enable pytest support in twister. The plugin is devel-
oped as a part of Zephyr’s tree. To enable install-less operation, twister first extends PYTHON-
PATH with path to this plugin, and then during pytest call, it appends the command with -p
twister_harness.plugin argument. If one prefers to use the installed version of the plugin,
they must add --allow-installed-plugin flag to twister’s call.

Pytest-based test suites are discovered the same way as other twister tests, i.e., by a presence
of testcase/sample.yaml. Inside, a keyword harness tells twister how to handle a given test. In
the case of harness: pytest, most of twister workflow (test suites discovery, parallelization,
building and reporting) remains the same as for other harnesses. The change happens during
the execution step. The below picture presents a simplified overview of the integration.

If harness: pytest is used, twister delegates the test execution to pytest, by calling it as a subpro-
cess. Required parameters (such as build directory, device to be used, etc.) are passed through
a CLI command. When pytest is done, twister looks for a pytest report (results.xml) and sets the
test result accordingly.

How to create a pytest test

An example folder containing a pytest test, application source code and Twister configuration
.yaml file can look like the following:

test_foo/
├─── pytest/
│ └─── test_foo.py
├─── src/
│ └─── main.c
├─── CMakeList.txt
├─── prj.conf
└─── testcase.yaml

An example of a pytest test is given at samples/subsys/testsuite/pytest/shell/pytest/test_shell.py.
Using the configuration provided in the testcase.yaml file, Twister builds the application from
src and then, if the .yaml file contains a harness: pytest entry, it calls pytest in a separate
subprocess. A sample configuration file may look like this:

tests:
some.foo.test:

harness: pytest
tags: foo

By default, pytest tries to look for tests in a pytest directory located next to a directory with
binary sources. A keyword pytest_root placed under harness_config section in .yaml file can
be used to point to other files, directories or subtests (more info here).

Pytest scans the given locations looking for tests, following its default discovery rules.

2.12. Testing 247

https://docs.pytest.org/en/7.3.x/
https://docs.pytest.org/en/7.3.x/
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/subsys/testsuite/pytest/shell/pytest/test_shell.py
https://docs.pytest.org/en/7.1.x/explanation/goodpractices.html#conventions-for-python-test-discovery

Zephyr Project Documentation, Release 3.6.99

Test execution

Twister

Collecting tests (ba... Generation test conf... Applying filtration Spawn workers (paral... Building

Is pytest test?

Run pytest with pytest-twister-harness plug...

yes

Execute test directly in Twister with fi...

no

Twister

Collect test results

Generate reports

Text is not SVG - cannot display

248 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

Passing extra arguments There are two ways for passing extra arguments to the called pytest
subprocess:

1. From .yaml file, using pytest_args placed under harness_config section - more info here.

2. Through Twister command line interface as --pytest-args argument. This can be particu-
larly useful when one wants to select a specific testcase from a test suite. For instance, one
can use a command:

$./scripts/twister --platform native_sim -T samples/subsys/testsuite/pytest/shell \
-s samples/subsys/testsuite/pytest/shell/sample.pytest.shell \
--pytest-args='-k test_shell_print_version'

Fixtures

dut Give access to a DeviceAdapter type object, that represents Device Under Test. This fixture
is the core of pytest harness plugin. It is required to launch DUT (initialize logging, flash device,
connect serial etc). This fixture yields a device prepared according to the requested type (native,
qemu, hardware, etc.). All types of devices share the same API. This allows for writing tests which
are device-type-agnostic. Scope of this fixture is determined by the pytest_dut_scope keyword
placed under harness_config section (more info here).

from twister_harness import DeviceAdapter

def test_sample(dut: DeviceAdapter):
dut.readlines_until('Hello world')

shell Provide a Shell class object with methods used to interact with shell application. It calls
wait_for_promt method, to not start scenario until DUT is ready. The shell fixture calls dut fix-
ture, hence has access to all its methods. The shell fixture adds methods optimized for interac-
tions with a shell. It can be used instead of dut for tests. Scope of this fixture is determined by
the pytest_dut_scope keyword placed under harness_config section (more info here).

from twister_harness import Shell

def test_shell(shell: Shell):
shell.exec_command('help')

mcumgr Sample fixture to wrap mcumgr command-line tool used to manage remote devices.
More information about MCUmgr can be found here MCUmgr.

Note: This fixture requires the mcumgr available in the system PATH

Only selected functionality of MCUmgr is wrapped by this fixture. For example, here is a test
with a fixture mcumgr

from twister_harness import DeviceAdapter, Shell, McuMgr

def test_upgrade(dut: DeviceAdapter, shell: Shell, mcumgr: McuMgr):
free the serial port for mcumgr
dut.disconnect()
upload the signed image
mcumgr.image_upload('path/to/zephyr.signed.bin')
obtain the hash of uploaded image from the device
second_hash = mcumgr.get_hash_to_test()
test a new upgrade image

(continues on next page)

2.12. Testing 249

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
mcumgr.image_test(second_hash)
reset the device remotely
mcumgr.reset_device()
continue test scenario, check version etc.

Classes

DeviceAdapter
class twister_harness.DeviceAdapter(device_config: DeviceConfig)

This class defines a common interface for all device types (hardware, simulator, QEMU)
used in tests to gathering device output and send data to it.

launch()→ None
Start by closing previously running application (no effect if not needed). Then, flash
and run test application. Finally, start an internal reader thread capturing an output
from a device.

connect()→ None
Connect to device - allow for output gathering.

readline(timeout: float | None = None, print_output: bool = True)→ str
Read line from device output. If timeout is not provided, then use base_timeout.

readlines(print_output: bool = True)→ list[str]
Read all available output lines produced by device from internal buffer.

readlines_until(regex: str | None = None, num_of_lines: int | None = None, timeout: float
| None = None, print_output: bool = True)→ list[str]

Read available output lines produced by device from internal buffer until following
conditions:

1. If regex is provided - read until regex regex is found in read line (or until timeout).

2. If num_of_lines is provided - read until number of read lines is equal to
num_of_lines (or until timeout).

3. If none of above is provided - return immediately lines collected so far in internal
buffer.

If timeout is not provided, then use base_timeout.

write(data: bytes)→ None
Write data bytes to device.

disconnect()→ None
Disconnect device - block output gathering.

close()→ None
Disconnect, close device and close reader thread.

Shell
class twister_harness.Shell(device: DeviceAdapter, prompt: str = ’uart:~$’, timeout: float |

None = None)
Helper class that provides methods used to interact with shell application.

250 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

exec_command(command: str, timeout: float | None = None, print_output: bool = True)→
list[str]

Send shell command to a device and return response. Passed command is extended by
double enter sings - first one to execute this command on a device, second one to re-
ceive next prompt what is a signal that execution was finished. Method returns print-
out of the executed command.

wait_for_prompt(timeout: float | None = None)→ bool
Send every 0.5 second “enter” command to the device until shell prompt statement
will occur (return True) or timeout will be exceeded (return False).

Examples of pytest tests in the Zephyr project

• pytest_shell

• MCUmgr tests - tests/boot/with_mcumgr

• LwM2M tests - tests/net/lib/lwm2m/interop

• GDB stub tests - tests/subsys/debug/gdbstub

FAQ

How to flash/run application only once per pytest session?
dut is a fixture responsible for flashing/running application. By default, its scope is set
as function. This can be changed by adding to .yaml file pytest_dut_scope keyword
placed under harness_config section:

harness: pytest
harness_config:

pytest_dut_scope: session

More info can be found here.

