. Zephyr Project Documentation
Zephyr™ Release 2.7.5

The Zephyr Project Contributors
Jun 01, 2023

Table of contents

1 Introduction

1.1 Licensing
1.2 Distinguishing Features
1.3 Community Support
1.4 Resources

1.5 Fundamental Terms and Concepts

2 Getting Started Guide

2.1 Selectand Update OS i i i i e e e e e e e e
2.2 Install dependencies v v i i i e e e e e e e e e e e e e e e e
2.3 Get Zephyr and install Python dependencies.
2.4 InstallaToolchain i i i i i e s e e e e e e e e
2.5 Build the Blinky Sample e e e e e e e
2.6 Flashthe Sample i e e e e e e e
2.7 NexXtSIEPS . . . o i i i e
2.8 AskingforHelp. o ot i e e e e e e e e e
2.8.1 HOWIOASK . . . o it e e e e e e e e e
2.8.2 UseCopy/Paste o i i i e e e e e
3 Contribution Guidelines
3.1 LICENSING . . . ¢ v v i e
3.1.1 Components using other Licenses v v v v v v v vt v v it
3.2 Copyrights NOTICES . . & v v v v v e
3.3 Developer Certification of Origin (DCO) v v v v v i it et e e e e e e e
3.3.1 DCOSign-Off Methods i i it e ettt e e
3.3.2 NOES. . . . o i e e e e e e e e e e
3.4 PrerequUiSites . . v v v v v i i e
3.5 Repository layout e e e e e e e e e e e e e e e
3.6 PullRequestsand Issues i i i i ittt e e e e e e e
3.7 Toolsand Git SEtUP« . o i e e e e e e e e e e e e e e e
3.7.1 Signed-off-by e e
3.7.2 githint . .. e e e e
3.7.3 tWISEET . . . o L e e e e e e e e e e e e e e e
3.7.4 UnCrustify o i e e e e e e e e e e e e e e e e e
3.8 Coding Style e e e e
3.9 Other Guidelines o o v i i i i it e e e e e e e e
3.9.1 Coding Guidelines e
3.9.2 Documentation Guidelines e
3.10 Contribution Workflow e e e e e e
3.11 Commit Guidelines e e e e e e
3.11.1 Commit Message Body i i i i i i i s e e e e e e
3.11.2 Other Commit EXpectations v v v v v v v v ittt ettt e e
3.11.3 Submitting Proposals e e e e e e
3.11.4 Identifying Contribution Origin
3.12 Continuous Integration (CI) i o i i i i e e e e e e

3.13 Contributions to External Modules
3.14 Contributing External Components

3.14.1 Contributing source code from external projects
4 Development and Contribution Process
4.1 TSCProjectRoles e e e e
4.1.1 MainRoles. e e e e e e e e e
4.1.2 RoleRetirement o v i i i e e e e e e e e e e e e e e e e
4.1.3 Teams and Supporting Activities e
4.1.4 MAINTAINERS File e e e e e e e e
4.1.5 Release ACHIVItY v i i v i it e e e e e e e e e e e e
4.2 Release PrOCESS . . v v v v v v e
4.2.1 Merge WindoW i v v i it e e e e e e e e e e e e e e e e e e
4.2.2 Release Quality Criteria v i it ittt e e e e e
4.2.3 Releases . . . v v i e e e e e e e e e e e e e e e e
4.2.4 Release Procedure i i i i it e e e e e e e e e e e
4.3 Feature Tracking o e e e e e
4.3.1 Proposalsand RFCS i v v i it et e e e e e e e e e e e e
4.3.2 Roadmap and ReleasePlans
4.4 Code Flow and Branches e
4.4.1 IntrodUCtion v i i i e e e e e e e e e e e e e e e e e e
4.4.2 Roles and Responsibilities o o
4.5 Modifying Contributions made by other developers
4.5.1 SCenarios o it e e e e e e e e e e e e e e e e
4.5.2 Accepted policies e e e e e
4.6 Development Environment and Tools
4.6.1 Code REVIEW . . . v v i it i i e e e e e e e e e e e e e e e e e
4.6.2 Continuous Integration v o v it e e e e e e e e e
4.6.3 Labeling issues and pull requests in GitHub.
4.7 BUugRepOTting o i it e
4.7.1 Reporting a regression iSSUe v v v v v v bt e e e e e e e e e e e
4.8 Communication and Collaboration it
4.9 Code Documentation ¢ v v v i v i e e e e e e e e e e e e e e e e e e
4.9.1 APIDocumentation v v i ittt e e e e e e e e e
4.9.2 Reference to REQUITEMENLS v v v v v v vt e e e e e e e e e e e e
4.9.3 TestDocumentation v v v v v vt vt i e e e e e e e e e e
4.9.4 Documentation Guidelines e e
4.10 Terminology o i i i e e e e e e e e e e e e e
Build and Configuration Systems
5.1 Build System (CMakKe) v v v i e it e e e e e e e e e e e e e e e e e e
5.1.1 Build and Configuration Phases,
5.1.2 Supporting Scriptsand Tools e e
5.2 Configuration System (Kconfig) i v i it e s e e e e e
5.2.1 Interactive Kconfig interfaces,
5.2.2 Setting Kconfig configuration values, ..
5.2.3 Kconfig - Tipsand Best Practices v v i i i ittt
5.2.4 Custom Kconfig Preprocessor Functions
5.2.5 Kconfig eXtensions i i vt it e e e e e e e e e e e e e e
6 Application Development
6.1 OVEIVIEW . . o v it i e
6.2 Source Tree StruCture o v v v i i i et e e e e e e e e e e e e
6.3 Example standalone application e
6.4 Creating an Application L. e e e e e e
6.5 Setting Variables L. e e e e e e e e
6.5.1 Option 1: JUSEONCE v i vt et e e e e e e e e e e e e
6.5.2 Option 2: Inall Terminals
6.5.3 Option 3: Using zephyrrcfiles
6.5.4 Option 4: Using Zephyr Build Configuration CMake package
6.6 Important Build System Variables e

ii

7

6.7 Application CMakeLists.tXt v v v i it e e e e e e e e e e e e e e e e e e 124
6.8 CMakeCache.tkt o o i e e e e e e e e e e 126
6.9 Application Configuration L e e e e e 126
6.9.1 Kconfig Configuration 126
6.9.2 Devicetree Overlays o o e e e e e e 127
6.10 Application-SpecificCode e e 127
6.10.1 Third-party Library Code i i i i i e e e e e e e 127
6.11 Building an Application i i e e e e e e e e 127
6.11.1 BasSiCs o e 128
6.11.2 Build Directory CONtENLS . . . v v v v v v v e e e e e e e e e e e e e e 129
6.11.3 Rebuilding an Application i e e e 129
6.11.4 Building foraboardrevision L. 130
6.12 Run an Application o . i e e e e e e e e e e e e e e e e e 130
6.12.1 RunningonaBoard. e 131
6.12.2 Runninginan Emulator e 131
6.13 Application Debugging i i e e e e e e e e e e e 132
6.14 Custom Board, Devicetree and SOC Definitions v v v v v v v v .. 133
6.14.1 Boards ot e e e e e e e e e e e e e e e 134
6.14.2 SOCDefinitions v v v i i e e e e e e e e e e e e 134
6.14.3 Devicetree Definitions i i v it e e e e e e e e 135
6.15 Debugwith Eclipse. i i e e e e e e 136
6.15.1 OVEIVIEW . . . v i it e i e 136
6.15.2 Set Up the Eclipse Development Environment 137
6.15.3 Generate and Import an Eclipse Project 137
6.15.4 Create a Debugger Configuration 137
6.15.5 RTOS AWATENESS '« « v v ¢ v v v e 138
API Reference 139
7.1 API Status / Guidelines i i i it e e e e e e e e e 139
7.1.1 APTOVEIVIEW . . . v v v it i i e et e e e e e e e e e e e e e e e e 139
7.1.2 APILifecycle. e e e e e 140
7.1.3 APIDesign Guidelines i i e e 144
7.1.4 APITerminology o v v i i it i e e e e e e e e e 145
7.2 AUdIO e e e e e e e e e e e e e e e e 148
7.21 Audio Codec. . . . v v v i e e e e e e e e e e e 148
7.2.2 Audio DMIC e e e e e e e e e e 151
7.2.3 128 Lo e e e e e e e e e 154
7.3 Asynchronous Notification APIS i v v i it e e e e e e e e e e 163
7.3.1 APIReference i i v v it e e e e e e e 163
7.4 Bluetooth o e e e e e e e e e e e e e e 166
7.4.1 Connection Management v vttt e e e e e e e 166
7.4.2 Bluetooth Controller e 189
7.4.3 Cryptography v v i i e e e e e e e e e e e e e 190
744 DataBuffers e e e e e e e 191
7.4.5 Generic Access Profile (GAP) o i e e e 194
7.4.6 Generic Attribute Profile (GATT) o o i i e e e e e e e 235
7.4.7 HCIDIIVErs o ot i i e e e e e e e e e e e e e e e e 263
7.48 HCIRAWchannel ettt et e 267
7.4.9 Hands Free Profile (HFP) o 0 i i e e e e e e e e e e e e e 269
7.4.10 Logical Link Control and Adaptation Protocol (L2CAP) 272
7.4.11 Bluetooth Mesh Profile i it ittt e 281
7.4.12 Serial Port Emulation (RFCOMM) & o i i i e e e et e e e e e 364
7.4.13 Service Discovery Protocol (SDP) i i i i i i e e 367
7.4.14 Universal Unique Identifiers (UUIDS) v v i i v v i i e i e e n 380
728 T 5 o7 o o 403
7.5. 1 OVEIVIEW o i i i e e e e e e e e e e e e e e e e e e e 403
7.5.2 APIReference o v v i i i it e e e e e e e e e 404
7.6 DeVICELIEE i i i i i e 410

iii

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.16

7.17

7.18

7.19

7.6.1 Devicetree APL. i e e e e e e e e e e e e e 410

7.6.2 Bindingsindex e e e e e e e e e e e e e e e 504
Device Driver Model e e e e e e e e e 533
7.7.1 IntroduCtion v v v v i et e 533
7.7.2 Standard DIiVETS . . . v v v v v e 533
7.7.3 Synchronous Calls e 534
7.7.4 Driver APIS L e e e e e e e 534
7.7.5 Driver Data StruCtures v v v v v v e e e e e e e e e e e e e e e e e 534
7.7.6 Subsystems and API Structurest 534
7.7.7 Device-Specific APLEXteNSiONS « v v v v v v v v e e e e e e 535
7.7.8 Single Driver, Multiple Instances oo 537
7.7.9 Imitialization Levels L e e e 538
7.7.10 System DIivVers v v v v i i e 538
7.7.11 Errorhandling. e e e e 539
7.7.12 Memory Mapping« v v v i vt e e e e e e e e e e e e e 539
7.7.13 APIReference o v v i i i e e e e e e e e e 541
Display Interface o o i e e e e e e e e e e e e e e 549
7.8.1 APIReference i i i i e e e e e e e e e 549
Error Detection And Correction (EDAC) API i i i i it i i e e e e e 561
7.9.1 APIReference o v v i v i i i e e e e e e e e e e e 561
File Systems v v v o e 565
7.10.1 Samples e e e e e e 565
7.10.2 APIReference o i i i i i it e e e e e e e e e 565
Iterable Sections e e e e e e 576
7011 USAZE . v v v o i e 576
7.11.2 APIReference i i i i i e e e e e e e e e e e 577
Formatted OULPUL o i it e e e e e e e e e e e e e e 578
7.12.1 Cbprintf Packaging e e e e e e 578
7.12.2 APTREference o v v v i i i e e e e e e e e e e e e 580
Kernel Services v o v v e i e e e e e e e e e e e e e e e e e 586
7.13.1 Scheduling, Interrupts, and Synchronization 586
7.13.2 DataPassing e e e e e e e e e e e e 678
7.13.3 Memory Management v v v v v vttt e e e e e e e e e e e e e e e 720
7.03.4 TIMINE . . v o v ot e 729
7.13.5 Other. o e e e e e e e 744
Cstandard library e e e e e e e e e e e 764
7.14.1 APIReference v v v v v i i i e e e e e e e e e e e e e e e e 764
LOGEING . . . o o o e e e e e e e e e 770
7.15.1 Global Kconfig Options i i i i it e et e e e e e e e 772
7.15.2 USAE . . v v i i i e 773
7.15.3 LOggING PANIC v v v v vt e e e e e e e e e e e e e e 775
7.15.4 Architecture o o i i e e e e e e e e e e e e e e e e 775
7.15.5 Limitations and recommendations e e e e 780
7.15.6 Benchmark 780
7.15.7 APIReference i i i i e e e e e e e e 781
Memory Management v v v v v vt e e e e e e e e e e e e e e e e 801
7.16.1 Demand Paging it e e e e e 802
MiscellaneoUus APIS v v v v vt e 808
7.17.1 Checksum APIS o o i i e e e e e e e e e e e e e e e e e 808
7.17.2 Structured Data APIS e e e e e e e e e e 811
Data StruCtures v v v v i e 820
7.18.1 Single-linked List e e e 820
7.18.2 Double-linked List. i i i e e e e e e 831
7.18.3 Multi Producer Single Consumer Packet Buffer 838
7.18.4 Balanced Red/Black Tree o o i i i ittt 840
7.18.5 Ring Buffers e e e e e 843
MODBUS e e e e e e e e e e e e 855
7.09.1 Samples e e e e e e e e e e e e e e e e e e 855

iv

7.20

7.21

7.22

7.23

7.24

7.25

7.19.2 APIReference v v v v i i e e e e e e e e e e e e e 855

Networking o o e e e e e e e e e e e e e e e 863

7.20.1 Network APIs ot e e e e e e e e e e e e 863

7.20.2 Network Buffer Management v v v v v v v v it i i v neee .. 922

7.20.3 Networking Technologies 0 i i i i it ittt i 967

7.20.4 Protocols. L. e e e e e e 997

7.20.5 Network System Management v v v v v v v v bt e e e e e e 1049
7.20.6 Time Sensitive Networking 1089
7.20.7 Controller Area Network e 1096
7.20.8 Generic GSM MOdEM v v i i it e e e e e e e e e e e 1118
Peripherals o i e e e e e e e e e e e e 1118
7.21.1 ADC . . o e e e e e e e e e e e e e e e e e e 1118
7.21.2 COUNLET . . . v v v it e e e e e e e e e e e e e e e e e 1125
7.21.3 Clock Control e e e e e e 1130
7.21.4 DAC . . o e e e e e e e e e e e e e 1133
7.21.5 DMA . . . e e e e e e e e e 1134
7.21.6 ECHost Command i i ittt it ettt 1139
7.21.7 EEPROM o o e e e e e e e e 1143
7.21.8 ENLIOPY .« v v v v e e e e e e e e e e e e e e e e e e e 1144
7.21.9 Flash o o o e e e e e e e e 1146
7.21L1I0GNA . o e e e e e e e e e e e e e 1150
72L1TGPIO . . . e e e e e e e e e 1153
7.21.12Hardware Information e e e 1168
7.21.13I2CEEPROM Slave v i o e e e e e e e e e e e e e e e e e e 1170
721 14T2C . . o o e e e e e e e e e e e e e e e e e e e 1171
721 15IPM L o o e e e e e e e e e e e e e e e 1184
72116KSCAN .« . . o o e e e e e e e 1187
T21L17LED . . o e 1188
72LI8PINMUX . . v v oo o e e e e e e e e e e e e e 1194
72L19PWM . L L o e e e e e e e e e 1195
7.21.20PS/2 . L o e e e e e e e e e e e e e e 1202
72121PECL . . . ottt e e e e e e e e e e e e e e e e e e 1204
7.21.22Regulators i e 1210
7.21.23RTC . . o e e e e e e e e e e e e e e e e 1211
7.21.248€NS0IS . . v v v e e e e e e e e e e e e e 1217
7.21.258PL . o o e e e e e e e e e e e e e e e 1232
7.21.26UART o e e e e e e e e e e e e e e e e 1242
7.21.27MDIO . . .o e e e e e e e e e e e e 1257
7.21.28 Watchdog e e e e e e e e e e 1258
72120VIdeo . . . o v e e e e 1261
7.21.30eSPL . . oL e e e e e e e e e e e 1269
Power Management v v vttt e 1284
7.22.1 Terminologyo e e e e e e e e e e 1285
7.22.2 OVEIVIEW . ¢ v v v v e 1285
7.22.3 System Power Management i ittt i e 1285
7.22.4 Device Power Management Infrastructure 1290
7.22.5 Device Runtime Power Management v, 1293
7.22.6 Power Management Configuration Flags 1294
7.22.7 APIReference o i i i i i e e e e e e e e e 1295
Random Number Generation o o it i ittt ittt 1301
7.23.1 Keonfig Options o v v v v it e e e e e e e e e e e e e e e e e 1301
7.23.2 APIReference v v v v v i i e e e e e e e e e e e e e e e e 1302
Resource Management. v i vttt e e e e e e e e e e e e e e e e 1303
7.24.1 On-Off Manager« o v i it e e e e e e e e e e 1303
Shell . . . e e e 1311
7.25.1 OVEIVIEW . o v v v v vttt v v e e e e e e e e e e e e 1312
7.25.2 Commands oo i i e 1313
7.25.3 TabFeature o i i i i it e e e e e e e e e 1318

7.25.4 History Feature i v i v i i i i e e e e e e e e e e e e e 1319

7.25.5 Wildcards Feature o i i i e e e e e e 1319
7.25.6 Meta Keys Feature it 1319
7.25.7 GetoptFeature 1320
7.25.8 Obscured Input Feature0 i it e e 1320
7.25.9 Shell Logger Backend Feature, 1321
7.25.10USa8E i e 1321
725 11APIReference o v v v i i i e e e e e e e e e e e e e 1322
7.26 StOTAZE .« v v v v v e 1339
7.26.1 Non-Volatile Storage (NVS) i i i v it e e e e e e e e e 1339
7.26.2 DiSKACCESS '« v v v v v e 1343
7.26.3 Flashmap i e e e e e e e e 1347
7.26.4 Flash Circular Buffer (FCB) v v v v i e e e e e e e e e e e e e e e 1352
7.26.5 Stream Flash e 1357
7.27 Task Watchdog e e e e e e 1360
7.27.1 OVEIVIEW . . o it i i i e i e 1360
7.27.2 Configuration OPLiONS . . . v v v v v v v v e e e e e e e e e e e e e e e e 1360
7.27.3 APIReference i i i e e e e e e e e 1360
7.28 Time ULIlities o o o i e e e e e e e e e e e e e e e e e e e 1362
7.28.1 OVEIVIEW . . . i i i it i e i e 1362
7.28.2 Time Utility APIS o v v e e e e e e e e e e e e e e e e e e e 1362
7.28.3 Concepts Underlying Time Support in Zephyr 1367
7.29 USB devVICe SUPPOIT . v v v v v e v e 1368
7.29.1 USB device controllerdriver AP o 0 v i i e it e 1369
7.29.2 USBdevicestack e e 1375
7.29.3 Testing USB device SUPPOIt . .« v v v v v v v e e e e e e e e e e e e e 1384
7.29.4 USB Human Interface Devices (HID) sUPpPOTt v v v v v v v v v v v v e e . 1385
7.29.5 USB device stack CDC ACM SUPPOIt & v v v v v v v v e e e e e e et e e e e e e e u 1399
7.30 UserMode i i e e e e e e e e e e e e e e e e 1401
7.30.1 OVEIVIEW . . . L v ittt e e e e e e e e e e e e e e e e 1401
7.30.2 Memory Protection Design oL o 1403
7.30.3 Kernel Objects o o i i i i e e e e e e e e e e e 1412
7.30.4 System Calls e e e e e e e e e e 1417
7.30.5 MPU Stack Objects i it i e e e e e e e e e e e 1426
7.30.6 MPU Backed Userspace o v v v v v it et ettt e e 1427
7.31 UtLtES . . o v v o e 1427
7.32 Settings e e e e e e e e e e e e e e e 1439
7.32.1 Handlers o o o i e e e e e e e e e e e e e e e e 1440
7.32.2 Backends e e e e e e e e 1440
7.32.3 Zephyr Storage Backends o . 1440
7.32.4 Loading data from persisted storage oo et i 1440
7.32.5 Storing data to persistent Storageo e e e e e e e e 1441
7.32.6 Example: Device Configuration, 1441
7.32.7 Example: Persist Runtime State i ittt e 1442
7.32.8 Example: Custom Backend Implementation 1443
7.32.9 APIReference o i i i vt i e e e e e e e e e 1444
7.33 Executing Time FUNCLONS o o v i i i et et e e e e e e 1452
7.33.1 Configuration i i e e e e e e e e e e e e 1452
7.33.2 USAZE . . v v i i e e e e e e e e e e e e e e e e e e 1452
7.33.3 APIdocumentation ¢ i i i it e e e e e e e e 1453
7.34 Virtualization L e e e e e e e e e e e e e e e 1454
7.34.1 Inter-VM Shared Memory o i v v it i i i e e 1454
User and Developer Guides 1457
8.1 Beyond the Getting Started Guide 1457
8.1.1 Pythonand pip v v v v i i it i e e e e e e e e e 1457
8.1.2 Advanced Setup and tool chain alternatives 1457