How to run only one particular test from a python file?
This can be achieved in several ways. In .yaml file it can be added using a pytest_root
entry placed under harness_config with list of tests which should be run:

harness: pytest
harness_config:

pytest_root:
- "pytest/test_shell.py::test_shell_print_help"

Particular tests can be also chosen by pytest -k option (more info about pytest keyword
filter can be found here). It can be applied by adding -k filter in pytest_args in .yaml
file:

harness: pytest
harness_config:

pytest_args:
- "-k test_shell_print_help"

or by adding it to Twister command overriding parameters from the .yaml file:

$./scripts/twister ... --pytest-args='-k test_shell_print_help'

2.12. Testing 251

https://github.com/zephyrproject-rtos/zephyr/blob/main/tests/boot/with_mcumgr
https://github.com/zephyrproject-rtos/zephyr/blob/main/tests/net/lib/lwm2m/interop
https://github.com/zephyrproject-rtos/zephyr/blob/main/tests/subsys/debug/gdbstub
https://docs.pytest.org/en/latest/example/markers.html#using-k-expr-to-select-tests-based-on-their-name

Zephyr Project Documentation, Release 3.6.99

How to get information about used device type in test?
This can be taken from dut fixture (which represents DeviceAdapter object):

device_type: str = dut.device_config.type
if device_type == 'hardware':

...
elif device_type == 'native':

...

How to rerun locally pytest tests without rebuilding application by Twister?
This can be achieved by running Twister once again with --test-only argument
added to Twister command. Another way is running Twister with highest verbosity
level (-vv) and then copy-pasting from logs command dedicated for spawning pytest
(log started by Running pytest command: ...).

Is this possible to run pytest tests in parallel?
Basically pytest-harness-pluginwasn’t written with intention of running pytest tests
in parallel. Especially those one dedicated for hardware. There was assumption that
parallelization of tests is made by Twister, and it is responsible for managing available
sources (jobs and hardwares). If anyone is interested in doing this for some reasons
(for example via pytest-xdist plugin) they do so at their own risk.

Limitations

• Not every platform type is supported in the plugin (yet).

2.12.5 Generating coverage reports

With Zephyr, you can generate code coverage reports to analyze which parts of the code are
covered by a given test or application.

You can do this in two ways:

• In a real embedded target or QEMU, using Zephyr’s gcov integration

• Directly in your host computer, by compiling your application targeting the POSIX archi-
tecture

Test coverage reports in embedded devices or QEMU

Overview GCC GCOV is a test coverage program used together with the GCC compiler to analyze
and create test coverage reports for your programs, helping you create more efficient, faster
running code and discovering untested code paths

In Zephyr, gcov collects coverage profiling data in RAM (and not to a file system) while your
application is running. Support for gcov collection and reporting is limited by available RAM
size and so is currently enabled only for QEMU emulation of embedded targets.

252 Chapter 2. Developing with Zephyr

https://pytest-xdist.readthedocs.io/en/stable/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

Zephyr Project Documentation, Release 3.6.99

Details There are 2 parts to enable this feature. The first is to enable the coverage for the device
and the second to enable in the test application. As explained earlier the code coverage with gcov
is a function of RAM available. Therefore ensure that the device has enough RAM when enabling
the coverage for it. For example a small device like frdm_k64f can run a simple test application
but the more complex test cases which consume more RAM will crash when coverage is enabled.

To enable the device for coverage, select CONFIG_HAS_COVERAGE_SUPPORT in the Kconfig.board file.

To report the coverage for the particular test application set CONFIG_COVERAGE.

Steps to generate code coverage reports These steps will produce an HTML coverage report
for a single application.

1. Build the code with CONFIG_COVERAGE=y.

west build -b mps2/an385 -- -DCONFIG_COVERAGE=y -DCONFIG_COVERAGE_DUMP=y

2. Capture the emulator output into a log file. You may need to terminate the emulator with
Ctrl-A X for this to complete after the coverage dump has been printed:

ninja -Cbuild run | tee log.log

or

ninja -Cbuild run | tee log.log

3. Generate the gcov .gcda and .gcno files from the log file that was saved:

$ python3 scripts/gen_gcov_files.py -i log.log

4. Find the gcov binary placed in the SDK. You will need to pass the path to the gcov binary
for the appropriate architecture when you later invoke gcovr:

$ find $ZEPHYR_SDK_INSTALL_DIR -iregex ".*gcov"

5. Create an output directory for the reports:

$ mkdir -p gcov_report

6. Run gcovr to get the reports:

$ gcovr -r $ZEPHYR_BASE . --html -o gcov_report/coverage.html --html-details --gcov-
↪→executable <gcov_path_in_SDK>

Coverage reports using the POSIX architecture

When compiling for the POSIX architecture, you utilize your host native tooling to build a native
executable which contains your application, the Zephyr OS, and some basic HW emulation.

That means you can use the same tools you would while developing any other desktop applica-
tion.

To build your application with gcc’s gcov, simply set CONFIG_COVERAGE before compiling it. When
you run your application, gcov coverage data will be dumped into the respective gcda and gcno
files. You may postprocess these with your preferred tools. For example:

west build -b native_sim samples/hello_world -- -DCONFIG_COVERAGE=y

2.12. Testing 253

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

Zephyr Project Documentation, Release 3.6.99

$./build/zephyr/zephyr.exe
Press Ctrl+C to exit
lcov --capture --directory ./ --output-file lcov.info -q --rc lcov_branch_coverage=1
genhtml lcov.info --output-directory lcov_html -q --ignore-errors source --branch-coverage -
↪→-highlight --legend

Note: You need a recent version of lcov (at least 1.14) with support for intermediate text format.
Such packages exist in recent Linux distributions.

Alternatively, you can use gcovr (at least version 4.2).

Coverage reports using Twister

Zephyr’s twister script can automatically generate a coverage report from the tests which were
executed. You just need to invoke it with the --coverage command line option.

For example, you may invoke:

$ twister --coverage -p qemu_x86 -T tests/kernel

or:

$ twister --coverage -p native_sim -T tests/bluetooth

which will produce twister-out/coverage/index.html report as well as the coverage data col-
lected by gcovr tool in twister-out/coverage.json.

Other reports might be chosen with --coverage-tool and --coverage-formats command line
options.

The process differs for unit tests, which are built with the host toolchain and require a different
board:

$ twister --coverage -p unit_testing -T tests/unit

which produces a report in the same location as non-unit testing.

Using different toolchains Twister looks at the environment variable
ZEPHYR_TOOLCHAIN_VARIANT to check which gcov tool to use by default. The following are
used as the default for the Twister --gcov-tool argument default:

Toolchain --gcov-tool value
host gcov
llvm llvm-cov gcov
zephyr gcov

2.12.6 BabbleSim

BabbleSim and Zephyr

In the Zephyr project we use the Babblesim simulator to test some of the Zephyr radio protocols,
including the BLE stack, 802.15.4, and some of the networking stack.