8.1.3 SetUpaToolchain, 1462

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.1.4 Cloning the Zephyr Repositories v i i i i i it e et e 1467

8.1.5 Export Zephyr CMake package i i i i e 1468
8.1.6 Board Aliases e e e e e 1468
8.1.7 Build and Run an Application 1468
Architecture-related Guides e 1470
8.2.1 Zephyr support status on ARC ProCessors v v v v v v v v v v v v oo e 1470
8.2.2 Arm Cortex-M Developer Guide i i vttt 1471
8.2.3 x86Developer Guide e e e e e e e e e e 1480
Bluetooth o e e e e 1482
8.3.1 OVEIVIEW . . . i i i e 1482
8.3.2 Bluetooth Stack Architectureo e 1483
8.3.3 Bluetooth Qualification e e 1489
8.3.4 Bluetoothtools e 1510
8.3.5 Developing Bluetooth Applications 1512
8.3.6 AutoPTS on Windows 10 with nRF52board 1516
8.3.7 AutoPTSonLinux. ittt 1528
Documentation Generation o v vttt e e e e e e e e e 1540
8.4.1 Documentation OVEIVIEW v v v vt v it et e e e e e e e 1540
8.4.2 Installing the documentation processors 1541
8.4.3 Documentation presentationtheme 1542
8.4.4 Running the documentation processors« v v ittt i oo 1542
8.4.5 Filtering expected warnings e 1543
8.4.6 Developer-mode Document Building 1543
8.4.7 Linking external Doxygen projects against Zephyr 1544
Coccinelle o o o e e e e 1544
8.5.1 Getting Coccinelle. e e e e e 1544
8.5.2 Supplemental documentation e 1545
8.5.3 Using Coccinelle on Zephyr it i i 1545
8.5.4 Examples e e e e e e 1545
8.5.5 Coccinelle parallelization 1546
8.5.6 Using Coccinelle with a single semanticpatch 1546
8.5.7 Controlling which files are processed by Coccinelle 1546
8.5.8 Debugging Coccinelle SmPL patches 1546
8.5.9 Additional Flags i i i e e e e e e e e e e 1547
8.5.10 SmPL patch specificoptions e 1547
8.5.11 Proposing new semantic patches., 1548
8.5.12 Detailed description of the report mode 1549
8.5.13 Detailed description of the patchmode 1549
8.5.14 Detailed description of the context mode 1550
8.5.15 Detailed description of theorgmode 1551
8.5.16 Coccinelle Mailing List i e 1552
Code And Data Relocation i i i i it i i e it e ettt 1552
8.6.1 OVEIVIEW . . . v v vttt e e e e e e e e e e e e e 1552
8.6.2 Details e e e e e 1552
Cryptography o v e i e e e e e e e e e e e e e e e e e e 1553
8.7.1 TinyCrypt Cryptographic Library 1554
Flashing and Hardware Debugging 1558
8.8.1 Flash & DebugHostTools 1558
8.8.2 DebugProbes e e e e 1562
Debugging and Tracing i i i e e e e e e e e e e e e e 1565
8.9.1 Threadanalyzer. e e e 1565
8.9.2 CoreDUMP v v v vt e e e e e e e 1567
8.9.3 GDBstub e e e e e 1573
8.9.4 Tracing€. o o i i i e e e e 1574
Device Management v v v v v v e 1606
8.10.1 MCUMSETE . « v v v v v e 1606
8.10.2 Device Firmware Upgrade ittt ittt 1614
Devicetree GUIde o v v v i e 1615

8.12

8.13

8.14

8.15

8.16

8.17

8.18

8.19

8.20

8.11.1 Introduction to deviCetree v v v v i i i e e e e e e e e e e e 1615

8.11.2 Design g0als v v v i i e e e e e e e e e e e e e e e e e e 1624
8.11.3 Devicetree bindings oo e e e e e e e 1625
8.11.4 Devicetree access from C/C++ o v v i i e e e e e 1639
8.11.5 Devicetree HOWTOs i i i ittt e et ettt e e e 1650
8.11.6 Troubleshooting devicetree i i e 1658
8.11.7 Devicetree versus Kconfig e 1660
Peripheral and Hardware Emulators 1661
8.12.1 OVEIVIEW . & v v v v i i e 1661
8.12.2 CONCEPL .« v v v i i e 1661
8.12.3 Available emulators 1663
8.12.4 Samples i e e e e e e e e e e e e e e e e e e 1664
Modules (External Projects) . . . v v v v v v v e e e e e e e e e e e e e e e e e e e 1664
8.13.1 Module Repositories o i i i e e e e e e e 1665
8.13.2 Contributing to Zephyr modules, 1666
8.13.3 Licensing requirements and policies 1667
8.13.4 Documentation reqUIremMents « v v vt v v vt v e e e e e e e . 1668
8.13.5 Testing reqUIremMents« v v v v v v i e e e e e e e e e e e e e e e e e e 1668
8.13.6 Deprecating and removing modules L. 1669
8.13.7 Integrate modules in Zephyr build system 1669
8.13.8 Module yaml file description oLt e e 1669
8.13.9 Submitting changestomodules L oL, 1675
Networking o o e e e e e e e e e e e e e e 1676
8.14.1 OVEIVIEW . . v v v vt v v e e e e e et e e e e e e 1676
8.14.2 Network Stack Architecture e 1678
8.14.3 Network Connectivity API it e e 1684
8.14.4 Networking with the hostsystem 1684
8.14.5 Monitor Network Traffic 1697
Using with PlatformIO o ot e e e e e e e e e e 1700
8.15.1 Whatis PlatformIO? it e e e 1700
8.15.2 Installation v v v v e e e e e e e e e e e e e e e e e e 1700
8.15.3 Configuration i e e e e e e 1700
8.15.4 Tutorials L e e e e e e 1701
8.15.5 Project Examples i e e e e e e e e e e e e e 1701
8.15.6 NeXE StEPS « v v v v v v e 1701
OS ADSITaCHION . & & v v v v v e 1701
8.16.1 POSIX SUPPOTIT . « v v v v i i e 1701
8.16.2 CMSISRTOS VI L . o e e e e e e e e e e 1712
8.16.3 CMSISRTOS V2 L . o e e e e e e e e e e e 1712
POTting o o e 1713
8.17.1 Architecture Porting Guide e 1713
8.17.2 Board Porting Guide e e e 1739
8.17.3 Shields e e e 1748
TeSting . . v o o e 1751
8.18.1 TestFramework o e 1751
8.18.2 Test Runner (TWiSter) v v v v v v e e e e e e e e e e e e e e e e e e 1763
8.18.3 Generating coverage rePortS . . . v v v v v v v v b v e e e e e e e e e e 1773
Trusted Firmware-M L e e e e e e 1775
8.19.1 Trusted Firmware-M OVerview v v v i v v v i e e e e e e e e e 1775
8.19.2 TE-MRequUirements v v v v v v e e e e e e e e e e e e e e e e e e e 1778
8.19.3 TFE-MBuild System e e e e e e 1779
8.19.4 Trusted Firmware-M Integration c v v v i i i v i v oo ... 1781
West (Zephyr's meta-tool) o o vt e e e e e e e e e e e e e e e e 1782
8.20.1 Installing west o i i i i e e e e e e e e 1783
8.20.2 WestRelease NOtes v v vt i ittt et e e e e e 1784
8.20.3 Troubleshooting West i 1791
8.20.4 BaSiCS . . . v i i e e e e e e e e e e 1794
8.20.5 Built-incommands e e e e e e e 1797

viii

8.20.6 WOIKSPACES . . . & v v v i i et e 1800

8.20.7 West Manifests v v i i i e e e e e e e e 1804
8.20.8 Configuration i i i i e e e e e e e e e e e 1832
8.20.9 EXenSIONS v v v v vt i e 1834
8.20.10Building, Flashing and Debugging 1838
8.20.11Signing Binaries L. e e e e e e e 1850
8.20.12 Additional Zephyr extension commands 1851
8.20.13History and Motivation L e e e e e e e 1853
8.20.14Moving to WeSt o o i e e e e e e e e e e 1855
8.20.15Using Zephyr without west e 1855
8.21 OptimizZatiOns v v v vt e 1857
8.21.1 Optimizing for Footprint 0 i e 1857
8.21.2 Optimization Tools i i e e e e e e 1858
8.22 Zephyr CMake Package e e 1863
8.22.1 Zephyr CMake package export (West) o v v v vttt 1863
8.22.2 Zephyr CMake package export (withoutwest) 1863
8.22.3 Zephyr application structure e e e e e e e e 1863
8.22.4 Zephyr Base Environment Setting it e e 1865
8.22.5 Zephyr CMake Package SearchOrder 1865
8.22.6 Zephyr CMake Package Version 1866
8.22.7 Multiple Zephyr Installations (Zephyr workspace) 1867
8.22.8 Zephyr Build Configuration CMake package 1868
8.22.9 Zephyr Build Configuration CMake package (Freestanding application) 1869
8.22.10 Zephyr CMake package sourcecode 1869
9 Security 1871
9.1 Zephyr Security OVEIVIEW v v v v v v e 1871
9.1.1 Introduction v i i i e e e e e e e e e e e e 1871
9.1.2 Current Security Definition e 1872
9.1.3 Secure Development Process o v ittt i e e 1874
9.1.4 SecureDesign e e e e 1878
9.1.5 Security Certification v v i i e e e e e e e e e 1880
9.2 Security Vulnerability Reporting 1881
9.2.1 Introduction i i e e e e e e e e 1881
9.2.2 Security Issue Managementttt 1881
9.2.3 Vulnerability Notification L e 1883
9.2.4 Backporting of Security Vulnerabilities 1883
9.25 NeedtoKnow i i 1883
9.3 Secure Coding o i i i e e 1884
9.3.1 Introductionand SCOPe« i e e e e e e e e 1884
9.3.2 Secure Coding o v v i i e e e e e e e 1884
9.3.3 Secure development knowledge 0 e 1885
9.3.4 CodeRevIieW o i i i i e e 1886
9.3.5 Issuesand Bug Tracking 1886
9.3.6 Modifications to This Document oo v v vt i v v i e .. 1887
9.4 Sensor Device Threat Model ittt 1887
941 ASSEIS . v v v i e e e e e e e e e e e e e e 1887
9.4.2 CommuUNICAtiON v v v v v vttt e e e e e e e e e e 1889
9.4.3 Other Considerations v it ittt i i 1891
9.4.4 Threats. o it e e 1891
945 NOES. . . o v i it e 1891
9.5 Hardening Tool. e e e e e e e 1891
0.5.1 USAE . . v v i e 1891
9.6 Vulnerabilities e 1892
9.6.1 CVE-2017 i e e e e e e e e e 1892
9.6.2 CVE-2019 i e e e e e e e e e e 1893
9.6.3 CVE-2020 i i ittt e e e e e e e e e e e 1893
9.6.4 CVE-2021 o ittt e e e e e e 1901

ix

Bibliography 1907
Python Module Index 1909

Index 1911

Chapter 1

Introduction

The Zephyr OS is based on a small-footprint kernel designed for use on resource-constrained and em-
bedded systems: from simple embedded environmental sensors and LED wearables to sophisticated
embedded controllers, smart watches, and IoT wireless applications.

The Zephyr kernel supports multiple architectures, including:
* ARC EM and HS
* ARMv6-M, ARMv7-M, and ARMv8-M (Cortex-M)
¢ ARMv7-A and ARMvV8-A (Cortex-A, 32- and 64-bit)
¢ ARMv7-R, ARMv8-R (Cortex-R, 32- and 64-bit)
* Intel x86 (32- and 64-bit)
* NIOS II Gen 2
* RISC-V (32- and 64-bit)
* SPARC VS8
* Tensilica Xtensa

The full list of supported boards based on these architectures can be found here.

1.1 Licensing

Zephyr is permissively licensed using the Apache 2.0 license (as found in the LICENSE file in the project’s
GitHub repo). There are some imported or reused components of the Zephyr project that use other
licensing, as described in Licensing of Zephyr Project components.

1.2 Distinguishing Features

Zephyr offers a large and ever growing number of features including:
Extensive suite of Kernel services Zephyr offers a number of familiar services for development:

* Multi-threading Services for cooperative, priority-based, non-preemptive, and preemptive
threads with optional round robin time-slicing. Includes POSIX pthreads compatible API sup-
port.

* Interrupt Services for compile-time registration of interrupt handlers.

* Memory Allocation Services for dynamic allocation and freeing of fixed-size or variable-size
memory blocks.

https://github.com/zephyrproject-rtos/zephyr/blob/main/LICENSE
https://github.com/zephyrproject-rtos/zephyr

Zephyr Project Documentation, Release 2.7.5

* Inter-thread Synchronization Services for binary semaphores, counting semaphores, and mutex
semaphores.

* Inter-thread Data Passing Services for basic message queues, enhanced message queues, and
byte streams.

* Power Management Services such as tickless idle and an advanced idling infrastructure.
Multiple Scheduling Algorithms Zephyr provides a comprehensive set of thread scheduling choices:
* Cooperative and Preemptive Scheduling
¢ Earliest Deadline First (EDF)
* Meta IRQ scheduling implementing “interrupt bottom half” or “tasklet” behavior
* Timeslicing: Enables time slicing between preemptible threads of equal priority
* Multiple queuing strategies:
— Simple linked-list ready queue
— Red/black tree ready queue
— Traditional multi-queue ready queue

Highly configurable / Modular for flexibility Allows an application to incorporate only the capabilities
it needs as it needs them, and to specify their quantity and size.

Cross Architecture Supports a wide variety of supported boards with different CPU architectures and
developer tools. Contributions have added support for an increasing number of SoCs, platforms,
and drivers.

Memory Protection Implements configurable architecture-specific stack-overflow protection, kernel ob-
ject and device driver permission tracking, and thread isolation with thread-level memory protec-
tion on x86, ARC, and ARM architectures, userspace, and memory domains.

For platforms without MMU/MPU and memory constrained devices, supports combining
application-specific code with a custom kernel to create a monolithic image that gets loaded and
executed on a system’s hardware. Both the application code and kernel code execute in a single
shared address space.

Compile-time resource definition Allows system resources to be defined at compile-time, which re-
duces code size and increases performance for resource-limited systems.

Optimized Device Driver Model Provides a consistent device model for configuring the drivers that are
part of the platform/system and a consistent model for initializing all the drivers configured into
the system and Allows the reuse of drivers across platforms that have common devices/IP blocks

Devicetree Support Use of devicetree to describe hardware. Information from devicetree is used to
create the application image.

Native Networking Stack supporting multiple protocols Networking support is fully featured and op-
timized, including LwM2M and BSD sockets compatible support. OpenThread support (on Nordic
chipsets) is also provided - a mesh network designed to securely and reliably connect hundreds of
products around the home.

Bluetooth Low Energy 5.0 support Bluetooth 5.0 compliant (ESR10) and Bluetooth Low Energy Con-
troller support (LE Link Layer). Includes Bluetooth mesh and a Bluetooth qualification-ready Blue-
tooth controller.

* Generic Access Profile (GAP) with all possible LE roles.
e GATT (Generic Attribute Profile)

* Pairing support, including the Secure Connections feature from Bluetooth 4.2

Clean HCI driver abstraction

» Raw HCI interface to run Zephyr as a Controller instead of a full Host stack

2 Chapter 1. Introduction

Zephyr Project Documentation, Release 2.7.5

* Verified with multiple popular controllers
* Highly configurable
Mesh Support:
* Relay, Friend Node, Low-Power Node (LPN) and GATT Proxy features
* Both Provisioning bearers supported (PB-ADV & PB-GATT)
* Highly configurable, fitting in devices with at least 16k RAM

Native Linux, macOS, and Windows Development A command-line CMake build environment runs
on popular developer OS systems. A native POSIX port, lets you build and run Zephyr as a na-
tive application on Linux and other OSes, aiding development and testing.

Virtual File System Interface with LittleFS and FATFS Support LittleFS and FATFS Support, FCB
(Flash Circular Buffer) for memory constrained applications, and file system enhancements for
logging and configuration.

Powerful multi-backend logging Framework Support for log filtering, object dumping, panic mode,
multiple backends (memory, networking, filesystem, console, ..) and integration with the shell
subsystem.

User friendly and full-featured Shell interface A multi-instance shell subsystem with user-friendly
features such as autocompletion, wildcards, coloring, metakeys (arrows, backspace, ctrl+u, etc.)
and history. Support for static commands and dynamic sub-commands.

Settings on non-volatile storage The settings subsystem gives modules a way to store persistent per-
device configuration and runtime state. Settings items are stored as key-value pair strings.

Non-volatile storage (NVS) NVS allows storage of binary blobs, strings, integers, longs, and any com-
bination of these.

Native POSIX port Supports running Zephyr as a Linux application with support for various subsystems
and networking.

1.3 Community Support

Community support is provided via mailing lists and Discord; see the Resources below for details.

1.4 Resources

Here’s a quick summary of resources to help you find your way around:
* Help: Asking for Help Tips
* Documentation: http://docs.zephyrproject.org (Getting Started Guide)

* Source Code: https://github.com/zephyrproject-rtos/zephyr is the main repository; https://elixir.
bootlin.com/zephyr/latest/source contains a searchable index

* Releases: https://github.com/zephyrproject-rtos/zephyr/releases
* Samples and example code: see Sample and Demo Code Examples

* Mailing Lists: users@lists.zephyrproject.org and devel@lists.zephyrproject.org are the main user
and developer mailing lists, respectively. You can join the developer’s list and search its archives at
Zephyr Development mailing list. The other Zephyr mailing list subgroups have their own archives
and sign-up pages.

* Nightly CI Build Status: https://lists.zephyrproject.org/g/builds The
builds@lists.zephyrproject.org mailing list archives the CI nightly build results.

1.3. Community Support 3

https://docs.zephyrproject.org/latest/getting_started/index.html#asking-for-help
http://docs.zephyrproject.org
http://docs.zephyrproject.org/latest/getting_started/index.html
https://github.com/zephyrproject-rtos/zephyr
https://elixir.bootlin.com/zephyr/latest/source
https://elixir.bootlin.com/zephyr/latest/source
https://github.com/zephyrproject-rtos/zephyr/releases
http://docs.zephyrproject.org/latest/samples/index.html
mailto:users@lists.zephyrproject.org
mailto:devel@lists.zephyrproject.org
https://lists.zephyrproject.org/g/devel
https://lists.zephyrproject.org/g/main/subgroups
https://lists.zephyrproject.org/g/builds
mailto:builds@lists.zephyrproject.org

Zephyr Project Documentation, Release 2.7.5

* Chat: Real-time chat happens in Zephyr’s Discord Server. Use this Discord Invite to register.
* Contributing: see the Contribution Guide

* Wiki: Zephyr GitHub wiki

* Issues: https://github.com/zephyrproject-rtos/zephyr/issues

* Security Issues: Email vulnerabilities@zephyrproject.org to report security issues; also see our Se-
curity documentation. Security issues are tracked separately at https://zephyrprojectsec.atlassian.
net.

* Zephyr Project Website: https://zephyrproject.org

1.5 Fundamental Terms and Concepts

See glossary

4 Chapter 1. Introduction

https://chat.zephyrproject.org
http://docs.zephyrproject.org/latest/contribute/index.html
https://github.com/zephyrproject-rtos/zephyr/wiki
https://github.com/zephyrproject-rtos/zephyr/issues
mailto:vulnerabilities@zephyrproject.org
http://docs.zephyrproject.org/latest/security/index.html
http://docs.zephyrproject.org/latest/security/index.html
https://zephyrprojectsec.atlassian.net
https://zephyrprojectsec.atlassian.net
https://zephyrproject.org

Chapter 2

Getting Started Guide

Follow this guide to:

* Set up a command-line Zephyr development environment on Ubuntu, macOS, or Windows (in-
structions for other Linux distributions are discussed in Install Linux Host Dependencies)

¢ Get the source code

* Build, flash, and run a sample application

2.1 Select and Update OS

Click the operating system you are using.
Ubuntu

This guide covers Ubuntu version 18.04 LTS and later.

sudo apt update

sudo apt upgrade

macOS

On macOS Mojave or later, select System Preferences > Software Update. Click Update Now if necessary.
On other versions, see this Apple support topic.

Windows

Select Start > Settings > Update & Security > Windows Update. Click Check for updates and install any
that are available.

2.2 Install dependencies

Next, you’ll install some host dependencies using your package manager.

The current minimum required version for the main dependencies are:

Tool Min. Version
CMake 3.20.0
Python 3.6
Devicetree compiler | 1.4.6

Ubuntu

https://support.apple.com/en-us/HT201541
https://cmake.org/
https://www.python.org/
https://www.devicetree.org/

Zephyr Project Documentation, Release 2.7.5

1. Download, inspect and execute the Kitware archive script to add the Kitware APT repository to your
sources list. A detailed explanation of kitware-archive.sh can be found here kitware third-party
apt repository:

wget https://apt.kitware.com/kitware-archive.sh

sudo bash kitware-archive.sh

2. Use apt to install the required dependencies:

sudo apt install --no-install-recommends git cmake ninja-build gperf \

ccache dfu-util device-tree-compiler wget \

python3-dev python3-pip python3-setuptools python3-tk python3-wheel xz-utils
—file \

make gcc gcc-multilib g++-multilib libsdl2-dev

3. Verify the versions of the main dependencies installed on your system by entering:

cmake --version
python3 --version
dtc --version

Check those against the versions in the table in the beginning of this section. Refer to the Install
Linux Host Dependencies page for additional information on updating the dependencies manually.

macOS

1. Install Homebrew:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
—HEAD/install.sh)"

2. Use brew to install the required dependencies:

brew install cmake ninja gperf python3 ccache gemu dtc

Windows

Note: Due to issues finding executables, the Zephyr Project doesn’t currently support application flash-
ing using the Windows Subsystem for Linux (WSL) (WSL).