BabbleSim is a physical layer simulator, which in combination with the Zephyr bsim boards can
be used to simulate a network of BLE and 15.4 devices. When we build Zephyr targeting a bsim

254 Chapter 2. Developing with Zephyr

https://BabbleSim.github.io
https://BabbleSim.github.io

Zephyr Project Documentation, Release 3.6.99

board we produce a Linux executable, which includes the application, Zephyr OS, and models of
the HW.

When there is radio activity, this Linux executable will connect to the BabbleSim Phy simulation
to simulate the radio channel.

In the BabbleSim documentation you can find more information on how to get and build the
simulator. In the nrf52_bsim and nrf5340bsim boards documentation you can find more infor-
mation about how to build Zephyr targeting these particular boards, and a few examples.

Types of tests

Tests without radio activity: bsim tests with twister The bsim boards can be used without
radio activity, and in that case, it is not necessary to connect them to a physical layer simula-
tion. Thanks to this, these target boards can be used just like native_sim with twister, to run all
standard Zephyr twister tests, but with models of a real SOC HW, and their drivers.

Tests with radio activity When there is radio activity, BabbleSim tests require at the very least
a physical layer simulation running, and most, more than 1 simulated device. Due to this, these
tests are not build and run with twister, but with a dedicated set of tests scripts.

These tests are kept in the tests/bsim/ folder. There you can find a README with more infor-
mation about how to build and run them, as well as the convention they follow.

There are two main sets of tests of these type:

• Self checking embedded application/tests: In which some of the simulated devices appli-
cations are built with some checks which decide if the test is passing or failing. These em-
bedded applications tests use the bs_tests system to report the pass or failure, and in many
cases to build several tests into the same binary.

• Test using the EDTT tool, in which a EDTT (python) test controls the embedded applications
over an RPC mechanism, and decides if the test passes or not. Today these tests include a
very significant subset of the BT qualification test suite.

More information about how different tests types relate to BabbleSim and the bsim boards can
be found in the bsim boards tests section.

Test coverage and BabbleSim

As the nrf52_bsim and nrf5340bsim boards are based on the POSIX architecture, you can easily
collect test coverage information.

You can use the script tests/bsim/generate_coverage_report.sh to generate an html coverage re-
port from tests.

Check the page on coverage generation for more info.

2.12.7 ZTest Deprecated APIs

Ztest is currently being migrated to a new API, this documentation provides information about
the deprecated APIs which will eventually be removed. See Test Framework for the new API.
Similarly, ZTest’s mocking framework is also deprecated (see Mocking via FFF).

2.12. Testing 255

https://babblesim.github.io/fetching.html
https://babblesim.github.io/building.html
https://github.com/EDTTool/EDTT
https://github.com/zephyrproject-rtos/zephyr/blob/main/tests/bsim/generate_coverage_report.sh

Zephyr Project Documentation, Release 3.6.99

Quick start - Unit testing

Ztest can be used for unit testing. This means that rather than including the entire Zephyr OS for
testing a single function, you can focus the testing efforts into the specific module in question.
This will speed up testing since only the module will have to be compiled in, and the tested
functions will be called directly.

Since you won’t be including basic kernel data structures that most code depends on, you have to
provide function stubs in the test. Ztest provides some helpers for mocking functions, as demon-
strated below.

In a unit test, mock objects can simulate the behavior of complex real objects and are used to de-
cide whether a test failed or passed by verifying whether an interaction with an object occurred,
and if required, to assert the order of that interaction.

Best practices for declaring the test suite twister and other validation tools need to obtain
the list of subcases that a Zephyr ztest test image will expose.

Rationale
This all is for the purpose of traceability. It’s not enough to have only a semaphore test project.
We also need to show that we have testpoints for all APIs and functionality, and we trace back to
documentation of the API, and functional requirements.

The idea is that test reports show results for every sub-testcase as passed, failed, blocked, or
skipped. Reporting on only the high-level test project level, particularly when tests do too many
things, is too vague.

There exist two alternatives to writing tests. The first, and more verbose, approach is to directly
declare and run the test suites. Here is a generic template for a test showing the expected use of
ztest_test_suite():

#include <zephyr/ztest.h>

extern void test_sometest1(void);
extern void test_sometest2(void);
#ifndef CONFIG_WHATEVER /* Conditionally skip test_sometest3 */
void test_sometest3(void)
{

ztest_test_skip();
}
#else
extern void test_sometest3(void);
#endif
extern void test_sometest4(void);
...

void test_main(void)
{

ztest_test_suite(common,
ztest_unit_test(test_sometest1),
ztest_unit_test(test_sometest2),
ztest_unit_test(test_sometest3),
ztest_unit_test(test_sometest4)

);
ztest_run_test_suite(common);

}

Alternatively, it is possible to split tests across multiple files using ztest_register_test_suite()
which bypasses the need for extern:

256 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

#include <zephyr/ztest.h>

void test_sometest1(void) {
zassert_true(1, "true");

}

ztest_register_test_suite(common, NULL,
ztest_unit_test(test_sometest1)
);

The above sample simple registers the test suite and uses a NULL pragma function (more on that
later). It is important to note that the test suite isn’t directly run in this file. Instead two alterna-
tives exist for running the suite. First, if to do nothing. A default test_main function is provided
by ztest. This is the preferred approach if the test doesn’t involve a state and doesn’t require use
of the pragma.

In cases of an integration test it is possible that some general state needs to be set between test
suites. This can be thought of as a state diagram in which test_main simply goes through various
actions that modify the board’s state and different test suites need to run. This is achieved in the
following:

#include <zephyr/ztest.h>

struct state {
bool is_hibernating;
bool is_usb_connected;

}

static bool pragma_always(const void *state)
{

return true;
}

static bool pragma_not_hibernating_not_connected(const void *s)
{

struct state *state = s;
return !state->is_hibernating && !state->is_usb_connected;

}

static bool pragma_usb_connected(const void *s)
{

return ((struct state *)s)->is_usb_connected;
}

ztest_register_test_suite(baseline, pragma_always,
ztest_unit_test(test_case0));

ztest_register_test_suite(before_usb, pragma_not_hibernating_not_connected,
ztest_unit_test(test_case1),
ztest_unit_test(test_case2));

ztest_register_test_suite(with_usb, pragma_usb_connected,,
ztest_unit_test(test_case3),
ztest_unit_test(test_case4));

void test_main(void)
{

struct state state;

/* Should run `baseline` test suite only. */
ztest_run_registered_test_suites(&state);

/* Simulate power on and update state. */
emulate_power_on();

(continues on next page)

2.12. Testing 257

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
/* Should run `baseline` and `before_usb` test suites. */
ztest_run_registered_test_suites(&state);

/* Simulate plugging in a USB device. */
emulate_plugging_in_usb();
/* Should run `baseline` and `with_usb` test suites. */
ztest_run_registered_test_suites(&state);

/* Verify that all the registered test suites actually ran. */
ztest_verify_all_registered_test_suites_ran();

}

For twister to parse source files and create a list of subcases, the declarations of
ztest_test_suite() and ztest_register_test_suite() must follow a few rules:

• one declaration per line

• conditional execution by using ztest_test_skip()
What to avoid:

• packing multiple testcases in one source file

void test_main(void)
{
#ifdef TEST_feature1

ztest_test_suite(feature1,
ztest_unit_test(test_1a),
ztest_unit_test(test_1b),
ztest_unit_test(test_1c)
);

ztest_run_test_suite(feature1);
#endif

#ifdef TEST_feature2
ztest_test_suite(feature2,

ztest_unit_test(test_2a),
ztest_unit_test(test_2b)
);

ztest_run_test_suite(feature2);
#endif
}

• Do not use #if

ztest_test_suite(common,
ztest_unit_test(test_sometest1),
ztest_unit_test(test_sometest2),

#ifdef CONFIG_WHATEVER
ztest_unit_test(test_sometest3),

#endif
ztest_unit_test(test_sometest4),

...

• Do not add comments on lines with a call to ztest_unit_test():

ztest_test_suite(common,
ztest_unit_test(test_sometest1),
ztest_unit_test(test_sometest2) /* will fail */,

/* will fail! */ ztest_unit_test(test_sometest3),
ztest_unit_test(test_sometest4),

...

258 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

• Do not define multiple definitions of unit / user unit test case per line

ztest_test_suite(common,
ztest_unit_test(test_sometest1), ztest_unit_test(test_sometest2),
ztest_unit_test(test_sometest3),
ztest_unit_test(test_sometest4),

...

Other questions:

• Why not pre-scan with CPP and then parse? or post scan the ELF file?

If C pre-processing or building fails because of any issue, then we won’t be able to tell the
subcases.

• Why not declare them in the YAML testcase description?

A separate testcase description file would be harder to maintain than just keeping the in-
formation in the test source files themselves – only one file to update when changes are
made eliminates duplication.

Mocking

These functions allow abstracting callbacks and related functions and controlling them from spe-
cific tests. You can enable the mocking framework by setting CONFIG_ZTEST_MOCKING to “y” in the
configuration file of the test. The amount of concurrent return values and expected parameters
is limited by CONFIG_ZTEST_PARAMETER_COUNT.

Here is an example for configuring the function expect_two_parameters to expect the values a=2
and b=3, and telling returns_int to return 5:

1 #include <zephyr/ztest.h>
2

3 static void expect_two_parameters(int a, int b)
4 {
5 ztest_check_expected_value(a);
6 ztest_check_expected_value(b);
7 }
8

9 static void parameter_tests(void)
10 {
11 ztest_expect_value(expect_two_parameters, a, 2);
12 ztest_expect_value(expect_two_parameters, b, 3);
13 expect_two_parameters(2, 3);
14 }
15

16 static int returns_int(void)
17 {
18 return ztest_get_return_value();
19 }
20

21 static void return_value_tests(void)
22 {
23 ztest_returns_value(returns_int, 5);
24 zassert_equal(returns_int(), 5, NULL);
25 }
26

27 void test_main(void)
28 {
29 ztest_test_suite(mock_framework_tests,
30 ztest_unit_test(parameter_test),
31 ztest_unit_test(return_value_test)

(continues on next page)

2.12. Testing 259

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
32);
33

34 ztest_run_test_suite(mock_framework_tests);
35 }

group ztest_mock
This module provides simple mocking functions for unit testing.

These need CONFIG_ZTEST_MOCKING=y.

Defines

ztest_expect_value(func, param, value)
Tell function func to expect the value value for param.

When using ztest_check_expected_value(), tell that the value of param should be value.
The value will internally be stored as an uintptr_t.

Parameters
• func – Function in question

• param – Parameter for which the value should be set

• value – Value for param

ztest_check_expected_value(param)
If param doesn’t match the value set by ztest_expect_value(), fail the test.

This will first check that does param have a value to be expected, and then checks
whether the value of the parameter is equal to the expected value. If either of these
checks fail, the current test will fail. This must be called from the called function.

Parameters
• param – Parameter to check

ztest_expect_data(func, param, data)
Tell function func to expect the data data for param.

When using ztest_check_expected_data(), the data pointed to by param should be same
data in this function. Only data pointer is stored by this function, so it must still be
valid when ztest_check_expected_data is called.

Parameters
• func – Function in question

• param – Parameter for which the data should be set

• data – pointer for the data for parameter param

ztest_check_expected_data(param, length)
If data pointed by param don’t match the data set by ztest_expect_data(), fail the test.

This will first check that param is expected to be null or non-null and then check
whether the data pointed by parameter is equal to expected data. If either of these
checks fail, the current test will fail. This must be called from the called function.

Parameters
• param – Parameter to check

• length – Length of the data to compare

260 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

ztest_return_data(func, param, data)
Tell function func to return the data data for param.

When using ztest_return_data(), the data pointed to by param should be same data in
this function. Only data pointer is stored by this function, so it must still be valid when
ztest_copy_return_data is called.

Parameters
• func – Function in question

• param – Parameter for which the data should be set

• data – pointer for the data for parameter param

ztest_copy_return_data(param, length)
Copy the data set by ztest_return_data to the memory pointed by param.

This will first check that param is not null and then copy the data. This must be called
from the called function.

Parameters
• param – Parameter to return data for

• length – Length of the data to return

ztest_returns_value(func, value)
Tell func that it should return value.

Parameters
• func – Function that should return value

• value – Value to return from func

ztest_get_return_value()
Get the return value for current function.

The return value must have been set previously with ztest_returns_value(). If no return
value exists, the current test will fail.

Returns
The value the current function should return

ztest_get_return_value_ptr()
Get the return value as a pointer for current function.

The return value must have been set previously with ztest_returns_value(). If no return
value exists, the current test will fail.

Returns
The value the current function should return as a void *

2.13 Static Code Analysis (SCA)

Support for static code analysis tools in Zephyr is possible through CMake.

The build setting ZEPHYR_SCA_VARIANT can be used to specify the SCA tool to use.
ZEPHYR_SCA_VARIANT is also supported as environment variable.

Use -DZEPHYR_SCA_VARIANT=<tool>, for example -DZEPHYR_SCA_VARIANT=sparse to enable the
static analysis tool sparse.

2.13. Static Code Analysis (SCA) 261

Zephyr Project Documentation, Release 3.6.99

2.13.1 SCA Tool infrastructure

Support for an SCA tool is implemented in a file:sca.cmake file. The file:sca.cmake must be
placed under file:<SCA_ROOT>/cmake/sca/<tool>/sca.cmake. Zephyr itself is always added as an
SCA_ROOT but the build system offers the possibility to add additional folders to the SCA_ROOT
setting.

You can provide support for out of tree SCA tools by creating the following structure:

<sca_root>/ # Custom SCA root
└── cmake/

└── sca/
└── <tool>/ # Name of SCA tool, this is the value given to ZEPHYR_SCA_

↪→VARIANT
└── sca.cmake # CMake code that configures the tool to be used with Zephyr

To add foo under /path/to/my_tools/cmake/sca create the following structure:

/path/to/my_tools
└── cmake/

└── sca/
└── foo/

└── sca.cmake

To use foo as SCA tool you must then specify -DZEPHYR_SCA_VARIANT=foo.

Remember to add /path/to/my_tools to SCA_ROOT.

SCA_TOOL can be set as a regular CMake setting using -DSCA_ROOT=<sca_root>, or added by a
Zephyr module in its module.yml file, see Zephyr Modules - Build settings

2.13.2 Native SCA Tool support

The following is a list of SCA tools natively supported by Zephyr build system.

CodeChecker support

CodeChecker is a static analysis infrastructure. It executes analysis tools available on the build
system, such as Clang-Tidy, Clang Static Analyzer and Cppcheck. Refer to the analyzer’s websites
for installation instructions.