Therefore, we don’t recommend using WSL when getting started.

These instructions must be run in a cmd.exe command prompt. The required commands differ on
PowerShell.

These instructions rely on Chocolatey. If Chocolatey isn’t an option, you can install dependencies from
their respective websites and ensure the command line tools are on your PATH environment variable.

1. Install chocolatey.

2. Open a cmd.exe window as Administrator. To do so, press the Windows key, type “cmd.exe”,
right-click the result, and choose Run as Administrator.

3. Disable global confirmation to avoid having to confirm the installation of individual programs:

choco feature enable -n allowGlobalConfirmation

4. Use choco to install the required dependencies:

choco install cmake --installargs 'ADD_CMAKE_TO_PATH=System'
choco install ninja gperf python git dtc-msys2

6 Chapter 2. Getting Started Guide

https://apt.kitware.com/
https://apt.kitware.com/
https://brew.sh/
https://msdn.microsoft.com/en-us/commandline/wsl/install_guide
https://chocolatey.org/
https://chocolatey.org/install

Zephyr Project Documentation, Release 2.7.5

5. Close the window and open a new cmd. exe window as a regular user to continue.

2.3 Get Zephyr and install Python dependencies

Next, clone Zephyr and its modules into a new west workspace named zephyrproject. You'll also install
Zephyr’s additional Python dependencies.

Python is used by the west meta-tool as well as by many scripts invoked by the build system. It is easy to
run into package incompatibilities when installing dependencies at a system or user level. This situation
can happen, for example, if working on multiple Zephyr versions at the same time. For this reason it is
suggested to use Python virtual environments.

Ubuntu
Install globally

1. Install west, and make sure ~/.local/bin is on your PATH environment variable:

pip3 install --user -U west
echo 'export PATH="/.local/bin:"$PATH"' >> ~/.bashrc
source ~/.bashrc

2. Get the Zephyr source code:
west init ~/zephyrproject

cd ~/zephyrproject
west update

3. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code required
for building Zephyr applications.

west zephyr-export

4. Zephyr's scripts/requirements.txt file declares additional Python dependencies. Install them
with pip3.

pip3 install --user -r ~/zephyrproject/zephyr/scripts/requirements.txt
Install within virtual environment
1. Create a new virtual environment:

python3 -m venv ~/zephyrproject/.venv

2. Activate the virtual environment:

source ~/zephyrproject/.venv/bin/activate

Once activated your shell will be prefixed with (.venv). The virtual environment can be deacti-
vated at any time by running deactivate.

Note: Remember to activate the virtual environment every time you start working.

3. Install west:

pip install west

4. Get the Zephyr source code:

2.3. Get Zephyr and install Python dependencies 7

https://docs.python.org/3/library/venv.html

Zephyr Project Documentation, Release 2.7.5

west init ~/zephyrproject
cd ~/zephyrproject
west update

. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code required

for building Zephyr applications.

west zephyr-export

Zephyr's scripts/requirements.txt file declares additional Python dependencies. Install them
with pip.

pip install -r ~/zephyrproject/zephyr/scripts/requirements.txt

macOS

Install globally

1.

Install west:

pip3 install -U west

Get the Zephyr source code:

west init ~/zephyrproject
cd ~/zephyrproject
west update

Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code required
for building Zephyr applications.

west zephyr-export

Zephyr's scripts/requirements.txt file declares additional Python dependencies. Install them
with pip3.

pip3 install -r ~/zephyrproject/zephyr/scripts/requirements.txt

Install within virtual environment

1.

Create a new virtual environment:

python3 -m venv ~/zephyrproject/.venv

Activate the virtual environment:

source ~/zephyrproject/.venv/bin/activate

Once activated your shell will be prefixed with (.venv). The virtual environment can be deacti-
vated at any time by running deactivate.

Note: Remember to activate the virtual environment every time you start working.

. Install west:

pip install west

Get the Zephyr source code:

Chapter 2. Getting Started Guide

Zephyr Project Documentation, Release 2.7.5

west init ~/zephyrproject
cd ~/zephyrproject
west update

5. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code required
for building Zephyr applications.

west zephyr-export

6. Zephyr's scripts/requirements.txt file declares additional Python dependencies. Install them
with pip.

pip install -r ~/zephyrproject/zephyr/scripts/requirements.txt

Windows
Install globally

1. Install west:

pip3 install -U west

2. Get the Zephyr source code:

cd %HOMEPATHY,

west init zephyrproject
cd zephyrproject

west update

3. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code required
for building Zephyr applications.

west zephyr-export

4. Zephyr's scripts\requirements.txt file declares additional Python dependencies. Install them
with pip3.

pip3 install -r 7HOMEPATHY,\zephyrproject\zephyr\scripts\requirements.txt

Install within virtual environment

1. Create a new virtual environment:

cd 7HOMEPATHY,
python3 -m venv zephyrproject\.venv

2. Activate the virtual environment:

: cmd. eze
zephyrproject\.venv\Scripts\activate.bat
:: PowerShell
zephyrproject\.venv\Scripts\Activate.psl

Once activated your shell will be prefixed with (.venv). The virtual environment can be deacti-
vated at any time by running deactivate.

Note: Remember to activate the virtual environment every time you start working.

3. Install west:

2.3. Get Zephyr and install Python dependencies 9

Zephyr Project Documentation, Release 2.7.5

pip install west

4. Get the Zephyr source code:

west init zephyrproject
cd zephyrproject
west update

5. Export a Zephyr CMake package. This allows CMake to automatically load boilerplate code required
for building Zephyr applications.

west zephyr-export

6. Zephyr's scripts\requirements.txt file declares additional Python dependencies. Install them
with pip.

pip install -r %HOMEPATHY,\zephyrproject\zephyr\scripts\requirements.txt

2.4 Install a Toolchain

A toolchain provides a compiler, assembler, linker, and other programs required to build Zephyr applica-
tions.

Ubuntu

The Zephyr Software Development Kit (SDK) contains toolchains for each of Zephyr’s supported archi-
tectures. It also includes additional host tools, such as custom QEMU binaries and a host compiler.

1. Download the latest SDK installer:
cd ©

wget https://github.com/zephyrproject-rtos/sdk-ng/releases/download/v0.13.1/
—zephyr-sdk-0.13.1-1inux-x86_64-setup.run

2. Run the installer, installing the SDK in ~/zephyr-sdk-0.13.1:

chmod +x zephyr-sdk-0.13.1-1linux-x86_64-setup.run
./zephyr-sdk-0.13.1-1linux-x86_64-setup.run -- -d ~/zephyr-sdk-0.13.1

Note: It is recommended to install the Zephyr SDK at one of the following locations:
* $HOME/zephyr-sdk[-x.y.z]
* $HOME/.local/zephyr-sdk[-x.y.z]
* $HOME/.local/opt/zephyr-sdk[-x.y.z]
* $HOME/bin/zephyr-sdk[-x.y.z]
* /opt/zephyr-sdk[-x.y.z]
* /usr/zephyr-sdk[-x.y.z]
* /usr/local/zephyr-sdk[-x.y.z]
where [-x.y.z] is optional text, and can be any text, for example -0.13.1.

If installing the Zephyr SDK outside any of those locations, please read: Install the Zephyr Software
Development Kit (SDK)

10 Chapter 2. Getting Started Guide

https://github.com/zephyrproject-rtos/sdk-ng/releases

Zephyr Project Documentation, Release 2.7.5

You cannot move the SDK directory after you have installed it.

3. Install udev rules, which allow you to flash most Zephyr boards as a regular user:

sudo cp ~/zephyr-sdk-0.13.1/sysroots/x86_64-pokysdk-linux/usr/share/openocd/
—contrib/60-openocd.rules /etc/udev/rules.d
sudo udevadm control --reload

macOS

Follow the instructions in Set Up a Toolchain. Note that the Zephyr SDK is not available on macOS.

Do not forget to set the required environment variables (ZEPHYR_TOOLCHAIN_VARIANT and toolchain spe-
cific ones).

Windows
Follow the instructions in Set Up a Toolchain. Note that the Zephyr SDK is not available on Windows.

Do not forget to set the required environment variables (ZEPHYR_TOOLCHAIN_VARIANT and toolchain spe-
cific ones).

2.5 Build the Blinky Sample

Note: Blinky is compatible with most, but not all, boards. If your board does not meet Blinky’s blinky-
sample-requirements, then hello_world is a good alternative.

Build the blinky-sample with west build, changing <your-board-name> appropriately for your board:

Ubuntu

cd ~/zephyrproject/zephyr
west build -p auto -b <your-board-name> samples/basic/blinky

macOS

cd ~/zephyrproject/zephyr
west build -p auto -b <your-board-name> samples/basic/blinky

Windows

cd HOMEPATH/\zephyrproject\zephyr
west build -p auto -b <your-board-name> samples\basic\blinky

The -p auto option automatically cleans byproducts from a previous build if necessary, which is useful
if you try building another sample.

2.6 Flash the Sample

Connect your board, usually via USB, and turn it on if there’s a power switch. If in doubt about what to
do, check your board’s page in boards.

Then flash the sample using west flash:

west flash

2.5. Build the Blinky Sample 11

https://en.wikipedia.org/wiki/Udev

Zephyr Project Documentation, Release 2.7.5

You may need to install additional host tools required by your board. The west flash command will
print an error if any required dependencies are missing.

If you're using blinky, the LED will start to blink as shown in this figure:

reel board

ﬂ:} reel board

Fig. 1: Phytec reel board running blinky

2.7 Next Steps

Here are some next steps for exploring Zephyr:
* Try other samples-and-demos
* Learn about Application Development and the west tool

* Find out about west’s flashing and debugging features, or more about Flashing and Hardware De-
bugging in general

* Check out Beyond the Getting Started Guide for additional setup alternatives and ideas

* Discover Resources for getting help from the Zephyr community

2.8 Asking for Help

You can ask for help on a mailing list or on Discord. Please send bug reports and feature requests to
GitHub.

* Mailing Lists: users@lists.zephyrproject.org is usually the right list to ask for help. Search archives
and sign up here.

* Discord: You can join with this Discord invite.

* GitHub: Use GitHub issues for bugs and feature requests.

2.8.1 How to Ask

Important: Please search this documentation and the mailing list archives first. Your question may have
an answer there.

12 Chapter 2. Getting Started Guide

mailto:users@lists.zephyrproject.org
https://lists.zephyrproject.org/g/users
https://lists.zephyrproject.org/g/users
https://chat.zephyrproject.org
https://github.com/zephyrproject-rtos/zephyr/issues

Zephyr Project Documentation, Release 2.7.5

Don’t just say “this isn’t working” or ask “is this working?”. Include as much detail as you can about:
1. What you want to do
2. What you tried (commands you typed, etc.)

3. What happened (output of each command, etc.)

2.8.2 Use Copy/Paste

Please copy/paste text instead of taking a picture or a screenshot of it. Text includes source code,
terminal commands, and their output.

Doing this makes it easier for people to help you, and also helps other users search the archives.

When copy/pasting more than 5 lines of text into Discord, create a snippet using three backticks to
delimit the snippet.

2.8. Asking for Help 13

Zephyr Project Documentation, Release 2.7.5

14 Chapter 2. Getting Started Guide

Chapter 3

Contribution Guidelines

As an open-source project, we welcome and encourage the community to submit patches directly to the
project. In our collaborative open source environment, standards and methods for submitting changes
help reduce the chaos that can result from an active development community.

This document explains how to participate in project conversations, log bugs and enhancement requests,
and submit patches to the project so your patch will be accepted quickly in the codebase.

3.1 Licensing

Licensing is very important to open source projects. It helps ensure the software continues to be available
under the terms that the author desired.

Zephyr uses the Apache 2.0 license (as found in the LICENSE file in the project’s GitHub repo) to strike a
balance between open contribution and allowing you to use the software however you would like to. The
Apache 2.0 license is a permissive open source license that allows you to freely use, modify, distribute
and sell your own products that include Apache 2.0 licensed software. (For more information about
this, check out articles such as Why choose Apache 2.0 licensing and Top 10 Apache License Questions
Answered).

A license tells you what rights you have as a developer, as provided by the copyright holder. It is important
that the contributor fully understands the licensing rights and agrees to them. Sometimes the copyright
holder isn’t the contributor, such as when the contributor is doing work on behalf of a company.

3.1.1 Components using other Licenses

There are some imported or reused components of the Zephyr project that use other licensing, as de-
scribed in Licensing of Zephyr Project components.

Importing code into the Zephyr OS from other projects that use a license other than the Apache 2.0
license needs to be fully understood in context and approved by the Zephyr governing board.

By carefully reviewing potential contributions and also enforcing a Developer Certification of Origin (DCO)
for contributed code, we can ensure that the Zephyr community can develop products with the Zephyr
Project without concerns over patent or copyright issues.

See Contributing source code from external projects for more information about this contributing and
review process for imported components.

15

https://github.com/zephyrproject-rtos/zephyr/blob/main/LICENSE
https://github.com/zephyrproject-rtos/zephyr
https://www.zephyrproject.org/faqs/#1571346989065-9216c551-f523
https://www.whitesourcesoftware.com/whitesource-blog/top-10-apache-license-questions-answered/
https://www.whitesourcesoftware.com/whitesource-blog/top-10-apache-license-questions-answered/

Zephyr Project Documentation, Release 2.7.5

Licensing of Zephyr Project components

The Zephyr kernel tree imports or reuses packages, scripts and other files that are not covered by the
Apache 2.0 License. In some places there is no LICENSE file or way to put a LICENSE file there, so we
describe the licensing in this document.

scripts/{checkpatch.pl,checkstack.pl,get maintainers.pl,spelling.txt} Origin: Linux Kernel

Licensing: GPLv2 License

3.2 Copyrights Notices

Please follow this Community Best Practice for Copyright Notices from the Linux Foundation.

3.3 Developer Certification of Origin (DCO)

To make a good faith effort to ensure licensing criteria are met, the Zephyr project requires the Developer
Certificate of Origin (DCO) process to be followed.

The DCO is an attestation attached to every contribution made by every developer. In the commit
message of the contribution, (described more fully later in this document), the developer simply adds a
Signed-off-by statement and thereby agrees to the DCO.

When a developer submits a patch, it is a commitment that the contributor has the right to submit the
patch per the license. The DCO agreement is shown below and at http://developercertificate.org/.

Developer's Certificate of Origin 1.1
By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the
best of my knowledge, is covered under an appropriate open
source license and I have the right under that license to
submit that work with modifications, whether created in whole
or in part by me, under the same open source license (unless
I am permitted to submit under a different license), as
Indicated in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including
all personal information I submit with it, including my
sign-off) is maintained indefinitely and may be redistributed
consistent with this project or the open source license(s)
involved.

16 Chapter 3. Contribution Guidelines

https://github.com/zephyrproject-rtos/zephyr/blob/main/LICENSE
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/plain/COPYING
https://www.linuxfoundation.org/blog/copyright-notices-in-open-source-software-projects/
http://developercertificate.org/

Zephyr Project Documentation, Release 2.7.5

3.3.1 DCO Sign-Off Methods

The DCO requires a sign-off message in the following format appear on each commit in the pull request:

Signed-off-by: Zephyrus Zephyr <zephyrus@zephyrproject.org>

The DCO text can either be manually added to your commit body, or you can add either -s or --signoff
to your usual Git commit commands. If you forget to add the sign-off you can also amend a previous
commit with the sign-off by running git commit --amend -s. If you've pushed your changes to GitHub
already you’ll need to force push your branch after this with git push -f.

3.3.2 Notes

Any contributions made as part of submitted pull requests are considered free for the Project to use.
Developers are permitted to cherry-pick patches that are included in pull requests submitted by other
contributors. It is expected that

* the content of the patches will not be substantially modified,

* the cherry-picked commits or portions of a commit shall preserve the original sign-off messages
and the author identity.

Modifying Contributions made by other developers describes additional recommended policies around
working with contributions submitted by other developers.

3.4 Prerequisites

As a contributor, you’ll want to be familiar with the Zephyr project, how to configure, install, and use it as
explained in the Zephyr Project website and how to set up your development environment as introduced
in the Zephyr Getting Started Guide.

You should be familiar with common developer tools such as Git and CMake, and platforms such as
GitHub.

If you haven’t already done so, you'll need to create a (free) GitHub account on https://github.com and
have Git tools available on your development system.

Note: The Zephyr development workflow supports all 3 major operating systems (Linux, macOS, and
Windows) but some of the tools used in the sections below are only available on Linux and macOS. On
Windows, instead of running these tools yourself, you will need to rely on the Continuous Integration (CI)
service using Github Actions, which runs automatically on GitHub when you submit your Pull Request
(PR). You can see any failure results in the workflow details link near the end of the PR conversation list.
See Continuous Integration for more information

3.5 Repository layout

To clone the main Zephyr Project repositories use the instructions in Get Zephyr and install Python depen-
dencies.

The Zephyr project directory structure is described in Source Tree Structure documentation. In addition to
the Zephyr kernel itself, you’ll also find the sources for technical documentation, sample code, supported
board configurations, and a collection of subsystem tests. All of these are available for developers to
contribute to and enhance.

3.4. Prerequisites 17

https://zephyrproject.org
https://github.com

Zephyr Project Documentation, Release 2.7.5

3.6 Pull Requests and Issues

Before starting on a patch, first check in our issues Zephyr Project Issues system to see what’s been
reported on the issue you’d like to address. Have a conversation on the Zephyr devel mailing list (or the
the Zephyr Discord Server) to see what others think of your issue (and proposed solution). You may find
others that have encountered the issue you're finding, or that have similar ideas for changes or additions.
Send a message to the Zephyr devel mailing list to introduce and discuss your idea with the development
community.

It’s always a good practice to search for existing or related issues before submitting your own. When you
submit an issue (bug or feature request), the triage team will review and comment on the submission,
typically within a few business days.

You can find all open pull requests on GitHub and open Zephyr Project Issues in Github issues.

3.7 Tools and Git Setup

3.7.1 Signed-off-by

The name in the commit message Signed-off-by: line and your email must match the change author-
ship information. Make sure your .gitconfig is set up correctly:

git config --global user.name "David Developer"
git config --global user.email "david.developer@company.com"

3.7.2 gitlint

When you submit a pull request to the project, a series of checks are performed to verify your commit
messages meet the requirements. The same step done during the CI process can be performed locally
using the the gitlint command.

Run gitlint locally in your tree and branch where your patches have been committed:
gitlint

Note, gitlint only checks HEAD (the most recent commit), so you should run it after each commit, or use
the --commits option to specify a commit range covering all the development patches to be submitted.

3.7.3 twister

Note: twister does not currently run on Windows.

To verify that your changes did not break any tests or samples, please run the twister script locally
before submitting your pull request to GitHub. To run the same tests the CI system runs, follow these
steps from within your local Zephyr source working directory:

source zephyr-env.sh
./scripts/twister

The above will execute the basic twister script, which will run various kernel tests using the QEMU
emulator. It will also do some build tests on various samples with advanced features that can’t run in
QEMU.

18 Chapter 3. Contribution Guidelines

https://github.com/zephyrproject-rtos/zephyr/issues
https://lists.zephyrproject.org/g/devel
https://chat.zephyrproject.org
https://lists.zephyrproject.org/g/devel
https://github.com/zephyrproject-rtos/zephyr/pulls
https://github.com/zephyrproject-rtos/zephyr/issues

Zephyr Project Documentation, Release 2.7.5

We highly recommend you run these tests locally to avoid any CI failures.

3.7.4 uncrustify

The uncrustify tool can be helpful to quickly reformat large amounts of new source code to our Coding
Style standards together with a configuration file we’ve provided:

On Linuz/mac0S

uncrustify --replace --no-backup -1 C -c $ZEPHYR_BASE/.uncrustify.cfg my_source_file.c
On Windows

uncrustify --replace --no-backup -1 C -c %ZEPHYR_BASEY\.uncrustify.cfg my_source_file.
—C

But note that you should not use uncrustify to reformat existing Zephyr code, or to modify files in which
you only introduce a small fix. This would create a lot of unwelcome extra changed lines.

On Linux systems, you can install uncrustify with

sudo apt install uncrustify

For Windows installation instructions see the sourceforge listing for uncrustify.

3.8 Coding Style

Use these coding guidelines to ensure that your development complies with the project’s style and naming
conventions.

In general, follow the Linux kernel coding style, with the following exceptions:

* Add braces to every if, else, do, while, for and switch body, even for single-line code blocks.
Use the --ignore BRACES flag to make checkpatch stop complaining.

* Use spaces instead of tabs to align comments after declarations, as needed.
* Use C89-style single line comments, /* */. The C99-style single line comment, //, is not allowed.
* Use /** */ for doxygen comments that need to appear in the documentation.

The Linux kernel GPL-licensed tool checkpatch is used to check coding style conformity.

Note: checkpatch does not currently run on Windows.

Checkpatch is available in the scripts directory. To invoke it when committing code, make the file
$ZEPHYR_BASE/.git/hooks/pre-commit executable and edit it to contain:

#1/bin/sh
set -e exec
exec git diff --cached | ZEPHYR_BASE} /scripts/checkpatch.pl -

Instead of running checkpatch at each commit, you may prefer to run it only before pushing on zephyr
repo. To do this, make the file $ZEPHYR BASE/.git/hooks/pre-push executable and edit it to contain:

#1/bin/sh

remote="$1"

url="$2"
z40=00

(continues on next page)

3.8. Coding Style 19

https://sourceforge.net/projects/uncrustify
https://sourceforge.net/projects/uncrustify
https://kernel.org/doc/html/latest/process/coding-style.html

Zephyr Project Documentation, Release 2.7.5

(continued from previous page)

echo "Run push hook"

while read local_ref local_sha remote_ref remote_sha

do
args="$remote $url $local_ref $local_sha $remote_ref $remote_sha"
exec ZEPHYR_BASE } /scripts/series-push-hook.sh $args

done

exit O

If you want to override checkpatch verdict and push you branch despite reported issues, you can add
option —no-verify to the git push command.

A more complete alternative to this is using check compliance.py script from ci-tools repo.

3.9 Other Guidelines

Beyond the Coding Style that Zephyr enforces for all code that is submitted for inclusion, the project
targets compliance with a series of coding guidelines. Refer to the Coding Guidelines section of the
documentation for additional details.

3.9.1 Coding Guidelines

The project TSC and the Safety Committee of the project agreed to implement a staged and incremental
approach for complying with a set of coding rules (AKA Coding Guidelines) to improve quality and
consistency of the code base. Below are the agreed upon stages and the approximate timelines:

Stage I Coding guideline rules are available to be followed and referenced, but not enforced. Rules
are not yet enforced in CI and pull-requests cannot be blocked by reviewers/approvers due to
violations.

Stage II Begin enforcement on a limited scope of the code base. Initially, this would be the safety
certification scope. For rules easily applied across codebase, we should not limit compliance to
initial scope. This step requires tooling and CI setup and will start sometime after LTS2.

Stage III Revisit the coding guideline rules and based on experience from previous stages, refine/iterate
on selected rules.

Stage IV Expand enforcement to the wider codebase. Exceptions may be granted on some areas of the
codebase with a proper justification. Exception would require TSC approval.

Note: Coding guideline rules may be removed/changed at any time by filing a GH issue/RFC.

Main rules

The coding guideline rules are based on MISRA-C 2012 and are a subset of MISRA-C. The subset is listed
in the table below with a summary of the rules, its severity and the equivlent rules from other standards
for reference.

Note: For existing Zephyr maintainers and collaborators, if you are unable to obtain a copy through
your employer, a limited number of copies will be made available through the project. If you need a copy
of MISRA-C 2012, please send email to safety@lists.zephyrproject.org and provide details on reason why

20 Chapter 3. Contribution Guidelines

mailto:safety@lists.zephyrproject.org

Zephyr Project Documentation, Release 2.7.5

you can’t obtain one through other options and expected contributions once you have one. The safety
committee will review all requests.

Table 1: Main rules

MISRA C 2012 Severity Description CERT C Example
Dir 1.1 Required Any MSC09-C Dir 1.1
implementation-
defined be-

haviour on which
the output of
the program
depends shall be
documented and

understood
Dir 2.1 Required All source files | N/A Dir 2.1
shall compile

without any com-
pilation errors

Dir 3.1 Required All code shall be | N/A Dir 3.1
traceable to doc-
umented require-

ments

Dir 4.1 Required Run-time fail- | N/A Dir 4.1
ures shall be
minimized

Dir 4.2 Advisory All usage of as- | N/A Dir 4.2

sembly language
should be docu-
mented

Dir 4.4 Advisory Sections of code | MSC04-C Dir 4.4
should not be
“commented out”
Dir 4.5 Advisory Identifiers in the | DCLO2-C Dir 4.5
same name space
with overlap-
ping visibility
should be ty-
pographically
unambiguous

Dir 4.6 Advisory typedefs that | N/A Dir 4.6
indicate size
and signedness
should be used in
place of the basic
numerical types
Dir 4.7 Required If a function re- | N/A Dir 4.7
turns error infor-
mation, then that
error information
shall be tested

continues on next page

3.9. Other Guidelines 21

https://wiki.sei.cmu.edu/confluence/display/c/MSC09-C.+Character+encoding%3A+Use+subset+of+ASCII+for+safety
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_01_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_02_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_03_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_02.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC04-C.+Use+comments+consistently+and+in+a+readable+fashion
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_04.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL02-C.+Use+visually+distinct+identifiers
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_07.c

Zephyr Project Documentation, Release 2.7.5

Table 1 — continued from previous page

MISRA C 2012 Severity Description CERT C Example

Dir 4.8 Advisory If a pointer to a | DCL12-C
structure or union Dir 4.8 example 1
is never derefer- Dir 4.8 example 2

enced within a
translation unit,
then the imple-
mentation of the
object should be
hidden

Dir 4.9 Advisory A function should | PRE0OO-C Dir 4.9
be used in pref-
erence to a
function-like
macro where they
are interchange-
able

Dir 4.10 Required Precautions shall | PRE06-C Dir 4.10
be taken in order
to prevent the
contents of a
header file being
included more
than once

Dir 4.11 Required The wvalidity of | N/A Dir 4.11
values passed to
library functions
shall be checked
Dir 4.12 Required Dynamic memory | STRO1-C Dir 4.12
allocation shall
not be used

Dir 4.13 Advisory Functions which | N/A Dir 4.13
are designed
to provide op-
erations on a
resource should
be called in
an appropriate
sequence

Dir 4.14 Required The validity of | N/A Dir 4.14
values received
from external
sources shall be
checked

Rule 1.2 Advisory Language exten- | MSC04-C Rule 1.2
sions should not
be used

Rule 1.3 Required There shall be | N/A Rule 1.3
no occurrence of
undefined or crit-
ical unspecified
behaviour

continues on next page

22 Chapter 3. Contribution Guidelines

https://wiki.sei.cmu.edu/confluence/display/c/DCL12-C.+Implement+abstract+data+types+using+opaque+types
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_08_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_08_2.c
https://wiki.sei.cmu.edu/confluence/display/c/PRE00-C.+Prefer+inline+or+static+functions+to+function-like+macros
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_09.c
https://wiki.sei.cmu.edu/confluence/display/c/PRE06-C.+Enclose+header+files+in+an+include+guard
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_10.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_11.c
https://wiki.sei.cmu.edu/confluence/display/c/STR01-C.+Adopt+and+implement+a+consistent+plan+for+managing+strings
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_12.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_13.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/D_04_14.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC04-C.+Use+comments+consistently+and+in+a+readable+fashion
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_01_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_01_03.c

Zephyr Project Documentation, Release 2.7.5

Table 1 — continued from previous page

MISRA C 2012

Severity

Description

CERT C

Example

Rule 2.1

Required

A project shall not
contain unreach-
able code

MSCO07-C

Rule 2.1 example
1

Rule 2.1 example
2

Rule 2.2

Required

There shall be no
dead code

MSC12-C

Rule 2.2

Rule 2.3

Advisory

A project should
not contain un-
used type decla-
rations

N/A

Rule 2.3

Rule 2.6

Advisory

A function should
not contain un-
used label decla-
rations

N/A

Rule 2.6

Rule 2.7

Advisory

There should be
no unused param-
eters in functions

N/A

Rule 2.7

Rule 3.1

Required

The character se-
quences /* and //
shall not be used
within a comment

MSC04-C

Rule 3.1

Rule 3.2

Required

Line-splicing shall
not be used in //
comments

N/A

Rule 3.2

Rule 4.1

Required

Octal and hex-
adecimal escape
sequences shall
be terminated

MSC09-C

Rule 4.1

Rule 4.2

Advisory

Trigraphs should
not be used

PREOQ7-C

Rule 4.2

Rule 5.1

Required

External iden-
tifiers shall be
distinct

DCL23-C

Rule 5.1 example
1

Rule 5.1 example
2

Rule 5.2

Required

Identifiers de-
clared in the
same scope and
name space shall
be distinct

DCL23-C

Rule 5.2

Rule 5.3

Required

An identifier de-
clared in an in-
ner scope shall
not hide an iden-
tifier declared in
an outer scope

DCL23-C

Rule 5.3

Rule 5.4

Required

Macro identifiers
shall be distinct

DCL23-C

Rule 5.4

Rule 5.5

Required

Identifiers shall
be distinct from
macro names

DCL23-C

Rule 5.5

continues on next page

3.9. Other Guidelines

23

https://wiki.sei.cmu.edu/confluence/display/c/MSC07-C.+Detect+and+remove+dead+code
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_01_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_01_2.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC12-C.+Detect+and+remove+code+that+has+no+effect+or+is+never+executed
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_02_07.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC04-C.+Use+comments+consistently+and+in+a+readable+fashion
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_03_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_03_02.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC09-C.+Character+encoding%3A+Use+subset+of+ASCII+for+safety
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_04_01.c
https://wiki.sei.cmu.edu/confluence/display/c/PRE07-C.+Avoid+using+repeated+question+marks
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_04_02.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL23-C.+Guarantee+that+mutually+visible+identifiers+are+unique
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_01_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_01_2.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL23-C.+Guarantee+that+mutually+visible+identifiers+are+unique
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_02.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL23-C.+Guarantee+that+mutually+visible+identifiers+are+unique
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_03.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL23-C.+Guarantee+that+mutually+visible+identifiers+are+unique
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_04.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL23-C.+Guarantee+that+mutually+visible+identifiers+are+unique
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_05.c

Zephyr Project Documentation, Release 2.7.5

Table 1 — continued from previous page

MISRA C 2012

Severity

Description

CERT C

Example

Rule 5.6

Required

A typedef name
shall be a unique
identifier

N/A

Rule 5.6

Rule 5.7

Required

A tag name shall
be a unique iden-
tifier

N/A

Rule 5.7

Rule 5.8

Required

Identifiers that
define objects or
functions with
external linkage
shall be unique

N/A

Rule 5.8 example
1

Rule 5.8 example
2

Rule 5.9

Advisory

Identifiers that
define objects or
functions with
internal linkage
should be unique

N/A

Rule 5.9 example
1

Rule 5.9 example
2

Rule 6.1

Required

Bit-fields shall
only be declared
with an appropri-
ate type

INT14-C

Rule 6.1

Rule 6.2

Required

Single-bit named
bit fields shall not
be of a signed

type

INT14-C

Rule 6.2

Rule 7.1

Required

Octal constants
shall not be used

DCL18-C

Rule 7.1

Rule 7.2

Required

A u or U suf
fix shall be ap-
plied to all inte-
ger constants that
are represented in
an unsigned type

N/A

Rule 7.2

Rule 7.3

Required

The lowercase
character 1 shall
not be used in a
literal suffix

DCL16-C

Rule 7.3

Rule 7.4

Required

A string literal
shall not be
assigned to an
object unless
the objects type
is pointer to
const-qualified
char

N/A

Rule 7.4

Rule 8.1

Required

Types shall be ex-
plicitly specified

N/A

Rule 8.1

Rule 8.2

Required

Function types
shall be in pro-
totype form with
named parame-
ters

DCL20-C

Rule 8.2

continues on next page

24

Chapter 3. Contribution Guidelines

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_07.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_08_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_08_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_08_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_08_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_09_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_09_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_09_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_05_09_2.c
https://wiki.sei.cmu.edu/confluence/display/c/INT14-C.+Avoid+performing+bitwise+and+arithmetic+operations+on+the+same+data
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_06_01.c
https://wiki.sei.cmu.edu/confluence/display/c/INT14-C.+Avoid+performing+bitwise+and+arithmetic+operations+on+the+same+data
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_06_02.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL18-C.+Do+not+begin+integer+constants+with+0+when+specifying+a+decimal+value
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_02.c
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152241
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_07_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_01.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL20-C.+Explicitly+specify+void+when+a+function+accepts+no+arguments
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_02.c

Zephyr Project Documentation, Release 2.7.5

Table 1 — continued from previous page

MISRA C 2012

Severity

Description

CERT C

Example

Rule 8.3

Required

All declarations of
an object or func-
tion shall use the
same names and
type qualifiers

N/A

Rule 8.3

Rule 8.4

Required

A compatible dec-
laration shall be
visible when an
object or function
with external
linkage is defined

N/A

Rule 8.4

Rule 8.5

Required

An external object
or function shall
be declared once
in one and only
one file

N/A

Rule 8.5 example
1

Rule 8.5 example
2

Rule 8.6

Required

An identifier with
external linkage
shall have exactly
one external
definition

N/A

Rule 8.6 example
1
Rule 8.6 example
2

Rule 8.8

Required

The static stor-
age class specifier
shall be used in
all declarations of
objects and func-
tions that have in-
ternal linkage

DCL15-C

Rule 8.8

Rule 8.9

Advisory

An object should
be defined at
block scope if its
identifier only ap-
pears in a single
function

DCL19-C

Rule 8.9

Rule 8.10

Required

An inline function
shall be declared
with the static
storage class

N/A

Rule 8.10

Rule 8.12

Required

Within an enu-
merator list,
the value of
an implicitly-
specified enumer-
ation constant
shall be unique

INT09-C

Rule 8.12

Rule 8.14

Required

The restrict type
qualifier shall not
be used

N/A

Rule 8.14

continues on next page

3.9. Other Guidelines

25

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_05_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_05_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_05_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_05_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_06_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_06_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_06_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_06_2.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL15-C.+Declare+file-scope+objects+or+functions+that+do+not+need+external+linkage+as+static
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_08.c
https://wiki.sei.cmu.edu/confluence/display/c/DCL19-C.+Minimize+the+scope+of+variables+and+functions
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_09.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_10.c
https://wiki.sei.cmu.edu/confluence/display/c/INT09-C.+Ensure+enumeration+constants+map+to+unique+values
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_12.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_08_14.c

Zephyr Project Documentation, Release 2.7.5

Table 1 — continued from previous page

MISRA C 2012

Severity

Description

CERT C

Example

Rule 9.1

Mandatory

The value of an
object with auto-
matic storage du-
ration shall not be
read before it has
been set

N/A

Rule 9.1

Rule 9.2

Required

The initializer for
an aggregate or
union shall be en-
closed in braces

N/A

Rule 9.2

Rule 9.3

Required

Arrays shall not
be partially ini-
tialized

N/A

Rule 9.3

Rule 9.4

Required

An element of
an object shall
not be initialized
more than once

N/A

Rule 9.4

Rule 9.5

Required

Where desig-
nated initializers
are used to ini-
tialize an array
object the size
of the array
shall be specified
explicitly

N/A

Rule 9.5

Rule 10.1

Required

Operands shall
not be of an
inappropriate
essential type

STR04-C

Rule 10.1

Rule 10.2

Required

Expressions of es-
sentially charac-
ter type shall not
be used inappro-
priately in addi-
tion and subtrac-
tion operations

STR04-C

Rule 10.2

Rule 10.3

Required

The value of an
expression shall
not be assigned
to an object with
a narrower essen-
tial type or of a
dierent essential

type category

STRO4-C

Rule 10.3

Rule 10.4

Required

Both operands
of an operator
in which the
usual arithmetic
conversions are
performed shall
have the same
essential type
category

STRO4-C

Rule 10.4

continues on next page

26

Chapter 3. Contribution Guidelines

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_09_05.c
https://wiki.sei.cmu.edu/confluence/display/c/STR04-C.+Use+plain+char+for+characters+in+the+basic+character+set
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_01.c
https://wiki.sei.cmu.edu/confluence/display/c/STR04-C.+Use+plain+char+for+characters+in+the+basic+character+set
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_02.c
https://wiki.sei.cmu.edu/confluence/display/c/STR04-C.+Use+plain+char+for+characters+in+the+basic+character+set
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_03.c
https://wiki.sei.cmu.edu/confluence/display/c/STR04-C.+Use+plain+char+for+characters+in+the+basic+character+set
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_04.c

Zephyr Project Documentation, Release 2.7.5

Table 1 — continued from previous page

MISRA C 2012

Severity

Description

CERT C

Example

Rule 10.5

Advisory

The value of an
expression should
not be cast to an
inappropriate es-
sential type

N/A

Rule 10.5

Rule 10.6

Required

The value of a
composite expres-
sion shall not be
assigned to an ob-
ject with wider
essential type

INTO02-C

Rule 10.6

Rule 10.7

Required

If a composite
expression is used
as one operand
of an operator
in which the
usual arithmetic
conversions are
performed then
the other operand
shall not have
wider essential

type

INTO02-C

Rule 10.7

Rule 10.8

Required

The value of a
composite expres-
sion shall not be
cast to a different
essential type cat-
egory or a wider
essential type

INTO02-C

Rule 10.8

Rule 11.2

Required

Conversions shall
not be performed
between a pointer
to an incomplete
type and any
other type

N/A

Rule 11.2

Rule 11.6

Required

A cast shall not
be performed be-
tween pointer to
void and an arith-
metic type

N/A

Rule 11.6

Rule 11.7

Required

A cast shall not
be performed be-
tween pointer to
object and a non-
integer arithmetic

type

N/A

Rule 11.7

Rule 11.8

Required

A cast shall not
remove any const
or volatile quali-
fication from the
type pointed to by
a pointer

EXP05-C

Rule 11.8

continues on next page

3.9. Other Guidelines

27

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_05.c
https://wiki.sei.cmu.edu/confluence/display/c/INT02-C.+Understand+integer+conversion+rules
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_06.c
https://wiki.sei.cmu.edu/confluence/display/c/INT02-C.+Understand+integer+conversion+rules
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_07.c
https://wiki.sei.cmu.edu/confluence/display/c/INT02-C.+Understand+integer+conversion+rules
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_10_08.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_11_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_11_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_11_07.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP05-C.+Do+not+cast+away+a+const+qualification
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_11_08.c

Zephyr Project Documentation, Release 2.7.5

Table 1 — continued from previous page

MISRA C 2012

Severity

Description

CERT C

Example

Rule 11.9

Required

The macro NULL
shall be the only
permitted form
of integer null
pointer constant

N/A

Rule 11.9

Rule 12.1

Advisory

The precedence
of operators
within expres-
sions should be
made explicit

EXP00O-C

Rule 12.1

Rule 12.2

Required

The right hand
operand of a shift
operator shall lie
in the range zero
to one less than
the width in bits
of the essential
type of the left
hand operand

N/A

Rule 12.2

Rule 12.4

Advisory

Evaluation of con-
stant expressions
should not lead to
unsigned integer
wrap-around

N/A

Rule 12.4

Rule 12.5

Mandatory

The sizeof opera-
tor shall not have
an operand which
is a function pa-
rameter declared
as “array of type”

N/A

Rule 12.5

Rule 13.1

Required

Initializer lists
shall not contain
persistent side
effects

N/A

Rule 13.1
example 1

Rule 13.1
example 2

Rule 13.2

Required

The value of an
expression and its
persistent side ef-
fects shall be the
same under all
permitted evalua-
tion orders

N/A

Rule 13.2

Rule 13.3

Advisory

A full expression
containing an
increment (++)
or decrement (-)
operator should
have no other
potential side
effects other than
that caused by
the increment
or decrement
operator

N/A

Rule 13.3

continues on next page

28

Chapter 3. Contribution Guidelines

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_11_09.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP00-C.+Use+parentheses+for+precedence+of+operation
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_12_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_12_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_12_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_12_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_01_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_01_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_01_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_03.c

Zephyr Project Documentation, Release 2.7.5

Table 1 — continued from previous page

MISRA C 2012

Severity

Description

CERT C

Example

Rule 13.4

Advisory

The result of an
assignment oper-
ator should not be
used

N/A

Rule 13.4

Rule 13.5

Required

The right hand
operand of a log-
ical && or || op-
erator shall not
contain persistent
side effects

EXP10-C

Rule 13.5
example 1

Rule 13.5
example 2

Rule 13.6

Mandatory

The operand of
the sizeof opera-
tor shall not con-
tain any expres-
sion which has
potential side ef-
fects

N/A

Rule 13.6

Rule 14.1

Required

A loop counter
shall not have es-
sentially floating

type

N/A

Rule 14.1

Rule 14.2

Required

A for loop shall be
well-formed

N/A

Rule 14.2

Rule 14.3

Required

Controlling ex-
pressions shall
not be invariant

N/A

Rule 14.3

Rule 14.4

Required

The controlling
expression of
an if statement
and the control-
ling expression
of an iteration-
statement shall
have essentially
Boolean type

N/A

Rule 14.4

Rule 15.2

Required

The goto state-
ment shall jump
to a label de-
clared later in the
same function

N/A

Rule 15.2

Rule 15.3

Required

Any label refer-
enced by a goto
statement shall be
declared in the
same block, or in
any block enclos-
ing the goto state-
ment