Installing CodeChecker CodeChecker itself is a python package available on pypi.

pip install codechecker

Running with CodeChecker To run CodeChecker, west build should be called with a
-DZEPHYR_SCA_VARIANT=codechecker parameter, e.g.

west build -b mimxrt1064_evk samples/basic/blinky -- -DZEPHYR_SCA_VARIANT=codechecker

Configuring CodeChecker To configure CodeChecker or analyzers used, arguments can be
passed using the CODECHECKER_ANALYZE_OPTS parameter, e.g.

west build -b mimxrt1064_evk samples/basic/blinky -- -DZEPHYR_SCA_VARIANT=codechecker \
-DCODECHECKER_ANALYZE_OPTS="--config;$CODECHECKER_CONFIG_FILE;--timeout;60"

262 Chapter 2. Developing with Zephyr

https://codechecker.readthedocs.io/
http://clang.llvm.org/extra/clang-tidy/
http://clang-analyzer.llvm.org/
https://cppcheck.sourceforge.io/
https://pypi.org/project/codechecker/

Zephyr Project Documentation, Release 3.6.99

Storing CodeChecker results If a CodeChecker server is active the results can be uploaded
and stored for tracking purposes. Storing is done using the optional CODECHECKER_STORE=y or
CODECHECKER_STORE_OPTS="arg;list" parameters, e.g.

west build -b mimxrt1064_evk samples/basic/blinky -- -DZEPHYR_SCA_VARIANT=codechecker \
-DCODECHECKER_STORE_OPTS="--name;build;--url;localhost:8001/Default"

Note: If --name isn’t passed to either CODECHECKER_ANALYZE_OPTS or CODECHECKER_STORE_OPTS,
the default zephyr is used.

Exporting CodeChecker reports Optional reports can be generated using the CodeChecker re-
sults, when passing a -DCODECHECKER_EXPORT=<type> parameter. Allowed types are: html,json,
codeclimate,gerrit,baseline. Multiple types can be passed as comma-separated arguments.

Optional parser configuration arguments can be passed using the CODECHECKER_PARSE_OPTS pa-
rameter, e.g.

west build -b mimxrt1064_evk samples/basic/blinky -- -DZEPHYR_SCA_VARIANT=codechecker \
-DCODECHECKER_EXPORT=html,json -DCODECHECKER_PARSE_OPTS="--trim-path-prefix;$PWD"

Sparse support

Sparse is a static code analysis tool. Apart from performing common code analysis tasks it also
supports an address_space attribute, which allows introduction of distinct address spaces in C
code with subsequent verification that pointers to different address spaces do not get confused.
Additionally it supports a force attribute which should be used to cast pointers between different
address spaces. At the moment Zephyr introduces a single custom address space __cache used to
identify pointers from the cached address range on the Xtensa architecture. This helps identify
cases where cached and uncached addresses are confused.

Running with sparse To run a sparse verification build west build should be called with a
-DZEPHYR_SCA_VARIANT=sparse parameter, e.g.

west build -d hello -b intel_adsp/cavs25 zephyr/samples/hello_world -- -DZEPHYR_SCA_
↪→VARIANT=sparse

GCC static analysis support

Static analysis was introduced in GCC 10 and it is enabled with the option -fanalyzer. This option
performs a much more expensive and thorough analysis of the code than traditional warnings.

Run GCC static analysis To run GCC static analysis, west build should be called with a
-DZEPHYR_SCA_VARIANT=gcc parameter, e.g.

west build -b qemu_x86 samples/userspace/hello_world_user -- -DZEPHYR_SCA_VARIANT=gcc

Parasoft C/C++test support

Parasoft C/C++test is a software testing and static analysis tool for C and C++. It is a commercial
software and you must acquire a commercial license to use it.

2.13. Static Code Analysis (SCA) 263

https://www.kernel.org/doc/html/latest/dev-tools/sparse.html
https://gcc.gnu.org/
https://www.parasoft.com/products/parasoft-c-ctest/

Zephyr Project Documentation, Release 3.6.99

Documentation of C/C++test can be found at https://docs.parasoft.com/. Please refer to the docu-
mentation for how to use it.

Generating Build Data Files To use C/C++test, cpptestscan must be found in your PATH envi-
ronment variable. And west build should be called with a -DZEPHYR_SCA_VARIANT=cpptest pa-
rameter, e.g.

west build -b qemu_cortex_m3 zephyr/samples/hello_world -- -DZEPHYR_SCA_VARIANT=cpptest

A .bdf file will be generated as build/sca/cpptest/cpptestscan.bdf.

Generating a report file Please refer to Parasoft C/C++test documentation for more details.

To import and generate a report file, something like the following should work.

cpptestcli -data out -localsettings local.conf -bdf build/sca/cpptest/cpptestscan.bdf -
↪→config "builtin://Recommended Rules" -report out/report

You might need to set bdf.import.c.compiler.exec, bdf.import.cpp.compiler.exec, and bdf.
import.linker.exec to the toolchain west build used.

2.14 Toolchains

Guides on how to set up toolchains for Zephyr development.

2.14.1 Zephyr SDK

The Zephyr Software Development Kit (SDK) contains toolchains for each of Zephyr’s supported
architectures. It also includes additional host tools, such as custom QEMU and OpenOCD.

Use of the Zephyr SDK is highly recommended and may even be required under certain condi-
tions (for example, running tests in QEMU for some architectures).

Supported architectures

The Zephyr SDK supports the following target architectures:

• ARC (32-bit and 64-bit; ARCv1, ARCv2, ARCv3)

• ARM (32-bit and 64-bit; ARMv6, ARMv7, ARMv8; A/R/M Profiles)

• MIPS (32-bit and 64-bit)

• Nios II

• RISC-V (32-bit and 64-bit; RV32I, RV32E, RV64I)

• x86 (32-bit and 64-bit)

• Xtensa

264 Chapter 2. Developing with Zephyr

https://docs.parasoft.com/

Zephyr Project Documentation, Release 3.6.99

Installation bundle and variables

The Zephyr SDK bundle supports all major operating systems (Linux, macOS and Windows) and
is delivered as a compressed file. The installation consists of extracting the file and running the
included setup script. Additional OS-specific instructions are described in the sections below.

If no toolchain is selected, the build system looks for Zephyr SDK and uses the toolchain from
there. You can enforce this by setting the environment variable ZEPHYR_TOOLCHAIN_VARIANT to
zephyr.

If you install the Zephyr SDK outside any of the default locations (listed in the operating system
specific instructions below) and you want automatic discovery of the Zephyr SDK, then you must
register the Zephyr SDK in the CMake package registry by running the setup script. If you decide
not to register the Zephyr SDK in the CMake registry, then the ZEPHYR_SDK_INSTALL_DIR can be
used to point to the Zephyr SDK installation directory.

You can also set ZEPHYR_SDK_INSTALL_DIR to point to a directory containing multiple
Zephyr SDKs, allowing for automatic toolchain selection. For example, you can set
ZEPHYR_SDK_INSTALL_DIR to /company/tools, where the company/tools folder contains the fol-
lowing subfolders:

• /company/tools/zephyr-sdk-0.13.2
• /company/tools/zephyr-sdk-a.b.c
• /company/tools/zephyr-sdk-x.y.z

This allows the Zephyr build system to choose the correct version of the SDK, while allowing
multiple Zephyr SDKs to be grouped together at a specific path.