N/A

Rule 15.3

Rule 15.6

Required

The body of

an iteration-
statement or
a selection-

statement shall
be a compound-
statement

EXP19-C

Rule 15.6

continues on next page

3.9. Other Guidelines

29

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_04.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP10-C.+Do+not+depend+on+the+order+of+evaluation+of+subexpressions+or+the+order+in+which+side+effects+take+place
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_05_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_05_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_05_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_05_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_13_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_14_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_14_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_14_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_14_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_15_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_15_03.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP19-C.+Use+braces+for+the+body+of+an+if%2C+for%2C+or+while+statement
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_15_06.c

Zephyr Project Documentation, Release 2.7.5

Table 1 — continued from previous page
MISRA C 2012 Severity Description CERT C Example
Rule 15.7 Required All if else if con- | N/A Rule 15.7
structs shall be
terminated with
an else statement
Rule 16.1 Required All switch state- | N/A Rule 16.1
ments shall be
well-formed
Rule 16.2 Required A switch label | MSC20-C Rule 16.2
shall only be used
when the most
closely-enclosing
compound state-
ment is the
body of a switch
statement
Rule 16.3 Required An unconditional | N/A Rule 16.3
break statement
shall terminate

every switch-
clause
Rule 16.4 Required Every switch | N/A Rule 16.4

statement shall
have a default
label

Rule 16.5 Required A default label | N/A Rule 16.5
shall appear as ei-
ther the first or
the last switch la-
bel of a switch
statement

Rule 16.6 Required Every switch | N/A Rule 16.6
statement shall
have at least two
switch-clauses
Rule 16.7 Required A switch- | N/A Rule 16.7
expression shall
not have essen-
tially Boolean
type

Rule 17.1 Required The features of | ERRO0O-C Rule 17.1
<stdarg.h> shall
not be used

Rule 17.2 Required Functions shall | MEMO05-C Rule 17.2
not call them-
selves, either
directly or indi-
rectly

Rule 17.3 Mandatory A function shall | N/A Rule 17.3
not be declared
implicitly

continues on next page

30 Chapter 3. Contribution Guidelines

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_15_07.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_01.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC20-C.+Do+not+use+a+switch+statement+to+transfer+control+into+a+complex+block
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_16_07.c
https://wiki.sei.cmu.edu/confluence/display/c/ERR00-C.+Adopt+and+implement+a+consistent+and+comprehensive+error-handling+policy
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_01.c
https://wiki.sei.cmu.edu/confluence/display/c/MEM05-C.+Avoid+large+stack+allocations
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_03.c

Zephyr Project Documentation, Release 2.7.5

Table 1 — continued from previous page

MISRA C 2012

Severity

Description

CERT C

Example

Rule 17.4

Mandatory

All exit paths
from a function
with non-void
return type shall
have an explicit
return state-
ment with an
expression

N/A

Rule 17.4

Rule 17.5

Advisory

The function
argument cor-
responding to a
parameter de-
clared to have an
array type shall
have an appro-
priate number of
elements

N/A

Rule 17.5

Rule 17.6

Mandatory

The declaration
of an array pa-
rameter shall not
contain the static
keyword between
the []

N/A

Rule 17.6

Rule 17.7

Required

The value re-
turned by a
function having
non-void return
type shall be used

N/A

Rule 17.7

Rule 18.1

Required

A pointer result-
ing from arith-
metic on a pointer
operand shall ad-
dress an element
of the same ar-
ray as that pointer
operand

EXP08-C

Rule 18.1

Rule 18.2

Required

Subtraction be-
tween pointers
shall only be
applied to point-
ers that address
elements of the
same array

EXP08-C

Rule 18.2

Rule 18.3

Required

The relational op-
erators >, >=,
< and <= shall
not be applied to
objects of pointer
type except where
they point into
the same object

EXP08-C

Rule 18.3

continues on next page

3.9. Other Guidelines

31

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_17_07.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP08-C.+Ensure+pointer+arithmetic+is+used+correctly
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_01.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP08-C.+Ensure+pointer+arithmetic+is+used+correctly
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_02.c
https://wiki.sei.cmu.edu/confluence/display/c/EXP08-C.+Ensure+pointer+arithmetic+is+used+correctly
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_03.c

Zephyr Project Documentation, Release 2.7.5

Table 1 — continued from previous page

MISRA C 2012

Severity

Description

CERT C

Example

Rule 18.5

Advisory

Declarations
should contain no
more than two
levels of pointer
nesting

N/A

Rule 18.5

Rule 18.6

Required

The address of
an object with
automatic stor-
age shall not be
copied to another
object that per-
sists after the first
object has ceased
to exist

N/A

Rule 18.6
example 1

Rule 18.6
example 2

Rule 18.8

Required

Variable-length
array types shall
not be used

N/A

Rule 18.8

Rule 19.1

Mandatory

An object shall
not be assigned or
copied to an over-
lapping object

N/A

Rule 19.1

Rule 20.2

Required

The ¢, or charac-
ters and the /*
or // character se-
quences shall not
occur in a header
file name”

N/A

Rule 20.2

Rule 20.3

Required

The #include
directive shall be
followed by either
a <filename> or
“filename” se-
quence

N/A

Rule 20.3

Rule 20.4

Required

A macro shall not
be defined with
the same name as
a keyword

N/A

Rule 20.4

Rule 20.7

Required

Expressions re-
sulting from
the expansion
of macro pa-
rameters shall
be enclosed in
parentheses

PREO1-C

Rule 20.7

Rule 20.8

Required

The controlling
expression of
a #if or #elif
preprocessing

directive shall
evaluate to 0 or 1

N/A

Rule 20.8

continues on next page

32

Chapter 3.

Contribution Guidelines

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_06_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_06_1.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_06_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_06_2.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_18_08.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_19_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_04.c
https://wiki.sei.cmu.edu/confluence/display/c/PRE01-C.+Use+parentheses+within+macros+around+parameter+names
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_07.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_08.c

Zephyr Project Documentation, Release 2.7.5

Table 1 — continued from previous page

MISRA C 2012

Severity Description CERT C

Example

Rule 20.9

Required All identifiers | N/A
used in the
controlling ex-
pression of #if
or #elif prepro-
cessing directives
shall be #defined
before evaluation

Rule 20.9

Rule 20.11

Required A macro param- | N/A
eter immediately
following a #
operator shall not
immediately be
followed by a ##
operator

Rule 20.11

Rule 20.12

Required A macro param- | N/A
eter used as an
operand to the
or ## oper-
ators, which is
itself subject to
further macro re-
placement, shall
only be used as an
operand to these
operators

Rule 20.12

Rule 20.13

Required A line whose first | N/A
token is # shall
be a valid prepro-
cessing directive

Rule 20.13

Rule 20.14

Required All #else, #elif | N/A
and #endif
preprocessor
directives shall
reside in the same
file as the #if,
#ifdef or #ifndef
directive to which
they are related

Rule 20.14

Rule 21.1

Required #define and | N/A
#undef shall not
be used on a re-
served identifier
or reserved macro
name

Rule 21.1

Rule 21.2

Required A reserved iden- | N/A
tifier or macro
name shall not be
declared

Rule 21.2

Rule 21.3

Required The memory | MSC24-C
allocation and
deallocation
functions of
<stdlib.h> shall
not be used

Rule 21.3

continues on next page

3.9. Other Guidelines

33

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_09.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_11.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_12.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_13.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_20_14.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_02.c
https://wiki.sei.cmu.edu/confluence/display/c/MSC24-C.+Do+not+use+deprecated+or+obsolescent+functions
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_03.c

Zephyr Project Documentation, Release 2.7.5

Table 1 — continued from previous page
MISRA C 2012 Severity Description CERT C Example
Rule 21.4 Required The standard | N/A Rule 21.4
header file
<setjmp.h>
shall not be used
Rule 21.6 Required The Standard | N/A Rule 21.6
Library in-
put/output
functions shall
not be used
Rule 21.7 Required The atof, atoi, | N/A Rule 21.7
atol and atoll
functions of
<stdlib.h> shall
not be used
Rule 21.9 Required The library func- | N/A Rule 21.9
tions bsearch
and gsort of
<stdlib.h> shall
not be used
Rule 21.11 Required The standard | N/A Rule 21.11
header file <tg-
math.h> shall
not be used
Rule 21.12 Advisory The exception | N/A Rule 21.12
handling features
of <fenv.h>
should not be
used
Rule 21.13 Mandatory Any value passed | N/A Rule 21.13
to a function in
<ctype.h> shall
be representable
as an unsigned
char or be the
value EO
Rule 21.14 Required The Standard | N/A Rule 21.14
Library function
memcmp shall
not be used to
compare null ter-
minated strings
Rule 21.15 Required The pointer ar- | N/A Rule 21.15
guments to the
Standard Library
functions mem-
cpy, memmove
and memcmp
shall be pointers
to qualified or un-
qualified versions
of compatible

types

continues on next page

34 Chapter 3. Contribution Guidelines

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_07.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_09.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_11.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_12.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_13.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_14.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_15.c

Zephyr Project Documentation, Release 2.7.5

Table 1 — continued from previous page

MISRA C 2012

Severity

Description

CERT C

Example

Rule 21.16

Required

The pointer ar-
guments to the
Standard Library
function mem-
cmp shall point to
either a pointer
type, an essen-
tially signed type,
an essentially
unsigned type,
an essentially
Boolean type or
an essentially
enum type

N/A

Rule 21.16

Rule 21.17

Mandatory

Use of the
string handling
functions from
<string.h> shall
not result in ac-
cesses beyond the
bounds of the ob-
jects referenced
by their pointer
parameters

N/A

Rule 21.17

Rule 21.18

Mandatory

The size t argu-
ment passed to
any function in
<string.h> shall
have an appropri-
ate value

N/A

Rule 21.18

Rule 21.19

Mandatory

The pointers
returned by the
Standard Library
functions locale-
conv, getenv,
setlocale or, str-
error shall only
be used as if they
have pointer to
const-qualified

type

N/A

Rule 21.19

Rule 21.20

Mandatory

The pointer re-
turned by the
Standard Li-
brary functions
asctime, ctime,

gmtime, local-
time, localecony,
geteny, setlo-

cale or strerror
shall not be used
following a sub-
sequent call to
the same function

N/A

Rule 21.20

continues on next page

3.9. Other Guidelines

35

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_16.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_17.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_18.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_19.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_21_20.c

Zephyr Project Documentation, Release 2.7.5

Table 1 — continued from previous page
MISRA C 2012 Severity Description CERT C Example
Rule 22.1 Required All resources | N/A Rule 22.1
obtained dynami-
cally by means of
Standard Library
functions shall be
explicitly released
Rule 22.2 Mandatory A block of mem- | N/A Rule 22.2
ory shall only be
freed if it was al-
located by means
of a Standard Li-
brary function
Rule 22.3 Required The same file | N/A Rule 22.3
shall not be open
for read and
write access at
the same time on
different streams
Rule 22.4 Mandatory There shall be no | N/A Rule 22.4
attempt to write
to a stream which
has been opened
as read-only
Rule 22.5 Mandatory A pointer to a | N/A Rule 22.5
FILE object shall
not be derefer-
enced
Rule 22.6 Mandatory The value of a | N/A Rule 22.6
pointer to a FILE
shall not be used
after the associ-
ated stream has
been closed
Rule 22.7 Required The macro EOF | N/A Rule 22.7
shall only be
compared with
the unmodified
return value from
any Standard
Library func-
tion capable of
returning EOF
Rule 22.8 Required The value of er- | N/A Rule 22.8
rno shall be set
to zero prior to a
call to an errno-
setting-function
Rule 22.9 Required The value of er- | N/A Rule 22.9
rno shall be tested
against zero after
calling an errno-
setting-function

continues on next page

36 Chapter 3. Contribution Guidelines

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_01.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_02.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_03.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_04.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_05.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_06.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_07.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_08.c
https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_09.c

Zephyr Project Documentation, Release 2.7.5

Table 1 — continued from previous page

MISRA C 2012 Severity Description CERT C Example
Rule 22.10 Required The value of | N/A Rule 22.10
errno shall only
be tested when
the last function
to be called was
an errno-setting-
function

Additional rules

Rule A.1: Conditional Compilation

Severity Required

Description Do not conditionally compile function declarations in header files. Do not conditionally
compile structure declarations in header files. You may conditionally exclude fields within structure
definitions to avoid wasting memory when the feature they support is not enabled.

Rationale Excluding declarations from the header based on compile-time options may pre-
vent their documentation from being generated. Their absence also prevents use of if
(IS_ENABLED(CONFIG_F00)) {} as an alternative to preprocessor conditionals when the code path
should change based on the selected options.

Rule A.2: Inclusive Language

Severity Required

Description Do not introduce new usage of offensive terms listed below. This rule applies but is not
limited to source code, comments, documentation, and branch names. Replacement terms may vary by
area or subsystem, but should aim to follow updated industry standards when possible.

Exceptions are allowed for maintaining existing implementations or adding new implementations of
industry standard specifications governed externally to the Zephyr Project.

Existing usage is recommended to change as soon as updated industry standard specifications become
available or new terms are publicly announced by the governing body, or immediately if no specifications

apply.

3.9. Other Guidelines 37

https://gitlab.com/MISRA/MISRA-C/MISRA-C-2012/Example-Suite/-/blob/master/R_22_10.c

Zephyr Project Documentation, Release 2.7.5

Offensive Terms

Recommended Replacements

{master,leader} / slave

{primary,main} / {secondary,
replica}

{initiator,requester} / {target,
responder’}

{controller,host} / {device,worker,
proxy,target}

director / performer

central / peripheral

blacklist / whitelist

denylist / allowlist
blocklist / allowlist
rejectlist / acceptlist

grandfather policy

legacy

sanity

coherence
confidence

Rationale Offensive terms do not create an inclusive community environment and therefore violate
the Zephyr Project Code of Conduct. This coding rule was inspired by a similar rule in Linux.

Status Related GitHub Issues and Pull Requests are tagged with the Inclusive Language Label.

38

Chapter 3. Contribution Guidelines

https://github.com/zephyrproject-rtos/zephyr/blob/main/CODE_OF_CONDUCT.md
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=49decddd39e5f6132ccd7d9fdc3d7c470b0061bb
https://github.com/zephyrproject-rtos/zephyr/issues?q=label%3A%22Inclusive+Language%22

Zephyr Project Documentation, Release 2.7.5

Area Selected Replacements Status
Bluetooth See Bluetooth Appropriate Lan-
guage Mapping Tables
eSPI
* master / slave => TBD
gPTP
* master / slave => TBD
12C NXP publishes the I2C Spec-
* master / slave =>TBD iﬁcatign and has sele(I:)ted
controller / target as
replacement terms, but the
timing to publish an announce-
ment or new specification is
TBD. Zephyr will update 12C
when replacement terminol-
ogy is confirmed by a public
announcement or updated
specification.
See Zephyr issue 27033.
12s
* master / slave => TBD
SMP/AMP
* master / slave => TBD
SPI The Open Source Hardware As-
* master / slave sociation has selected these re-
=>, controller / placement terms. See OSHWA
peripheral Resolution to Redefine SPI Sig-
* MOSI / MISO / SS => nal Names
SDO / SDI / CS
Test Runner (Twister) * platform_whitelist =>
platform_allow
* sanitycheck =>
twister

3.9.2 Documentation Guidelines

Note: For instructions on building the documentation, see Documentation Generation.

Zephyr Project content is written using the reStructuredText markup language (.rst file extension) with
Sphinx extensions, and processed using Sphinx to create a formatted standalone website. Developers
can view this content either in its raw form as .rst markup files, or (with Sphinx installed) they can build
the documentation using the Makefile on Linux systems, or make.bat on Windows, to generate the HTML
content. The HTML content can then be viewed using a web browser. This same .rst content is also fed
into the Zephyr documentation website (with a different theme applied).

You can read details about reStructuredText and about Sphinx extensions from their respective websites.

This document provides a quick reference for commonly used reST and Sphinx-defined directives and
roles used to create the documentation you're reading.

3.9. Other Guidelines 39

https://btprodspecificationrefs.blob.core.windows.net/language-mapping/Appropriate_Language_Mapping_Table.pdf
https://btprodspecificationrefs.blob.core.windows.net/language-mapping/Appropriate_Language_Mapping_Table.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://github.com/zephyrproject-rtos/zephyr/issues/27033
https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names/
https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names/
https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names/
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
https://docs.zephyrproject.org
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
http://www.sphinx-doc.org/en/stable/contents.html

Zephyr Project Documentation, Release 2.7.5

Headings
While reST allows use of both and overline and matching underline to indicate a heading, we only use
an underline indicator for headings.

e Document title (h1) use “#” for the underline character

* First section heading level (h2) use “*”
* Second section heading level (h3) use “="
* Third section heading level (h4) use “-”

The heading underline must be at least as long as the title it’s under.

For example:

This is a title heading
HARBHRARBBRRRRBRBR AR R A

some content goes here

First section heading
sk stk ok skok ok o ok sk ok o sk ok ok ok

Content Highlighting

Some common reST inline markup samples:
* one asterisk: *text* for emphasis (italics),
* two asterisks: **text** for strong emphasis (boldface), and
* two backquotes: ~~text " for inline code samples.

If asterisks or backquotes appear in running text and could be confused with inline markup delimiters,
you can eliminate the confusion by adding a backslash (\) before it.

Lists

For bullet lists, place an asterisk (*) or hyphen (-) at the start of a paragraph and indent continuation
lines with two spaces.

The first item in a list (or sublist) must have a blank line before it and should be indented at the same
level as the preceding paragraph (and not indented itself).

For numbered lists start with a 1. or a. for example, and continue with autonumbering by using a # sign.
Indent continuation lines with three spaces:

* This is a bulleted list.

* It has two items, the second
item and has more than one line of reST text. Additional lines
are indented to the first character of the
text of the bullet list.

1. This is a new numbered list. If the wasn't a blank line before it,
it would be a continuation of the previous list (or paragraph) .
#. It has two items too.

a. This is a numbered list using alphabetic list headings
#. It has three items (and uses autonumbering for the rest of the list)
(continues on next page)

40 Chapter 3. Contribution Guidelines

Zephyr Project Documentation, Release 2.7.5

(continued from previous page)
#. Here's the third ttem

#. This is an autonumbered list (default ts to use numbers starting
with 1).

#. This is a second-level list under the first ttem (also
autonumbered). Notice the indenting.
#. And a second item in the mested list.
#. And a second item back in the containing list. No blank line
needed, but it wouldn't hurt for readability.

Definition lists (with a term and its definition) are a convenient way to document a word or phrase with
an explanation. For example this reST content:

The Makefile has targets that include:

html
Build the HTML output for the project

clean
Remove all generated output, restoring the folders to a
clean state.

Would be rendered as:
The Makefile has targets that include:
html Build the HTML output for the project

clean Remove all generated output, restoring the folders to a clean state.

Multi-column lists

If you have a long bullet list of items, where each item is short, you can indicate the list items should be
rendered in multiple columns with a special .. rst-class:: rst-columns directive. The directive will
apply to the next non-comment element (e.g., paragraph), or to content indented under the directive.
For example, this unordered list:

rst-class:: rst-columns

* A list of

* short items

* that should be
* displayed

* horizontally

* so it doesn't
* use up so much
* space on

* the page

would be rendered as:
e Alist of

e short items

that should be

* displayed

* horizontally

3.9. Other Guidelines 41

Zephyr Project Documentation, Release 2.7.5

* 5o it doesn’t
* use up so much
* space on

* the page

A maximum of three columns will be displayed, and change based on the available width of the display
window, reducing to one column on narrow (phone) screens if necessary. We’ve deprecated use of the
hlist directive because it misbehaves on smaller screens.

Tables

There are a few ways to create tables, each with their limitations or quirks. Grid tables offer the most
capability for defining merged rows and columns, but are hard to maintain:

S — L N —— L N —— ——— +
| Header row, column 1 | Header 2 | Header 3 | Header 4 |
| (header rows optional) | | |
+ + : + +
| body row 1, column 1 | column 2 | column 3 | column 4 |
S — S —— S C ——— +
| body row 2 [... | | you can |
o R it Fommm e + easily +
| body row 3 with a two column span | | span
L S — N L + rows +
| body row 4 | | | too |
S —— L N — o N R —— +
This example would render as:
Header row, column 1 (header rows op- | Header 2 Header 3 | Header 4
tional)
body row 1, column 1 column 2 column | column 4
3

body row 2

you can easily span rows

body row 3 with a two column span

too

body row 4

List tables are much easier to maintain, but don’t support row or column spans:

list-table:: Table title
:widths: 15 20 40
:header-rows: 1

* - Heading 1
- Heading 2
- Heading 3

* - body row 1, column 1
- body row 1, column 2
- body row 1, column 3

* - body row 2, column 1
- body row 2, column 2
- body row 2, column 3

This example would render as:

42

Chapter 3. Contribution Guidelines

http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#grid-tables
http://docutils.sourceforge.net/docs/ref/rst/directives.html#list-table

Zephyr Project Documentation, Release 2.7.5

Table 2: Table title

Heading 1 Heading 2 Heading 3

body row 1, col- | body row 1, column 2 body row 1, column 3
umn 1

body row 2, col- | body row 2, column 2 body row 2, column 3
umn 1

The :widths: parameter lets you define relative column widths. The default is equal column widths. If
you have a three-column table and you want the first column to be half as wide as the other two equal-
width columns, you can specify :widths: 1 2 2. If you'd like the browser to set the column widths
automatically based on the column contents, you can use :widths: auto.

File names and Commands

Sphinx extends reST by supporting additional inline markup elements (called “roles”) used to tag text
with special meanings and allow style output formatting. (You can refer to the Sphinx Inline Markup
documentation for the full list).

For example, there are roles for marking filenames (:file: name") and command names such as make
(:command: “make). You can also use the ' ‘inline code'' markup (double backticks) to indicate a
filename.

For references to files that are in the Zephyr GitHub tree, a special role can be used that creates a
hyperlink to that file. For example a reference to the reST file used to create this document can
be generated using :zephyr_file:\ doc/guides/documentation/index.rst\" that will show up as
doc/guides/documentation/index.rst, a link to the “blob” file in the github repo. There’s also a
:zephyr_raw:\ doc/guides/documentation/index.rst\" role that will link to the “raw” content,
doc/guides/documentation/index.rst. (You can click on these links to see the difference.)

Internal Cross-Reference Linking

Traditional ReST links are only supported within the current file using the notation:

Refer to the “internal-linking _ page

which renders as,
Refer to the internal-linking page

Note the use of a trailing underscore to indicate an outbound link. In this example, the label was added
immediately before a heading, so the text that’s displayed is the heading text itself. You can change the
text that’s displayed as the link writing this as:

Refer to the “show this text instead <internal-linking>"_ page

which renders as,

Refer to the show this text instead page

External Cross-Reference Linking

With Sphinx’s help, we can create link-references to any tagged text within the Zephyr Project documen-
tation.

Target locations in a document are defined with a label directive:

3.9. Other Guidelines 43

http://sphinx-doc.org/markup/inline.html#inline-markup
https://github.com/zephyrproject-rtos/zephyr/blob/main/doc/guides/documentation/index.rst
https://github.com/zephyrproject-rtos/zephyr/blob/main/doc/guides/documentation/index.rst

Zephyr Project Documentation, Release 2.7.5

_my label name:

Heading

Note the leading underscore indicating an inbound link. The content immediately following this label
must be a heading, and is the target for a :ref: my label name" reference from anywhere within the
Zephyr documentation. The heading text is shown when referencing this label. You can also change the
text that’s displayed for this link, such as:

:ref: some other text <my label name>"

To enable easy cross-page linking within the site, each file should have a reference label before its title
so it can be referenced from another file. These reference labels must be unique across the whole site, so
generic names such as “samples” should be avoided. For example the top of this document’s .rst file is:

_doc_guidelines:

Documentation Guidelines for the Zephyr Project
R

Other .rst documents can link to this document using the :ref:>doc_guidelines" tag and it will show
up as Documentation Guidelines. This type of internal cross reference works across multiple files, and the
link text is obtained from the document source so if the title changes, the link text will update as well.

You can also define links to any URL and then reference it in your document. For example, with this
label definition in the document:

_Zephyr Wikipedia Page:
https://en.wikipedia.org/wiki/Zephyr_(operating_system)

you can reference it with:

Read the “Zephyr Wikipedia Page _ for more information about the
project.

‘any" links

Within the Zephyr project, we’ve defined the default role to be “any”, meaning if you just write a phrase
in back-ticks, e.g., “doc_guidelines”, Sphinx will search through all domains looking for something
called doc_guidelines to link to. In this case it will find the label at the top of this document, and link to
Documentation Guidelines. This can be useful for linking to doxygen-generated links for function names
and such, but will cause a warning such as:

WARNING: 'any' reference target not found: doc_giudelines

if you misspelled “doc_guidelines™ as “doc_giudelines".

Non-ASCII Characters

You can insert non-ASCII characters such as a Trademark symbol (™), by using the notation |tradel.
Available replacement names are defined in an include file used during the Sphinx processing of the
reST files. The names of these replacement characters are the same as used in HTML entities used to
insert characters in HTML, e.g., ™ and are defined in the file sphinx_build/substitutions.txt
as listed here:

44 Chapter 3. Contribution Guidelines

Zephyr Project Documentation, Release 2.7.5

|br| raw:: html .. force a line break in HTML output (blank lines
—needed here)

Ipl raw:: html .. force a blank line in HTML output (blank lines needed,
—here)

<p></p>

These are replacement strings for nmon-ASCII characters used within the project
using the same name as the html entity names (e.g., ©) for that character

| copy | unicode:: U+000A9 .. COPYRIGHT SIGN

:ltrim:

|trade| wunicode:: U+02122 .. TRADEMARK SIGN
:ltrim:

|regl unicode:: U+000AE .. REGISTERED TRADEMARK SIGN
:ltrim:

|degl| unicode:: U+000BO .. DEGREE SIGN

:ltrim:

|plusminus| wunicode:: U+000B1 .. PLUS-MINUS SIGN
:rtrim:

|micro| wunicode:: U+000B5 .. MICRO SIGN

:rtrim:

sup2| wunicode:: U+00B2 .. SUPERSCRIPT TWO
:ltrim:

We've kept the substitutions list small but others can be added as needed by submitting a change to the
substitutions.txt file

Code and Command Examples

Use the reST code-block directive to create a highlighted block of fixed-width text, typically used for
showing formatted code or console commands and output. Smart syntax highlighting is also supported
(using the Pygments package). You can also directly specify the highlighting language. For example:

. code-block:: c

struct z_object {
char *name;
uint8_t perms[CONFIG_MAX_THREAD_BYTES] ;
uint8_t type;
uint8_t flags;
uint32_t data;
} __packed;

Note the blank line between the code-block directive and the first line of the code-block body, and the
body content is indented three spaces (to the first non-white space of the directive name).

This would be rendered as:

struct z_object {
char *name;
uint8_t perms[CONFIG_MAX_THREAD_BYTES] ;
uint8_t type;
uint8_t flags;

(continues on next page)

3.9. Other Guidelines 45

Zephyr Project Documentation, Release 2.7.5

(continued from previous page)

uint32_t data;
} __packed;

You can specify other languages for the code-block directive, including c, python, and rst, and also
console, bash, or shell. If you want no syntax highlighting, use the language none, for example:

code-block:: none

This would be a block of text styled with a background
and box, but with no syntax highlighting.

Would display as:

This would be a block of text styled with a background
and box, but with no syntax highlighting.

There’s a shorthand for writing code blocks too: end the introductory paragraph with a double colon
(::) and indent the code block content by three spaces. On output, only one colon will be shown. The
highlighting package makes a best guess at the type of content in the block and highlighting purposes.

Images

Images are included in documentation by using an image directive:

image:: ../../../../images/doc-gen-flow.png
:align: center
:alt: alt text for the image

or if you’d like to add an image caption, use:

. figure:: ../../../../images/doc-gen-flow.png
:alt: image description

Caption for the figure

The file name specified is relative to the document source file, and we recommend putting images into an
images folder where the document source is found. The usual image formats handled by a web browser
are supported: JPEG, PNG, GIF, and SVG. Keep the image size only as large as needed, generally at least
500 px wide but no more than 1000 px, and no more than 250 KB unless a particularly large image is
needed for clarity.

Tabs, spaces, and indenting

Indenting is significant in reST file content, and using spaces is preferred. Extra indenting can (uninten-
tionally) change the way content is rendered too. For lists and directives, indent the content text to the
first non-white space in the preceding line. For example:

* List item that spans multiple lines of text
showing where to indent the continuation line.

1. And for numbered list items, the continuation
line should align with the text of the line above.

code-block::

(continues on next page)

46 Chapter 3. Contribution Guidelines

Zephyr Project Documentation, Release 2.7.5

(continued from previous page)

The text within a directive block should align with the
first character of the directive name.

Keep the line length for documentation less than 80 characters to make it easier for reviewing in GitHub.
Long lines because of URL references are an allowed exception.

zephyr-app-commands Directive

This is a Zephyr directive for generating consistent documentation of the shell commands
needed to manage (build, flash, etc.) an application.

For example, to generate commands to build samples/hello_world for gemu_x86 use:

. Zephyr-app-commands: :
:zephyr-app: samples/hello_world
:board: gqemu_x86
:goals: build

Directive options:

:tool: which tool to use. Valid options are currently ‘cmake’, ‘west’ and ‘all’. The default is
‘west’.

:app: path to the application to build.

:zephyr-app: path to the application to build, this is an app present in the upstream zephyr
repository. Mutually exclusive with :app:.

:cd-into: if set, build instructions are given from within the :app: folder, instead of outside
of it.

:generator: which build system to generate. Valid options are currently ‘ninja’ and ‘make’.
The default is ‘ninja’. This option is not case sensitive.

:host-os: which host OS the instructions are for. Valid options are ‘unix’, ‘win’ and ‘all’. The
default is ‘all’.

:board: if set, the application build will target the given board.
:shield: if set, the application build will target the given shield.

:conf: if set, the application build will use the given configuration file. If multiple conf files
are provided, enclose the space-separated list of files with quotes, e.g., “a.conf b.conf”.

:gen-args: if set, additional arguments to the CMake invocation
:build-args: if set, additional arguments to the build invocation

:build-dir: if set, the application build directory will APPEND this (relative, Unix-separated)
path to the standard build directory. This is mostly useful for distinguishing builds for
one application within a single page.

:goals: a whitespace-separated list of what to do with the app (in ‘build’, ‘flash’, ‘debug’,
‘debugserver’, ‘run’). Commands to accomplish these tasks will be generated in the right
order.

:maybe-skip-config: if set, this indicates the reader may have already created a build di-
rectory and changed there, and will tweak the text to note that doing so again is not
necessary.

:compact: if set, the generated output is a single code block with no additional comment
lines

For example, the .. zephyr-app-commands listed above would render like this in the generated HTML
output:

3.9. Other Guidelines 47

Zephyr Project Documentation, Release 2.7.5

From the root of the zephyr repository
west build -b gemu_x86 samples/hello_world

Alternative Tabbed Content
As introduced in the Getting Started Guide, you can provide alternative content to the reader via a tabbed
interface. When the reader clicks on a tab, the content for that tab is displayed, for example:

. tabs::
. tab:: Apples
Apples are green, or sometimes red.
. tab:: Pears
Pears are green.
. tab:: Oranges
Oranges are orange.

will display as:

Apples

Apples are green, or sometimes red.
Pears

Pears are green.

Oranges

Oranges are orange.

Tabs can also be grouped, so that changing the current tab in one area changes all tabs with the same
name throughout the page. For example:

Linux

Linux Line 1
macOS

macOS Line 1
Windows
Windows Line 1
Linux

Linux Line 2
macOS

macOS Line 2
Windows
Windows Line 2

In this latter case, we’re using .. group-tab:: instead of simply .. tab::. Under the hood, we’re
using the sphinx-tabs extension that’s included in the Zephyr setup. Within a tab, you can have most any
content other than a heading (code-blocks, ordered and unordered lists, pictures, paragraphs, and such).
You can read more about sphinx-tabs from the link above.

48 Chapter 3. Contribution Guidelines

https://github.com/djungelorm/sphinx-tabs

Zephyr Project Documentation, Release 2.7.5

Instruction Steps

Also introduced in the Getting Started Guide is a style that makes it easy to create tutorial guides
with clearly identified steps. Add the .. rst-class:: numbered-step directive immediately before
a second-level heading (by project convention, a heading underlined with asterisks ***x*xx*, and it will
be displayed as a numbered step, sequentially numbered within the document. For example:

. rst-class:: numbered-step

Put your right hand in
stk ok sk ok ok sk ok sk sk ok sk ok ok sk sk ok

Put your right hand in
See the doc/getting started/index.rst source file and compare with the Getting Started Guide to see a full
example. As implemented, only one set of numbered steps is intended per document.

For instructions on building the documentation, see Documentation Generation.

3.10 Contribution Workflow

One general practice we encourage, is to make small, controlled changes. This practice simplifies review,
makes merging and rebasing easier, and keeps the change history clear and clean.

When contributing to the Zephyr Project, it is also important you provide as much information as you
can about your change, update appropriate documentation, and test your changes thoroughly before
submitting.

The general GitHub workflow used by Zephyr developers uses a combination of command line Git com-
mands and browser interaction with GitHub. As it is with Git, there are multiple ways of getting a task
done. We'll describe a typical workflow here:

1. Create a Fork of Zephyr to your personal account on GitHub. (Click on the fork button in the top
right corner of the Zephyr project repo page in GitHub.)

2. On your development computer, change into the zephyr folder that was created when you obtained
the code:

cd zephyrproject/zephyr
Rename the default remote pointing to the upstream repository from origin to upstream:

git remote rename origin upstream

Let Git know about the fork you just created, naming it origin:

git remote add origin https://github.com/<your github id>/zephyr

and verify the remote repos:

git remote -v

The output should look similar to:

origin https://github.com/<your github id>/zephyr (fetch)
origin https://github.com/<your github id>/zephyr (push)
upstream https://github.com/zephyrproject-rtos/zephyr (fetch)
upstream https://github.com/zephyrproject-rtos/zephyr (push)

3.10. Contribution Workflow 49

https://github.com/zephyrproject-rtos/zephyr/raw/main/doc/getting_started/index.rst
https://github.com/zephyrproject-rtos/zephyr#fork-destination-box
https://github.com/zephyrproject-rtos/zephyr

Zephyr Project Documentation, Release 2.7.5

3.

10.

11.

12.

13.

14.

Create a topic branch (off of main) for your work (if you’re addressing an issue, we suggest includ-
ing the issue number in the branch name):

git checkout main
git checkout -b fix_comment_typo

Some Zephyr subsystems do development work on a separate branch from main so you may need
to indicate this in your checkout:

git checkout -b fix_out_of_date_patch origin/met
Make changes, test locally, change, test, test again, ... (Check out the prior chapter on twister as
well).

When things look good, start the pull request process by adding your changed files:

git add [file(s) that changed, add -p if you want to be more specific]

You can see files that are not yet staged using:

git status

Verify changes to be committed look as you expected:

git diff --cached

Commit your changes to your local repo:

git commit -s

The -s option automatically adds your Signed-off-by: to your commit message. Your commit
will be rejected without this line that indicates your agreement with the DCO. See the Commit
Guidelines section for specific guidelines for writing your commit messages.

Push your topic branch with your changes to your fork in your personal GitHub account:

git push origin fix_comment_typo

In your web browser, go to your forked repo and click on the Compare & pull request button for
the branch you just worked on and you want to open a pull request with.

Review the pull request changes, and verify that you are opening a pull request for the appropriate
branch. The title and message from your commit message should appear as well.

If you're working on a subsystem branch that’s not main, you may need to change the intended
branch for the pull request here, for example, by changing the base branch from main to net.

GitHub will assign one or more suggested reviewers (based on the CODEOWNERS file in the repo).
If you are a project member, you can select additional reviewers now too.

Click on the submit button and your pull request is sent and awaits review. Email will be sent
as review comments are made, or you can check on your pull request at https://github.com/
zephyrproject-rtos/zephyr/pulls.

While you’re waiting for your pull request to be accepted and merged, you can create another
branch to work on another issue. (Be sure to make your new branch off of main and not the
previous branch.):

git checkout main
git checkout -b fix_another_issue

and use the same process described above to work on this new topic branch.

50

Chapter 3. Contribution Guidelines

https://github.com/zephyrproject-rtos/zephyr/pulls
https://github.com/zephyrproject-rtos/zephyr/pulls

Zephyr Project Documentation, Release 2.7.5

15. If reviewers do request changes to your patch, you can interactively rebase commit(s) to fix review
issues. In your development repo:

git fetch --all
git rebase --ignore-whitespace upstream/main

The --ignore-whitespace option stops git apply (called by rebase) from changing any whites-
pace. Continuing:

git rebase -i <offending-commit-id>~
In the interactive rebase editor, replace pick with edit to select a specific commit (if there’s more

than one in your pull request), or remove the line to delete a commit entirely. Then edit files to fix
the issues in the review.

As before, inspect and test your changes. When ready, continue the patch submission:

git add [file(s)]
git rebase --continue

Update commit comment if needed, and continue:

git push --force origin fix_comment_typo

By force pushing your update, your original pull request will be updated with your changes so you
won’t need to resubmit the pull request.

Note: While amending commits and force pushing is a common review model outside GitHub,
and the one recommended by Zephyr, it’s not the main model supported by GitHub. Forced pushes
can cause unexpected behavior, such as not being able to use “View Changes” buttons except for
the last one - GitHub complains it can’t find older commits. You're also not always able to compare
the latest reviewed version with the latest submitted version. When rewriting history GitHub only
guarantees access to the latest version.

16. If the CI run fails, you will need to make changes to your code in order to fix the issues and amend
your commits by rebasing as described above. Additional information about the CI system can be
found in Continuous Integration.

3.11 Commit Guidelines

Changes are submitted as Git commits. Each commit message must contain:

* A short and descriptive subject line that is less than 72 characters, followed by a blank line. The
subject line must include a prefix that identifies the subsystem being changed, followed by a colon,
and a short title, for example: doc: update wiki references to new site. (If you're updating
an existing file, you can use git log <filename> to see what developers used as the prefix for
previous patches of this file.)

* A change description with your logic or reasoning for the changes, followed by a blank line.

* A Signed-off-by line, Signed-off-by: <name> <email> typically added automatically by using
git commit -s

* If the change addresses an issue, include a line of the form:

Fixes #<tssue number>.

All changes and topics sent to GitHub must be well-formed, as described above.

3.11. Commit Guidelines 51

Zephyr Project Documentation, Release 2.7.5

3.11.1 Commit Message Body

When editing the commit message, please briefly explain what your change does and why it’s needed. A
change summary of "Fixes stuff" will be rejected.

Warning: An empty change summary body is not permitted. Even for trivial changes, please include
a summary body in the commit message.

The description body of the commit message must include:
* what the change does,
* why you chose that approach,
* what assumptions were made, and
* how you know it works — for example, which tests you ran.

For examples of accepted commit messages, you can refer to the Zephyr GitHub changelog.

3.11.2 Other Commit Expectations

* Commits must build cleanly when applied on top of each other, thus avoiding breaking bisectability.
* Commits must pass all CI checks (see Continuous Integration for more information)

* Each commit must address a single identifiable issue and must be logically self-contained. Unre-
lated changes should be submitted as separate commits.

* You may submit pull request RFCs (requests for comments) to send work proposals, progress snap-
shots of your work, or to get early feedback on features or changes that will affect multiple areas
in the code base.

* When major new functionality is added, tests for the new functionality MUST be added to the
automated test suite. All new APIs MUST be documented and tested and tests MUST cover at least
80% of the added functionality using the code coverage tool and reporting provided by the project.

3.11.3 Submitting Proposals

You can request a new feature or submit a proposal by submitting an issue to our GitHub Repository. If
you would like to implement a new feature, please submit an issue with a proposal (RFC) for your work
first, to be sure that we can use it. Please consider what kind of change it is:

* For a Major Feature, first open an issue and outline your proposal so that it can be discussed. This
will also allow us to better coordinate our efforts, prevent duplication of work, and help you to craft
the change so that it is successfully accepted into the project. Providing the following information
will increase the chances of your issue being dealt with quickly:

Overview of the Proposal

Motivation for or Use Case

Design Details

Alternatives

Test Strategy

* Small Features can be crafted and directly submitted as a Pull Request.

52 Chapter 3. Contribution Guidelines

https://github.com/zephyrproject-rtos/zephyr/commits/main

Zephyr Project Documentation, Release 2.7.5

3.11.4 Identifying Contribution Origin

When adding a new file to the tree, it is important to detail the source of origin on the file, provide
attributions, and detail the intended usage. In cases where the file is an original to Zephyr, the commit
message should include the following (“Original” is the assumption if no Origin tag is present):

Origin: Original

In cases where the file is imported from an external project, the commit message shall contain details
regarding the original project, the location of the project, the SHA-id of the origin commit for the file
and the intended purpose.

For example, a copy of a locally maintained import:
Origin: Contiki 0S

License: BSD 3-Clause

URL: http://www.contiki-os.org/

commit: 853207acfdc6549b10eb3e44504bla75aelad63a
Purpose: Introduction of networking stack.

For example, a copy of an externally maintained import in a module repository:

Origin: Tiny Crypt

License: BSD 3-Clause

URL: https://github.com/Olorg/tinycrypt

commit: 08ded7£21529c39e5133688ffb93a9d0c94e5c6e
Purpose: Introduction of TinyCrypt

3.12 Continuous Integration (CI)

The Zephyr Project operates a Continuous Integration (CI) system that runs on every Pull Request (PR)
in order to verify several aspects of the PR:

* Git commit formatting

* Coding Style

» Twister builds for multiple architectures and boards
* Documentation build to verify any doc changes

CI is run on Github Actions and it uses the same tools described in the Contribution Tools section. The CI
results must be green indicating “All checks have passed” before the Pull Request can be merged. CI is
run when the PR is created, and again every time the PR is modified with a commit.

The current status of the CI run can always be found at the bottom of the GitHub PR page, below the
review status. Depending on the success or failure of the run you will see:

* “All checks have passed”
* “All checks have failed”

In case of failure you can click on the “Details” link presented below the failure message in order to
navigate to Github Actions and inspect the results. Once you click on the link you will be taken to the
Github actions summary results page where a table with all the different builds will be shown. To see
what build or test failed click on the row that contains the failed (i.e. non-green) build.

The builds@lists.zephyrproject.org mailing list archives any nightly build results produced by CI.