Zephyr SDK version compatibility

In general, the Zephyr SDK version referenced in this page should be considered the recom-
mended version for the corresponding Zephyr version.

For the full list of compatible Zephyr and Zephyr SDK versions, refer to the Zephyr SDK Version
Compatibility Matrix.

Zephyr SDK installation

Note: You can change 0.16.5-1 to another version in the instructions below if needed; the
Zephyr SDK Releases page contains all available SDK releases.

Note: If you want to uninstall the SDK, you may simply remove the directory where you installed
it.

Ubuntu

1. Download and verify the Zephyr SDK bundle:

cd ~
wget https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.16.5-1/
↪→zephyr-sdk-0.16.5-1_linux-x86_64.tar.xz
wget -O - https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.
↪→16.5-1/sha256.sum | shasum --check --ignore-missing

If your host architecture is 64-bit ARM (for example, Raspberry Pi), replace x86_64 with
aarch64 in order to download the 64-bit ARM Linux SDK.

2.14. Toolchains 265

https://github.com/zephyrproject-rtos/sdk-ng/wiki/Zephyr-SDK-Version-Compatibility-Matrix
https://github.com/zephyrproject-rtos/sdk-ng/wiki/Zephyr-SDK-Version-Compatibility-Matrix
https://github.com/zephyrproject-rtos/sdk-ng/tags
https://github.com/zephyrproject-rtos/sdk-ng/releases/tag/v0.16.5-1

Zephyr Project Documentation, Release 3.6.99

2. Extract the Zephyr SDK bundle archive:

tar xvf zephyr-sdk-0.16.5-1_linux-x86_64.tar.xz

Note: It is recommended to extract the Zephyr SDK bundle at one of the following loca-
tions:

• $HOME
• $HOME/.local
• $HOME/.local/opt
• $HOME/bin
• /opt
• /usr/local

The Zephyr SDK bundle archive contains the zephyr-sdk-<version> directory and, when
extracted under $HOME, the resulting installation path will be $HOME/zephyr-sdk-<version>.

3. Run the Zephyr SDK bundle setup script:

cd zephyr-sdk-0.16.5-1
./setup.sh

Note: You only need to run the setup script once after extracting the Zephyr SDK bundle.

You must rerun the setup script if you relocate the Zephyr SDK bundle directory after the
initial setup.

4. Install udev rules, which allow you to flash most Zephyr boards as a regular user:

sudo cp ~/zephyr-sdk-0.16.5-1/sysroots/x86_64-pokysdk-linux/usr/share/openocd/
↪→contrib/60-openocd.rules /etc/udev/rules.d
sudo udevadm control --reload

macOS

1. Download and verify the Zephyr SDK bundle:

cd ~
curl -L -O https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.
↪→16.5-1/zephyr-sdk-0.16.5-1_macos-x86_64.tar.xz
curl -L https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.16.
↪→5-1/sha256.sum | shasum --check --ignore-missing

If your host architecture is 64-bit ARM (Apple Silicon, also known as M1), replace x86_64
with aarch64 in order to download the 64-bit ARM macOS SDK.

2. Extract the Zephyr SDK bundle archive:

tar xvf zephyr-sdk-0.16.5-1_macos-x86_64.tar.xz

Note: It is recommended to extract the Zephyr SDK bundle at one of the following loca-
tions:

• $HOME
• $HOME/.local
• $HOME/.local/opt
• $HOME/bin
• /opt

266 Chapter 2. Developing with Zephyr

https://en.wikipedia.org/wiki/Udev
https://github.com/zephyrproject-rtos/sdk-ng/releases/tag/v0.16.5-1

Zephyr Project Documentation, Release 3.6.99

• /usr/local
The Zephyr SDK bundle archive contains the zephyr-sdk-<version> directory and, when
extracted under $HOME, the resulting installation path will be $HOME/zephyr-sdk-<version>.

3. Run the Zephyr SDK bundle setup script:

cd zephyr-sdk-0.16.5-1
./setup.sh

Note: You only need to run the setup script once after extracting the Zephyr SDK bundle.

You must rerun the setup script if you relocate the Zephyr SDK bundle directory after the
initial setup.

Windows

1. Open a cmd.exe terminal window as a regular user
2. Download the Zephyr SDK bundle:

cd %HOMEPATH%
wget https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.16.5-1/
↪→zephyr-sdk-0.16.5-1_windows-x86_64.7z

3. Extract the Zephyr SDK bundle archive:

7z x zephyr-sdk-0.16.5-1_windows-x86_64.7z

Note: It is recommended to extract the Zephyr SDK bundle at one of the following loca-
tions:

• %HOMEPATH%
• %PROGRAMFILES%

The Zephyr SDK bundle archive contains the zephyr-sdk-<version> directory and,
when extracted under %HOMEPATH%, the resulting installation path will be %HOMEPATH%\
zephyr-sdk-<version>.

4. Run the Zephyr SDK bundle setup script:

cd zephyr-sdk-0.16.5-1
setup.cmd

Note: You only need to run the setup script once after extracting the Zephyr SDK bundle.

You must rerun the setup script if you relocate the Zephyr SDK bundle directory after the
initial setup.

2.14.2 Arm Compiler 6

1. Download and install a development suite containing the Arm Compiler 6 for your operat-
ing system.

2. Set these environment variables:

• Set ZEPHYR_TOOLCHAIN_VARIANT to armclang.

• Set ARMCLANG_TOOLCHAIN_PATH to the toolchain installation directory.

2.14. Toolchains 267

https://github.com/zephyrproject-rtos/sdk-ng/releases/tag/v0.16.5-1
https://developer.arm.com/tools-and-software/embedded/arm-compiler/downloads/version-6

Zephyr Project Documentation, Release 3.6.99

3. The Arm Compiler 6 needs the ARMLMD_LICENSE_FILE environment variable to point to your
license file or server.

For example:

Linux, macOS, license file:
export ARMLMD_LICENSE_FILE=/<path>/license_armds.dat
Linux, macOS, license server:
export ARMLMD_LICENSE_FILE=8224@myserver

Windows, license file:
set ARMLMD_LICENSE_FILE=c:\<path>\license_armds.dat
Windows, license server:
set ARMLMD_LICENSE_FILE=8224@myserver

1. If the Arm Compiler 6 was installed as part of an Arm Development Studio, then you must
set the ARM_PRODUCT_DEF to point to the product definition file: See also: Product and
toolkit configuration. For example if the Arm Development Studio is installed in: /opt/
armds-2020-1with a Gold license, then set ARM_PRODUCT_DEF to point to /opt/armds-2020-1/
gold.elmap.

Note: The Arm Compiler 6 uses armlink for linking. This is incompatible with Zephyr’s
linker script template, which works with GNU ld. Zephyr’s Arm Compiler 6 support Zephyr’s
CMake linker script generator, which supports generating scatter files. Basic scatter file
support is in place, but there are still areas covered in ld templates which are not fully
supported by the CMake linker script generator.

Some Zephyr subsystems or modules may also contain C or assembly code that relies on
GNU intrinsics and have not yet been updated to work fully with armclang.

2.14.3 Cadence Tensilica Xtensa C/C++ Compiler (XCC)

1. Obtain Tensilica Software Development Toolkit targeting the specific SoC on hand. This
usually contains two parts:

• The Xtensa Xplorer which contains the necessary executables and libraries.