3.12. Continuous Integration (CI) 53

https://lists.zephyrproject.org/g/builds

Zephyr Project Documentation, Release 2.7.5

3.13 Contributions to External Modules

Follow the guidelines in the Modules (External projects) section for contributing new modules and submit-
ting changes to existing modules.

3.14 Contributing External Components

3.14.1 Contributing source code from external projects
In some cases it is desirable to leverage existing, external source code in order to avoid re-implementing
basic functionality or features that are readily available in other open source projects.

This section describes the circumstances under which external source code can be imported into Zephyr,
and the process that governs the inclusion.

There are three main factors that will be considered during the inclusion process in order to determine
whether it will be accepted. These will be described in the following sections.

Software License

Note: External source code licensed under the Apache-2.0 license is not subject to this section.

Integrating code into the Zephyr Project from other projects that use a license other than the Apache
2.0 license needs to be fully understood in context and approved by the Zephyr governing board, as
described in the Zephyr project charter. The board will automatically reject licenses that have not been
approved by the Open Source Initiative (OSI). See the Submission and review process section for more
details.

By carefully reviewing potential contributions and also enforcing a Developer Certification of Origin (DCO)
for contributed code, we ensure that the Zephyr community can develop products with the Zephyr Project
without concerns over patent or copyright issues.

Merit

Just like with any other regular contribution, one that contains external code needs to be evaluated for
merit. However, in the particular case of code that comes from an existing project, there are additional
questions that must be answered in order to accept the contribution. More specifically, the following will
be considered by the Technical Steering Committee and evaluated carefully before the external source
code is accepted into the project:

* Is this the most optimal way to introduce the functionality to the project? Both the cost of im-
plementing this internally and the one incurred in maintaining an externally developed codebase
need to be evaluated.

* Is the external project being actively maintained? This is particularly important for source code
that deals with security or cryptography.

* Have alternatives to the particular implementation proposed been considered? Are there other
open source project that implement the same functionality?

Mode of integration

There are two ways of integrating external source code into the Zephyr Project, and careful consideration
must be taken to choose the appropriate one for each particular case.

54 Chapter 3. Contribution Guidelines

https://www.zephyrproject.org/governance/
https://www.zephyrproject.org/wp-content/uploads/sites/38/2020/09/CLEAN-LF-Zephyr-Charter-20200624-effective-20200901.pdf
https://opensource.org/licenses/alphabetical

Zephyr Project Documentation, Release 2.7.5

Integration in the main tree The first way to integrate external source code into the project is to
simply import the source code files into the main zephyr repository. This automatically implies that the
imported source code becomes part of the “mainline” codebase, which in turn requires that:

* The code is formatted according to the Zephyr Coding Style
* The code adheres to the project’s Coding Guidelines

* The code is subject to the same checks and verification requirements as the rest of the code in the
main tree, including static analysis

* All files contain an SPDX tag if not already present
* An entry is added to the licensing page

This mode of integration can be applicable to both small and large external codebases, but it is typically
used more commonly with the former.

Integration as a module The second way of integrating external source code into the project is to
import the whole or parts of the third-party open source project into a separate repository, and then
include it under the form of a module. With this approach the code is considered as being developed
externally, and thus it is not automatically subject to the requirements of the previous section.

Ongoing maintenance

Regardless of the mode of integration, external source code that is integrated in Zephyr requires regular
ongoing maintenance. The submitter of the proposal to integrate external source code must therefore
commit to maintain the integration of such code for the foreseeable future. This may require adding an
entry in the MAINTAINERS.yaml as part of the process.

Submission and review process

Before external source code can be included in the project, it must be reviewed and accepted by the
Technical Steering Committee (TSC) and, in some cases, by the Zephyr governing board.

A request for external source code integration must be made by creating a new issue in the Zephyr
project issue tracking system on GitHub with details about the source code and how it integrates into the
project.

Follow the steps below to begin the submission process:

1. Make sure to read through the Contributing source code from external projects section in detail, so
that you are informed of the criteria used by the TSC and board in order to approve or reject a
request

2. Use the New External Source Code Issue to open an issue

3. Fill out all required sections, making sure you provide enough detail for the TSC to assess the merit
of the request. Optionally you can also create a Pull Request that demonstrates the integration of
the external source code and link to it from the issue

4. Wait for feedback from the TSC, respond to any additional questions added as GitHub issue com-
ments

If, after consideration by the TSC, the conclusion is that integrating external source code is the best
solution, and the external source code is licensed under the Apache-2.0 license, the submission process
is complete and the external source code can be integrated.

If, however, the external source code uses a license other than Apache-2.0, then these additional steps
must be followed:

1. The TSC chair will forward the link to the GitHub issue created during the early submission process
to the Zephyr governing board for further review

3.14. Contributing External Components 55

https://github.com/zephyrproject-rtos/zephyr/issues/new?assignees=&labels=RFC&template=ext-source.md&title=

Zephyr Project Documentation, Release 2.7.5

2. The Zephyr governing board has two weeks to review and ask questions:

* If there are no objections, the matter is closed. Approval can be accelerated by unanimous
approval of the board before the two weeks are up

* If a governing board member raises an objection that cannot be resolved via email, the board
will meet to discuss whether to override the TSC approval or identify other approaches that
can resolve the objections

3. On approval of the Zephyr TSC and governing board the submission process is complete

The flowchart below shows an overview of the process:

Want to contribute e...

ICannot be contributed...|

No
Yes

Approved

Create GitHub issue

Yes

> TSC approves?

TSC deliberates

Viewer does not support full

No
Rejected

Fig. 1: Submission process

56 Chapter 3. Contribution Guidelines

Chapter 4

Development and Contribution Process

4.1 TSC Project Roles

4.1.1 Main Roles

TSC projects generally will involve Maintainers, Collaborators, and Contributors:

Maintainer: lead Collaborators on an area identified by the TSC (e.g. Architecture, code subsystems,
etc.). Maintainers shall also serve as the area’s representative on the TSC as needed. Maintainers may
become voting members of the TSC under the guidelines stated in the project Charter.

Collaborator: A highly involved Contributor in one or more areas. May become a Maintainer with
approval of existing TSC voting members.

Contributor: anyone in the community that contributes code or documentation to the project. Con-
tributors may become Collaborators by approval of the existing Collaborators and Maintainers of the
particular code base areas or subsystems.

Contributor
A Contributor is a developer who wishes to contribute to the project, at any level. Contributors who show
dedication and skill are rewarded with additional rights and responsibilities.
Contributors are granted the following rights and responsibilities:
* Right to contribute code, documentation, translations, artwork, etc.
* Right to report defects (bugs) and suggestions for enhancement.
* Right to participate in the process of reviewing contributions by others.
* Right to initiate and participate in discussions in any communication methods.
* Right to approach any member of the community with matters they believe to be important.
* Right to participate in the feature development process.

* Responsibility to abide by decisions, once made. They are welcome to provide new, relevant infor-
mation to reopen decisions.

* Responsibility for issues and bugs introduced by one’s own contributions.
* Responsibility to respect the rules of the community.

* Responsibility to provide constructive advice whenever participating in discussions and in the re-
view of contributions.

57

Zephyr Project Documentation, Release 2.7.5

* Responsibility to follow the project’s code of conduct (https://github.com/zephyrproject-rtos/
zephyr/blob/main/CODE_OF CONDUCT.md)

Collaborator

A Collaborator is a Contributor who is also responsible for the maintenance of Zephyr source code. Their
opinions weigh more when decisions are made, in a fully meritocratic fashion.

Collaborators have the following rights and responsibilities, in addition to those listed for Contributors:

* Right to set goals for the short and medium terms for the project being maintained, alongside the
Maintainer.

* Responsibility to participate in the feature development process.

* Responsibility to review relevant code changes within reasonable time.
* Responsibility to ensure the quality of the code to expected levels.

* Responsibility to participate in community discussions.

* Responsibility to mentor new contributors when appropriate

* Responsibility to participate in the quality verification and release process, when those happen.

Maintainer

A Maintainer is a Collaborator who is also responsible for knowing, directing and anticipating the needs
of a given zephyr source code area.

Maintainers have the following rights and responsibilities, in addition to those listed for Contributors
and Collaborators:

* Right to set the overall architecture of the relevant subsystems or areas of involvement.

* Right to make decisions in the relevant subsystems or areas of involvement, in conjunction with
the collaborators.

* Responsibility to convey the direction of the relevant subsystem or areas to the TSC
* Responsibility to ensure all contributions of the project have been reviewed within reasonable time.

* Responsibility to enforce the code of conduct.

4.1.2 Role Retirement

* Individuals elected to the following Project roles, including, Maintainer, Release Engineering Team
member, Release Manager, but are no longer engaged in the project as described by the rights and
responsibilities of that role, may be requested by the TSC to retire from the role they are elected.

* Such a request needs to be raised as a motion in the TSC and be approved by the TSC voting
members. By approval of the TSC the individual is considered to be retired from the role they have
been elected.

* The above applies to elected TSC Project roles that may be defined in addition.

4.1.3 Teams and Supporting Activities

58 Chapter 4. Development and Contribution Process

https://github.com/zephyrproject-rtos/zephyr/blob/main/CODE_OF_CONDUCT.md
https://github.com/zephyrproject-rtos/zephyr/blob/main/CODE_OF_CONDUCT.md

Zephyr Project Documentation, Release 2.7.5

Assignee

An Assignee is one of the maintainers of a subsystem or code being changed. Assignees are set either
automatically based on the code being changed or set by the other Maintainers, the Release Engineering
team can set an assignee when the latter is not possible.

* Right to dismiss stale reviews and seek reviews from additional maintainers, developers and con-
tributors

* Right to block pull requests from being merged

* Responsibility to re-assign a pull request if they are the original submitter of the code
* Responsibility to drive the pull request to a mergeable state

* Solicit approvals from maintainers of the subsystems affected

* Responsibility to drive the escalation process

Release Engineering Team

A team of active Maintainers involved in multiple areas.

* The members of the Release Engineering team are expected to fill the Release Manager role based
on a defined cadence and selection process.

* The cadence and selection process are defined by the Release Engineering team and are approved
by the TSC.

* The team reports directly into the TSC.
Release Engineering team has the following rights and responsibilities:
* Right to merge code changes to the zephyr tree following the project rules.
* Right to revert any changes that have broken the code base
* Right to close any stale changes after <N> months of no activity
* Responsibility to take directions from the TSC and follow them.
* Responsibility to coordinate code merges with maintainers.

* Responsibility to merge all contributions regardless of their origin and area if they have been
approved by the respective maintainers and follow the merge criteria of a change.

* Responsibility to keep the Zephyr code base in a working and passing state (as per CI)
Joining the Release Engineering team

* Maintainers highly involved in the project may be nominated by a TSC voting member to join the
Release Engineering team. Nominees may become members of the team by approval of the existing
TSC voting members.

* To ensure a functional Release Engineering team the TSC shall periodically review the team’s fol-
lowed processes, the appropriate size, and the membership composition (ensure, for example, that
team members are geographically distributed across multiple locations and time-zones).

Release Manager
A Maintainer responsible for driving a specific release to completion following the milestones and the
roadmap of the project for this specific release.

* TSC has to approve a release manager.

A Release Manager is a member of the Release Engineering team and has the rights and responsibilities
of that team in addition to the following:

4.1. TSC Project Roles 59

Zephyr Project Documentation, Release 2.7.5

Right to manage and coordinate all code merges after the code freeze milestone (M3, see program
management overview.)

Responsibility to drive and coordinate the triaging process for the release
Responsibility to create the release notes of the release

Responsibility to notify all stakeholders of the project, including the community at large about the
status of the release in a timely manner.

Responsibility to coordinate with QA and validation and verify changes either directly or through
QA before major changes and major milestones.

Roles / Permissions

Table 1: Project Roles vs Github Permissions

Admin Merge Member | Owner Collabo-
Rights rator
Main Roles Contributor X
Collaborator X
Maintainer X
Supportive Roles QA/Validation X X
DevOps X
System Admin X X
Release Engineering | x X b:

4.1.4 MAINTAINERS File

Generic guidelines for deciding and filling in the Maintainers’ list

The MAINTAINERS file shall replace the CODEOWNERS file and will be used for both setting
assignees and reviewers.

We should keep the granularity of code maintainership at a manageable level

We should be looking for maintainers for areas of code that are orphaned (i.e. without an explicit
maintainer)

- Un-maintained areas should be indicated clearly in the MAINTAINERS file
All submitted pull-requests should have an assignee
We Introduce an area/subsystem hierarchy to address the above point

— Parent-area maintainer should be acting as default substitute/fallback assignee for un-
maintained sub-areas

- Area maintainer gets precedence over parent-area maintainer
Pull-requests may be re-assigned if this is needed or more appropriate
— Re-assigned by original assignee (see “Assignee” slide)

In general, updates to the MAINTAINERS file should be in a standalone commit alongside other
changes introducing new files and directories to the tree.

Major changes to the file, including the addition of new areas with new maintainers should come
in as standalone pull-requests and require TSC review.

If additional review by the TSC is required, the maintainers of the file should send the requested
changes to the TSC and give members of the TSC two (2) days to object to any of the changes to
maintainership of areas or the addition of new maintainers or areas.

Path, collaborator and name changes do not require a review by the TSC.

60

Chapter 4. Development and Contribution Process

https://wiki.zephyrproject.org/Program-Management
https://wiki.zephyrproject.org/Program-Management

Zephyr Project Documentation, Release 2.7.5

Addition of new areas without a maintainer do not require review by the TSC.

The MAINTAINERS file itself shall have a maintainer

Architectures, core components, sub-systems, samples, tests
— Each area shall have an explicit maintainer

* Boards (incl relevant samples, tests), SoCs (incl DTS) * May have a maintainer, shall have a higher-
level platform maintainer

* Drivers
— Shall have a driver-area (and API) maintainer

— Could have individual driver implementation maintainers but preferably collabora-
tor/contributors

— In the above case, platform-specific PRs may be re-assigned to respective collabora-
tor/contributor of driver implementation

4.1.5 Release Activity

X

Contributors 2
o
g. Assignee Release Eng
3
o
+
=
4
0
£

Collaborators]

Maintainers

Merge Criteria

* All continuous integration checks have passed
— Codeowners
— Device Tree

— Documentation

4.1. TSC Project Roles 61

Zephyr Project Documentation, Release 2.7.5

- Gitlint

- Identity/Emails

- Kconfig

- License

— Checkpatch (Coding Style)

- Pylint

- Integration Tests (Via twister) on emulation/simulation platforms
- Simulated Bluetooth Tests

e Planned

Footprint

Code coverage

Coding Guidelines

Static Analysis (Coverity)

Documentation coverage (APIs)

* PR template with checklist

* Minimal of 2 approvals
— A collaborator from the same subsystem.
— Alternately another maintainer of another subsystem
— Approval by the assignee

* A minimum review period of 2 days, 4 hours for trivial changes (see Give reviewers time to review
before code merge). Hotfixes can be merged at any time after CI passes.

* All required checks are passing

Escalation Process

* Contributors may object to change requests or decisions made by Maintainers.
* Process
— Resolve in the PR among assignee, maintainers and reviewer
* Assignee to act as moderator if applicable
— Optionally resolve in the dev review meeting with more Maintainers and project stakeholders

* The involved parties and the Assignee to be present when the (escalated) issue is dis-
cussed

— TSC: Assignees can escalate to the TSC voting members and get a binding resolution in the
TSC.

— Assignee to ensure the resolution of the escalation is reflected in the PR review.

4.2 Release Process

The Zephyr project releases on a time-based cycle, rather than a feature-driven one. Zephyr releases
represent an aggregation of the work of many contributors, companies, and individuals from the com-
munity.

62 Chapter 4. Development and Contribution Process

Zephyr Project Documentation, Release 2.7.5

A time-based release process enables the Zephyr project to provide users with a balance of the latest
technologies and features and excellent overall quality. A roughly 4-month release cycle allows the
project to coordinate development of the features that have actually been implemented, allowing the
project to maintain the quality of the overall release without delays because of one or two features that
are not ready yet.

The Zephyr release model is loosely based on the Linux kernel model:
* Release tagging procedure:
— linear mode on main branch,
- release branches for maintenance after release tagging.

* Each release period will consist of a merge window period followed by one or more release candi-
dates on which only stabilization changes, bug fixes, and documentation can be merged in.

- Merge window mode: all changes are accepted (subject to approval from the respective main-
tainers.)

- When the merge window is closed, the release owner lays a vN-rcl tag and the tree enters the
release candidate phase

— CI sees the tag, builds and runs tests; QA analyses the report from the build and test run and
gives an ACK/NAK to the build

— The release owner, with QA and any other needed input, determines if the release candidate
is a go for release

- If it is a go for a release, the release owner lays a tag release vN at the same point

* Development on new features continues in topic branches. Once features are ready, they are sub-
mitted to mainline during the merge window period and after the release is tagged.

Merge Window Stabilization

A A

—_
-

stable

rcl = =<

rex—++
stable

rcl=
stable

Fig. 1: Release Cycle

4.2.1 Merge Window

A relatively straightforward discipline is followed with regard to the merging of patches for each release.
At the beginning of each development cycle, the “merge window” is said to be open. At that time, code
which is deemed to be sufficiently stable (and which is accepted by the development community) is
merged into the mainline tree. The bulk of changes for a new development cycle (and all of the major
changes) will be merged during this time.

The merge window lasts for approximately two months. At the end of this time, the release owner will
declare that the window is closed and release the first of the release candidates. For the codebase release
which is destined to be 0.4.0, for example, the release which happens at the end of the merge window
will be called 0.4.0-rcl. The -rcl release is the signal that the time to merge new features has passed,
and that the time to stabilize the next release of the code base has begun.

Over the next weeks, only patches which fix problems should be submitted to the mainline. On occasion,
a more significant change will be allowed, but such occasions are rare and require a TSC approval
(Change Control Board). As a general rule, if you miss the merge window for a given feature, the best
thing to do is to wait for the next development cycle. (An occasional exception is made for drivers

4.2. Release Process 63

Zephyr Project Documentation, Release 2.7.5

for previously unsupported hardware; if they do not touch any other in-tree code, they cannot cause
regressions and should be safe to add at any time).

As fixes make their way into the mainline, the patch rate will slow over time. The mainline release
owner releases new -rc drops once or twice a week; a normal series will get up to somewhere between
-rc4 and -rc6 before the code base is considered to be sufficiently stable and the quality metrics have
been achieved at which point the final 0.4.x release is made.

At that point, the whole process starts over again.
Here is the description of the various moderation levels:

* Low:

Major New Features

Bug Fixes

Refactoring

Structure/Directory Changes
* Medium:

— Bug Fixes, all priorities

- Enhancements

— Minor “self-contained” New Features
* High:

- Bug Fixes: P1 and P2

— Documentation + Test Coverage

4.2.2 Release Quality Criteria

The current backlog of prioritized bugs shall be used as a quality metric to gate the final release. The
following counts shall be used:

Table 2: Bug Count Release Thresholds

High | Medium | Low
0 <20 <50

Note: The “low” bug count target of <50 will be a phased appoach starting with 150 for release 2.4.0,
100 for release 2.5.0, and 50 for release 2.6.0

4.2.3 Releases

The following syntax should be used for releases and tags in Git:
* Release [Major].[Minor].[Patch Level]
* Release Candidate [Major].[Minor].[Patch Level]-rc[RC Number]
* Tagging:
— v[Major].[Minor].[Patch Level]-rc[RC Number]
- v[Major].[Minor].[Patch Level]

64 Chapter 4. Development and Contribution Process

Zephyr Project Documentation, Release 2.7.5

- v[Major].[Minor].99 - A tag applied to main branch to signify that work on
v[Major].[Minor+1] has started. For example, v1.7.99 will be tagged at the start of v1.8
process. The tag corresponds to VERSION MAJOR/VERSION MINOR/PATCHLEVEL macros
as defined for a work-in-progress main branch version. Presence of this tag allows generation
of sensible output for “git describe” on main branch, as typically used for automated builds
and CI tools.

Quarterly Releases

Development Tree

g Biannual Releases
“he |EESSSSSSH| Long Term Support
4

[y

Fig. 2: Zephyr Code and Releases

Long Term Support (LTS)

Long-term support releases are designed to be supported and maintained for an extended period and is
the recommended release for products and the auditable branch used for certification.

An ITS release is defined as:
* Product focused
* Extended Stabilisation period: Allow for more testing and bug fixing
* Stable APIs
* Quality Driven Process

* Long Term: Maintained for an extended period of time (at least 2.5 years) overlapping previous
LTS release for at least half a year.

Product Focused Zephyr LTS is the recommended release for product makers with an extended support
and maintenance which includes general stability and bug fixes, security fixes.

An LTS includes both mature and new features. API and feature maturity is documented and tracked.
The footprint and scope of mature and stable APIs expands as we move from one LTS to the next giving
users access to bleading edge features and new hardware while keeping a stable foundation that evolves
over time.

Extended Stabilisation Period Zephyr LTS development cycle differs from regular releases and has an
extended stabilization period. Feature freeze of regular releases happens 3-4 weeks before the scheduled
release date. The stabilisation period for LTS is extended by 3 weeks with the feature freeze occurring 6-
7 weeks before the anticipated release date. The time between code freeze and release date is extended
in this case.