• A SoC-specific add-on to be installed on top of Xtensa Xplorer.

– This add-on allows the compiler to generate code for the SoC on hand.

2. Install Xtensa Xplorer and then the SoC add-on.

• Follow the instruction from Cadence on how to install the SDK.

• Depending on the SDK, there are two set of compilers:

– GCC-based compiler: xt-xcc and its friends.

– Clang-based compiler: xt-clang and its friends.

3. Make sure you have obtained a license to use the SDK, or has access to a remote licensing
server.

4. Set these environment variables:

• Set ZEPHYR_TOOLCHAIN_VARIANT to xcc or xt-clang.

• Set XTENSA_TOOLCHAIN_PATH to the toolchain installation directory.

• Set XTENSA_CORE to the SoC ID where application is being targeting.

• Set TOOLCHAIN_VER to the Xtensa SDK version.

268 Chapter 2. Developing with Zephyr

https://developer.arm.com/tools-and-software/software-development-tools/license-management/resources/product-and-toolkit-configuration
https://developer.arm.com/tools-and-software/software-development-tools/license-management/resources/product-and-toolkit-configuration

Zephyr Project Documentation, Release 3.6.99

5. For example, assuming the SDK is installed in /opt/xtensa, and using the SDK for applica-
tion development on intel_adsp_cavs15, setup the environment using:

Linux
export ZEPHYR_TOOLCHAIN_VARIANT=xcc
export XTENSA_TOOLCHAIN_PATH=/opt/xtensa/XtDevTools/install/tools/
export XTENSA_CORE=X6H3SUE_RI_2018_0
export TOOLCHAIN_VER=RI-2018.0-linux

6. To use Clang-based compiler:

• Set ZEPHYR_TOOLCHAIN_VARIANT to xt-clang.

• Note that the Clang-based compiler may contain an old LLVM bug which results in the
following error:

/tmp/file.s: Assembler messages:
/tmp/file.s:20: Error: file number 1 already allocated
clang-3.9: error: Xtensa-as command failed with exit code 1

If this happens, set XCC_NO_G_FLAG to 1.

– For example:

Linux
export XCC_NO_G_FLAG=1

2.14.4 DesignWare ARC MetaWare Development Toolkit (MWDT)

1. You need to have ARC MWDT installed on your host.

2. You need to have Zephyr SDK installed on your host.

Note: A Zephyr SDK is used as a source of tools like device tree compiler (DTC), QEMU, etc…
Even though ARC MWDT toolchain is used for Zephyr RTOS build, still the GNU preprocessor
& GNU objcopy might be used for some steps like device tree preprocessing and .bin file
generation. We used Zephyr SDK as a source of these ARC GNU tools as well.

3. Set these environment variables:

• Set ZEPHYR_TOOLCHAIN_VARIANT to arcmwdt.

• Set ARCMWDT_TOOLCHAIN_PATH to the toolchain installation directory. MWDT installation
provides METAWARE_ROOT so simply set ARCMWDT_TOOLCHAIN_PATH to $METAWARE_ROOT/..
/ (Linux) or %METAWARE_ROOT%\..\ (Windows).

Tip: If you have only one ARC MWDT toolchain version installed on your machine you
may skip setting ARCMWDT_TOOLCHAIN_PATH - it would be detected automatically.

4. To check that you have set these variables correctly in your current environment, follow
these example shell sessions (the ARCMWDT_TOOLCHAIN_PATH values may be different on your
system):

Linux:
$ echo $ZEPHYR_TOOLCHAIN_VARIANT
arcmwdt
$ echo $ARCMWDT_TOOLCHAIN_PATH
/home/you/ARC/MWDT_2023.03/

(continues on next page)

2.14. Toolchains 269

https://www.synopsys.com/dw/ipdir.php?ds=sw_metaware

Zephyr Project Documentation, Release 3.6.99

(continued from previous page)
Windows:
> echo %ZEPHYR_TOOLCHAIN_VARIANT%
arcmwdt
> echo %ARCMWDT_TOOLCHAIN_PATH%
C:\ARC\MWDT_2023.03\

2.14.5 GNU Arm Embedded

1. Download and install a GNU Arm Embedded build for your operating system and extract it
on your file system.

Note: On Windows, we’ll assume for this guide that you install into the directory C:\
gnu_arm_embedded. You can also choose the default installation path used by the ARM GCC
installer, in which case you will need to adjust the path accordingly in the guide below.

Warning: On macOS Catalina or later you might need to change a security policy for the
toolchain to be able to run from the terminal.

2. Set these environment variables:

• Set ZEPHYR_TOOLCHAIN_VARIANT to gnuarmemb.

• Set GNUARMEMB_TOOLCHAIN_PATH to the toolchain installation directory.

3. To check that you have set these variables correctly in your current environment, follow
these example shell sessions (the GNUARMEMB_TOOLCHAIN_PATH values may be different on
your system):

Linux, macOS:
$ echo $ZEPHYR_TOOLCHAIN_VARIANT
gnuarmemb
$ echo $GNUARMEMB_TOOLCHAIN_PATH
/home/you/Downloads/gnu_arm_embedded

Windows:
> echo %ZEPHYR_TOOLCHAIN_VARIANT%
gnuarmemb
> echo %GNUARMEMB_TOOLCHAIN_PATH%
C:\gnu_arm_embedded

Warning: On macOS, if you are having trouble with the suggested procedure, there is an
unofficial package on brew that might help you. Run brew install gcc-arm-embedded
and configure the variables

• Set ZEPHYR_TOOLCHAIN_VARIANT to gnuarmemb.

• Set GNUARMEMB_TOOLCHAIN_PATH to the brew installation directory (something like
/usr/local)

2.14.6 Intel oneAPI Toolkit

1. Download Intel oneAPI Base Toolkit

2. Assuming the toolkit is installed in /opt/intel/oneApi, set environment using:

270 Chapter 2. Developing with Zephyr

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
https://software.intel.com/content/www/us/en/develop/tools/oneapi/all-toolkits.html

Zephyr Project Documentation, Release 3.6.99

Linux, macOS:
export ONEAPI_TOOLCHAIN_PATH=/opt/intel/oneapi
source $ONEAPI_TOOLCHAIN_PATH/compiler/latest/env/vars.sh

Windows:
> set ONEAPI_TOOLCHAIN_PATH=C:\Users\Intel\oneapi

To setup the complete oneApi environment, use:

source /opt/intel/oneapi/setvars.sh

The above will also change the python environment to the one used by the toolchain and
might conflict with what Zephyr uses.

3. Set ZEPHYR_TOOLCHAIN_VARIANT to oneApi.

2.14.7 Crosstool-NG (Deprecated)

Warning: xtools toolchain variant is deprecated. The cross-compile toolchain variant should
be used when using a custom toolchain built with Crosstool-NG.

You can build toolchains from source code using crosstool-NG.

1. Follow the steps on the crosstool-NG website to prepare your host.

2. Follow the Zephyr SDK with Crosstool NG instructions to build your toolchain. Repeat as
necessary to build toolchains for multiple target architectures.

You will need to clone the sdk-ng repo and run the following command:

./go.sh <arch>

Note: Currently, only i586 and Arm toolchain builds are verified.

3. Set these environment variables:

• Set ZEPHYR_TOOLCHAIN_VARIANT to xtools.

• Set XTOOLS_TOOLCHAIN_PATH to the toolchain build directory.

4. To check that you have set these variables correctly in your current environment, follow
these example shell sessions (the XTOOLS_TOOLCHAIN_PATH values may be different on your
system):

Linux, macOS:
$ echo $ZEPHYR_TOOLCHAIN_VARIANT
xtools
$ echo $XTOOLS_TOOLCHAIN_PATH
/Volumes/CrossToolNGNew/build/output/

2.14.8 Host Toolchains

In some specific configurations, like when building for non-MCU x86 targets on a Linux host, you
may be able to reuse the native development tools provided by your operating system.

To use your host gcc, set the ZEPHYR_TOOLCHAIN_VARIANT environment variable to host. To use
clang, set ZEPHYR_TOOLCHAIN_VARIANT to llvm.

2.14. Toolchains 271

http://crosstool-ng.github.io/docs/os-setup/
https://github.com/zephyrproject-rtos/sdk-ng/blob/master/README.md

Zephyr Project Documentation, Release 3.6.99

2.14.9 Other Cross Compilers

This toolchain variant is borrowed from the Linux kernel build system’s mechanism of using a
CROSS_COMPILE environment variable to set up a GNU-based cross toolchain.

Examples of such “other cross compilers” are cross toolchains that your Linux distribution pack-
aged, that you compiled on your own, or that you downloaded from the net. Unlike toolchains
specifically listed in Toolchains, the Zephyr build system may not have been tested with them,
and doesn’t officially support them. (Nonetheless, the toolchain set-up mechanism itself is sup-
ported.)

Follow these steps to use one of these toolchains.

1. Install a cross compiler suitable for your host and target systems.

For example, you might install the gcc-arm-none-eabi package on Debian-based Linux sys-
tems, or arm-none-eabi-newlib on Fedora or Red Hat:

On Debian or Ubuntu
sudo apt-get install gcc-arm-none-eabi
On Fedora or Red Hat
sudo dnf install arm-none-eabi-newlib

2. Set these environment variables:

• Set ZEPHYR_TOOLCHAIN_VARIANT to cross-compile.

• Set CROSS_COMPILE to the common path prefix which your toolchain’s binaries have,
e.g. the path to the directory containing the compiler binaries plus the target triplet
and trailing dash.

3. To check that you have set these variables correctly in your current environment, follow
these example shell sessions (the CROSS_COMPILE value may be different on your system):

Linux, macOS:
$ echo $ZEPHYR_TOOLCHAIN_VARIANT
cross-compile
$ echo $CROSS_COMPILE
/usr/bin/arm-none-eabi-

You can also set CROSS_COMPILE as a CMake variable.

When using this option, all of your toolchain binaries must reside in the same directory and have
a common file name prefix. The CROSS_COMPILE variable is set to the directory concatenated
with the file name prefix. In the Debian example above, the gcc-arm-none-eabi package in-
stalls binaries such as arm-none-eabi-gcc and arm-none-eabi-ld in directory /usr/bin/, so the
common prefix is /usr/bin/arm-none-eabi- (including the trailing dash, -). If your toolchain is
installed in /opt/mytoolchain/bin with binary names based on target triplet myarch-none-elf,
CROSS_COMPILE would be set to /opt/mytoolchain/bin/myarch-none-elf-.

2.14.10 Custom CMake Toolchains

To use a custom toolchain defined in an external CMake file, set these environment variables:

• Set ZEPHYR_TOOLCHAIN_VARIANT to your toolchain’s name

• Set TOOLCHAIN_ROOT to the path to the directory containing your toolchain’s CMake config-
uration files.

Zephyr will then include the toolchain cmake files located in the TOOLCHAIN_ROOT directory:

• cmake/toolchain/<toolchain name>/generic.cmake: configures the toolchain for
“generic” use, which mostly means running the C preprocessor on the generated Device-
tree file.

272 Chapter 2. Developing with Zephyr

Zephyr Project Documentation, Release 3.6.99

• cmake/toolchain/<toolchain name>/target.cmake: configures the toolchain for “target”
use, i.e. building Zephyr and your application’s source code.

Here <toolchain name> is the same as the name provided in ZEPHYR_TOOLCHAIN_VARIANT See the
zephyr files cmake/modules/FindHostTools.cmake and cmake/modules/FindTargetTools.cmake
for more details on what your generic.cmake and target.cmake files should contain.

You can also set ZEPHYR_TOOLCHAIN_VARIANT and TOOLCHAIN_ROOT as CMake variables when gen-
erating a build system for a Zephyr application, like so:

west build ... -- -DZEPHYR_TOOLCHAIN_VARIANT=... -DTOOLCHAIN_ROOT=...

cmake -DZEPHYR_TOOLCHAIN_VARIANT=... -DTOOLCHAIN_ROOT=...

If you do this, -C <initial-cache> cmake option may useful. If you save your
ZEPHYR_TOOLCHAIN_VARIANT, TOOLCHAIN_ROOT, and other settings in a file named my-toolchain.
cmake, you can then invoke cmake as cmake -C my-toolchain.cmake ... to save typing.

Zephyr includes include/toolchain.h which again includes a toolchain specific header based
on the compiler identifier, such as __llvm__ or __GNUC__. Some custom compilers iden-
tify themselves as the compiler on which they are based, for example llvm which then gets
the toolchain/llvm.h included. This included file may though not be right for the custom
toolchain. In order to solve this, and thus to get the include/other.h included instead, add the
set(TOOLCHAIN_USE_CUSTOM 1) cmake line to the generic.cmake and/or target.cmake files lo-
cated under <TOOLCHAIN_ROOT>/cmake/toolchain/<toolchain name>/.

When TOOLCHAIN_USE_CUSTOM is set, the other.hmust be available out-of-tree and it must include
the correct header for the custom toolchain. A good location for the other.h header file, would
be a directory under the directory specified in TOOLCHAIN_ROOT as include/toolchain. To get the
toolchain header included in zephyr’s build, the USERINCLUDE can be set to point to the include
directory, as shown here:

west build -- -DZEPHYR_TOOLCHAIN_VARIANT=... -DTOOLCHAIN_ROOT=... -DUSERINCLUDE=...

2.15 Tools and IDEs

2.15.1 CLion

CLion is a cross-platform C/C++ IDE that supports multi-threaded RTOS debugging.

This guide describes the process of setting up, building, and debugging Zephyr’s multi-thread-
blinky sample in CLion.

The instructions have been tested on Windows. In terms of the CLion workflow, the steps would
be the same for macOS and Linux, but make sure to select the correct environment file and to
adjust the paths.

Get CLion

Download CLion and install it.

Initialize a new workspace

This guide gives details on how to build and debug the multi-thread-blinky sample application,
but the instructions would be similar for any Zephyr project and workspace layout.

2.15. Tools and IDEs 273

https://github.com/zephyrproject-rtos/zephyr/blob/main/cmake/modules/FindHostTools.cmake
https://github.com/zephyrproject-rtos/zephyr/blob/main/cmake/modules/FindTargetTools.cmake
https://cmake.org/cmake/help/latest/manual/cmake.1.html#options
https://www.jetbrains.com/clion/
https://www.jetbrains.com/clion/download