4.2. Release Process 65

Zephyr Project Documentation, Release 2.7.5

Stable APIs Zephyr LTS provides a stable and long-lived foundation for developing products. To guar-
antee stability of the APIs and the implementation of such APIs it is required that any release software
that makes the core of the OS went through the Zephyr API lifecycle and stabilised over at least 2 re-
leases. This guarantees that we release many of the highlighted and core features with mature and
well-established implementations with stable APIs that are supported during the lifetime of the release
LTS.

e API Freeze (LTS - 2)

— All stable APIs need to be frozen 2 releases before an LTS. APIs can be extended with addi-
tional features, but the core implementation is not modified. This is valid for the following
subsystems for example:

* Device Drivers (i2c.h, spi.h)...

* Kernel (k_*):

* OS services (logging,debugging, ..)
* DTS: API and bindings stability

* Kconfig

— New APIs for experimental features can be added at any time as long as they are standalone
and documented as experimental or unstable features/APIs.

* Feature Freeze (LTS - 1) - No new features or overhaul/restructuring of code covering major LTS
features.

— Kernel + Base OS
— Additional advertised LTS features

- Auxiliary features on top of and/or extending the base OS and advertised LTS features can be
added at any time and should be marked as experimental if applicable

Quality Driven Process The Zephyr project follows industry standards and processes with the goal
of providing a quality oriented releases. This is achieved by providing the following products to track
progress, integrity and quality of the software components provided by the project:

* Compliance with pubished coding guidelines, style guides and naming conventions and documen-
tation of deviations.

* Regular static analysis on the complete tree using available commercial and open-source tools and
documentation of deviations and false positives.

* Documented components and APIS

* Requirements Catalog

* Verification Plans

* Verification Reports

* Coverage Reports

* Requirements Traceability Matrix (RTM)
* SPDX License Reports

Each release is created with the above products to document the quality and the state of the software
when it was released.

Long Term Support and Maintenance A Zephyr LTS release is published every 2 years and is branched
and maintained independently from the main tree for at least 2.5 years after it was released. Support
and maintenance for an LTS release stops at least half a year after the following LTS release is published.

66 Chapter 4. Development and Contribution Process

Zephyr Project Documentation, Release 2.7.5

1.5 1.6 1.7 1.8 master

171 /172 LTS

Fig. 3: Long Term Support Release

Changes and fixes flow in both directions. However, changes from main branch to an LTS branch will be
limited to fixes that apply to both branches and for existing features only.

All fixes for an LTS branch that apply to the mainline tree shall be submitted to mainline tree as well.

Auditable Code Base

An auditable code base is to be established from a defined subset of Zephyr OS features and will be
limited in scope. The LTS, development tree, and the auditable code bases shall be kept in sync after the
audit branch is created, but with a more rigorous process in place for adding new features into the audit
branch used for certification.

This process will be applied before new features move into the auditable code base.
The initial and subsequent certification targets will be decided by the Zephyr project governing board.

Processes to achieve selected certification will be determined by the Security and Safety Working Groups
and coordinated with the TSC.

4.2.4 Release Procedure

This section documents the Release manager responsibilities so that it serves as a knowledge repository
for Release managers.

Milestones

The following graphic shows the timeline of phases and milestones associated with each release:

) P mo ms ms ms

)) ”’j B

Planning Phase
]]

Fig. 4: Release milestones

This shows how the phases and milestones of one release overlap with those of the next release:

4.2. Release Process 67

Zephyr Project Documentation, Release 2.7.5

Zephyr Release X

v

Time

Fig. 5: Release milestones with planning

Table 3: Milestone Description

Mile{ Descrip- Definition

stong tion

PO | Planning | Start Entering Requirements
Kickoff

P1 TSC Agrees on Major Features and Schedule

MO | Merge All features, Sized, and AssignedMerge Window Is Opened
Window
Open

M1 | M1 Major Features Ready for Code Reviews Test Plans Reviewed and Approved
Check-
point

M2 | Feature Feature Freeze Feature Development Complete (including Code Reviews and Unit
Merge Tests Passing) P1 Stories Implemented Feature Merge Window Is Closed Test De-
Window | velopment Complete Technical Documentation Created/Updated and Ready for Re-
Close view CCB Control Starts

M3 | Code Code Freeze RC3 Tagged and Built
Freeze

M4 | Release TSC Reviews the Release Criteria Report and Approves Release Final RC Tagged

Make the Release

Release Checklist

Each release has a GitHub issue associated with it that contains the full checklist. After a release is
complete, a checklist for the next release is created.

Tagging

The final release and each release candidate shall be tagged using the following steps:

Note: Tagging needs to be done via explicit git commands and not via GitHub’s release interface. The
GitHub release interface does not generate annotated tags (it generates ‘lightweight’ tags regardless of
release or pre-release). You should also upload your gpg public key to your GitHub account, since the
instructions below involve creating signed tags. However, if you do not have a gpg public key you can
opt to remove the -s option from the commands below.

Release Candidate

Note: This section uses tagging 1.11.0-rc1 as an example, replace with the appropriate release candidate

68 Chapter 4. Development and Contribution Process

Zephyr Project Documentation, Release 2.7.5

version.

1. Update the version variables in the VERSION file located in the root of the Git repository to match
the version for this release candidate. The EXTRAVERSION variable is used to identify the rc[RC
Number] value for this candidate:

EXTRAVERSION = rcil
2. Post a PR with the updated VERSION file using release: Zephyr 1.11.0-rcl as the commit
subject. Merge the PR after successful CI.

3. Tag and push the version, using an annotated tag:

$ git pull
$ git tag -s -m "Zephyr 1.11.0-rcl" v1.11.0-rcl
$ git push git@github.com:zephyrproject-rtos/zephyr.git v1.11.0-rcl

4. Once the tag is pushed, a github action will create a draft release in Github with a shortlog since
the last tag. The action will also create a SPDX manifest of the Zephyr tree and will add the file as
an asset in the release.

Go to the draft release that was created and edit as needed. If this step fails for a reason, it can be
done manually following the steps below:

1. Create a shortlog of changes between the previous release (use rcl..rc2 between release can-
didates):

$ git shortlog v1.10.0..v1.11.0-rcl
2. Find the new tag at the top of the releases page and edit the release with the Edit tag button
with the following:
* Name it Zephyr 1.11.0-rcl

* Copy the shortlog into the release notes textbox (don’t forget to quote it properly so it
shows as unformatted text in Markdown)

* Check the “This is a pre-release” checkbox
5. Send an email to the mailing lists (announce and devel) with a link to the release

Final Release

Note: This section uses tagging 1.11.0 as an example, replace with the appropriate final release version.

When all final release criteria has been met and the final release notes have been approved and merged
into the repository, the final release version will be set and repository tagged using the following proce-
dure:

1. Update the version variables in the VERSION file located in the root of the Git repository. Set
EXTRAVERSION variable to an empty string to indicate final release:

EXTRAVERSION =

2. Post a PR with the updated VERSION file using release: Zephyr 1.11.0 as the commit subject.
Merge the PR after successful CI.

3. Tag and push the version, using two annotated tags:

$ git pull
$ git tag -s -m "Zephyr 1.11.0" v1.11.0
$ git push git@github.com:zephyrproject-rtos/zephyr.git v1.11.0

(continues on next page)

4.2. Release Process 69

https://github.com/zephyrproject-rtos/zephyr/blob/main/VERSION
https://github.com/zephyrproject-rtos/zephyr/blob/main/VERSION
https://github.com/zephyrproject-rtos/zephyr/blob/main/VERSION
https://github.com/zephyrproject-rtos/zephyr/blob/main/VERSION

Zephyr Project Documentation, Release 2.7.5

(continued from previous page)

This is the tag that will represent the release on GitHub, so that
the file you can download is named ~~zephyr-v1.11.0.zip” "~ and not

just ""v1.11.0.zip™"

$ git tag -s -m "Zephyr 1.11.0" zephyr-vi.11.0

$ git push git@github.com:zephyrproject-rtos/zephyr.git zephyr-v1.11.0

4. Find the new zephyr-v1.11.0 tag at the top of the releases page and edit the release with the Edit
tag button with the following:
* Name it Zephyr 1.11.0

* Copy the full content of docs/releases/release-notes-1.11.rst into the release notes
textbox

5. Send an email to the mailing lists (announce and devel) with a link to the release

Listing all closed GitHub issues

The release notes for a final release contain the list of GitHub issues that have been closed during the
development process of that release.

In order to obtain the list of issues closed during the release development cycle you can do the following:

1. Look for the last release before the current one and find the day it was tagged:

$ git show -s --format=J,ci zephyr-v1.10.0
tag zephyr-v1.10.0
Tagger: Kumar Gala <kumar.gala@linaro.org>

Zephyr 1.10.0
2017-12-08 13:32:22 -0600

2. Use available release tools to list all the issues that have been closed between that date and the day
of the release.

4.3 Feature Tracking

For feature tracking we use Github labels to classify new features and enhancements. The following is
the description of each category:

Enhancement Changes to existing features that are not considered a bug and would not block a release.
This is an incremental enhancement to a feature that already exists in Zephyr.

Feature request A request for the implementation or inclusion of a new unit of functionality that is not
part of any release plans yet, that has not been vetted, and needs further discussion and details.

Feature A committed and planned unit of functionality with a detailed design and implementation pro-
posal and an owner. Features must go through an RFC process and must be vetted and discussed
in the TSC before a target milestone is set.

Hardware Support A request or plan to port an existing feature or enhancement to a particular hard-
ware platform. This ranges from porting Zephyr itself to a new architecture, SoC or board to adding
an implementation of a peripheral driver API for an existing hardware platform.

Meta A label to group other GitHub issues that are part of a single feature or unit of work.

The following workflow should be used to process features:.

70 Chapter 4. Development and Contribution Process

Zephyr Project Documentation, Release 2.7.5

This is the formal way for asking for a new feature in Zephyr and indicating its importance to the project.
Often, the requester may have a readiness and willingness to drive implementation of the feature in an
upcoming release, and should assign the request to themselves. If not though, an owner will be assigned
after evaluation by the TSC. A feature request can also have a companion RFC with more details on the
feature and a proposed design or implementation.

* Label new features requests as feature-request

* The TSC discusses new feature-request items regularly and triages them. Items are examined
for similarity with existing features, how they fit with the project goals and other timeline consid-
erations. The priority is determined as follows:

- High = Next milestone
— Medium = As soon as possible
- Low = Best effort

* After the initial discussion and triaging, the label is moved from feature-request to feature with
the target milestone and an assignee.

All items marked as feature-request are non-binding and those without an assignee are open for grabs,
meaning that they can be picked up and implemented by any project member or the community. You
should contact an assigned owner if you’d like to discuss or contribute to that feature’s implementation

4.3.1 Proposals and RFCs

Many changes, including bug fixes and documentation improvements can be implemented and reviewed
via the normal GitHub pull request workflow.

Many changes however are “substantial” and need to go through a design process and produce a con-
sensus among the project stakeholders.

The “RFC” (request for comments) process is intended to provide a consistent and controlled path for
new features to enter the project.

Contributors and project stakeholders should consider using this process if they intend to make “substan-
tial” changes to Zephyr or its documentation. Some examples that would benefit from an RFC are:

* A new feature that creates new API surface area, and would require a feature flag if introduced.
* The modification of an existing stable API
* The removal of features that already shipped as part of Zephyr.

* The introduction of new idiomatic usage or conventions, even if they do not include code changes
to Zephyr itself.

The RFC process is a great opportunity to get more eyeballs on proposals coming from contributors
before it becomes a part of Zephyr. Quite often, even proposals that seem “obvious” can be significantly
improved once a wider group of interested people have a chance to weigh in.

The RFC process can also be helpful to encourage discussions about a proposed feature as it is being
designed, and incorporate important constraints into the design while it’s easier to change, before the
design has been fully implemented.

Some changes do not require an RFC:
* Rephrasing, reorganizing or refactoring
* Addition or removal of warnings

* Addition of new boards, SoCs or drivers to existing subsystems

4.3. Feature Tracking 71

Zephyr Project Documentation, Release 2.7.5

The process in itself consists in creating a GitHub issue with the RFC label that documents the proposal
thoroughly. There is an RFC template included in the main Zephyr GitHub repository that serves as a
guideline to write a new RFC.

As with Pull Requests, RFCs might require discussion in the context of one of the Zephyr meetings in
order to move it forward in cases where there is either disagreement or not enough voiced opinions in
order to proceed. Make sure to either label it appropriately or include it in the corresponding GitHub
project in order for it to be examined during the next meeting.

4.3.2 Roadmap and Release Plans

Project roadmaps and release plans are both important tools for the project, but they have very different
purposes and should not be confused. A project roadmap communicates the high-level overview of a
project’s strategy, while a release plan is a tactical document designed to capture and track the features
planned for upcoming releases.

* The project roadmap communicates the why; a release plan details the what

* A release plan spans only a few months; a product roadmap might cover a year or more

Project Roadmap
The project roadmap should serve as a high-level, visual summary of the project’s strategic objectives
and expectations.

If built properly, the roadmap can be a valuable tool for several reasons. It can help the project present
its plan in a compelling way to existing and new stakeholders, to help recruit new members and it can be
a helpful resource the team and community can refer to throughout the project’s development, to ensure
they are still executing according to plan.

As such, the roadmap should contain only strategic-level details, major project themes, epics, and goals.

Release Plans

The release plan comes into play when the project roadmap’s high-level strategy is translated into an
actionable plan built on specific features, enhancements, and fixes that need to go into a specific release
or milestone.

The release plan communicates those features and enhancements slated for your project’ next release
(or the next few releases). So it acts as more of a project plan, breaking the big ideas down into smaller
projects the community and main stakeholders of the project can make progress on.

Items labeled as features are short or long term release items that shall have an assignee and a milestone
set.

4.4 Code Flow and Branches

4.4.1 Introduction

The zephyr Git repository has three types of branches:
main Which contains the latest state of development
topic-* Topic branches that are used for shared development of a new feature

vx.y-branch Branches which track maintenance releases based on a major release

72 Chapter 4. Development and Contribution Process

https://github.com/zephyrproject-rtos/zephyr/blob/main/.github/ISSUE_TEMPLATE/rfc-proposal.md
https://github.com/zephyrproject-rtos/zephyr/wiki/Zephyr-Committee-and-Working-Group-Meetings

Zephyr Project Documentation, Release 2.7.5

Development in topic branches before features go to mainline allows teams to work independently on
a subsystem or a feature, improves efficiency and turnaround time, and encourages collaboration and
streamlines communication between developers.

Changes submitted to a development topic branch can evolve and improve incrementally in a branch,
before they are submitted to the mainline tree for final integration.

By dedicating an isolated branch to complex features, it’s possible to initiate in-depth discussions around
new additions before integrating them into the official project.

4.4.2 Roles and Responsibilities

Development topic branch owners have the following responsibilities:
* Use the infrastructure and tools provided by the project (GitHub, Git)

* Review changes coming from team members and request review from branch owners when sub-
mitting changes.

* Keep the branch in sync with upstream and update on a regular basis.
* Push changes frequently to upstream using the following methods:

— GitHub pull requests: for example, when reviews have not been done in the local branch
(one-man branch).

— Merge requests: When a set of changes has been done in a local branch and has been reviewed
and tested in a topic branch.

4.5 Modifying Contributions made by other developers

4.5.1 Scenarios

Zephyr contributors and collaborators are encouraged to assist as reviewers in pull requests, so that
patches may be approved and merged to Zephyr’s main branch as part of the original pull requests. The
authors of the pull requests are responsible for amending their original commits following the review
process.

There are occasions, however, when a contributor might need to modify patches included in pull requests
that are submitted by other Zephyr contributors. For instance, this is the case when:

* a developer cherry-picks commits submitted by other contributors into their own pull requests in
order to:

- integrate useful content which is part of a stale pull request, or
— get content merged to the project’s main branch as part of a larger patch
* a developer pushes to a branch or pull request opened by another contributor in order to:
— assist in updating pull requests in order to get the patches merged to the project’s main branch

— drive stale pull requests to completion so they can be merged

4.5.2 Accepted policies

A developer who intends to cherry-pick and potentially modify patches sent by another contributor shall:

* clarify in their pull request the reason for cherry-picking the patches, instead of assisting in getting
the patches merged in their original pull request, and

* invite the original author of the patches to their pull request review.

4.5. Modifying Contributions made by other developers 73

Zephyr Project Documentation, Release 2.7.5

A developer who intends to force-push to a branch or pull request of another Zephyr contributor shall
clarify in the pull request the reason for pushing and for modifying the existing patches (e.g. stating that
it is done to drive the pull request review to completion, when the pull request author is not able to do
S0).

Note: Developers should try to limit the above practice to pull requests identified as stale. Read about
how to identify pull requests as stale in development processes and tools

If the original patches are substantially modified, the developer can either:

* (preferably) reach out to the original author and request them to acknowledge that the modified
patches may be merged while having the original sign-off line and author identity, or

* submit the modified patches as their own work (i.e. with their own sign-off line and author iden-
tity). In this case, the developer shall identify in the commit message(s) the original source the
submitted work is based on (mentioning, for example, the original PR number).

Note: Contributors should uncheck the box “Allow Edits By Maintainers” to indicate that they do not wish
their patches to be amended, inside their original branch or pull request, by other Zephyr developers.

4.6 Development Environment and Tools

4.6.1 Code Review

GitHub is intended to provide a framework for reviewing every commit before it is accepted into the
code base. Changes, in the form of Pull Requests (PR) are uploaded to GitHub but don’t actually become
a part of the project until they’ve been reviewed, passed a series of checks (CI), and are approved by
maintainers. GitHub is used to support the standard open source practice of submitting patches, which
are then reviewed by the project members before being applied to the code base.

Pull requests should be appropriately labeled, and linked to any relevant bug or feature tracking issues .

The Zephyr project uses GitHub for code reviews and Git tree management. When submitting a change
or an enhancement to any Zephyr component, a developer should use GitHub. GitHub automatically
assigns a responsible reviewer on a component basis, as defined in the CODEOWNERS file stored with
the code tree in the Zephyr project repository. A limited set of release managers are allowed to merge a
pull request into the main branch once reviews are complete.

Give reviewers time to review before code merge

The Zephyr project is a global project that is not tied to a certain geography or timezone. We have
developers and contributors from across the globe. When changes are proposed using pull request, we
need to allow for a minimal review time to give developers and contributors the opportunity to review
and comment on changes. There are different categories of changes and we know that some changes do
require reviews by subject matter experts and owners of the subsystem being changed. Many changes fall
under the “trivial” category that can be addressed with general reviews and do not need to be queued
for a maintainer or code-owner review. Additionally, some changes might require further discussions
and a decision by the TSC or the Security working group. To summarize the above, the diagram below
proposes minimal review times for each category:

Workflow

74 Chapter 4. Development and Contribution Process

https://github.com/zephyrproject-rtos/zephyr/blob/main/CODEOWNERS

Zephyr Project Documentation, Release 2.7.5

Hot Fix

Trivial (4h -)

Maintainer (2d -)

Security (3d -)

Fig. 6: Pull request classes

* An author of a change can suggest in his pull-request which category a change should belong to.
A project maintainers or TSC member monitoring the inflow of changes can change the label of a
pull request by adding a comment justifying why a change should belong to another category.

* The project will use the label system to categorize the pull requests.

* Changes should not be merged before the minimal time has expired.

Categories/Labels

Hotfix Any change that is a fix to an issue that blocks developers from doing their daily work, for
example CI breakage, Test breakage, Minor documentation fixes that impact the user experience.

Such fixes can be merged at any time after they have passed CI checks. Depending on the fix, severity,
and availability of someone to review them (other than the author) they can be merged with justification
without review by one of the project owners.

Trivial Trivial changes are those that appear obvious enough and do not require maintainer or code-
owner involvement. Such changes should not change the logic or the design of a subsystem or compo-
nent. For example a trivial change can be:

* Documentation changes
* Configuration changes
* Minor Build System tweaks

* Minor optimization to code logic without changing the logic

4.6. Development Environment and Tools 75

Zephyr Project Documentation, Release 2.7.5

* Test changes and fixes

* Sample modifications to support additional configuration or boards etc.

Maintainer Any changes that touch the logic or the original design of a subsystem or component will
need to be reviewed by the code owner or the designated subsystem maintainer. If the code changes is
initiated by a contributor or developer other than the owner the pull request needs to be assigned to the
code owner who will have to drive the pull request to a mergeable state by giving feedback to the author
and asking for more reviews from other developers.

Security Changes that appear to have an impact to the overall security of the system need to be re-
viewed by a security expert from the security working group.

TSC and Working Groups Changes that introduce new features or functionality or change the way the
overall system works need to be reviewed by the TSC or the responsible Working Group. For example for
stable API changes, the proposal needs to be presented in the API meeting so that the relevant stakeholders
are made aware of the change.

A Pull-Request should have an Assignee

* An assignee to a pull request should not be the same as the author of the pull-request
* An assignee to a pull request is responsible for driving the pull request to a mergeable state

* An assignee is responsible for dismissing stale reviews and seeking reviews from additional devel-
opers and contributors

* Pull requests should not be merged without an approval by the assignee.

Pull Request should not be merged by author without review
All pull requests need to be reviewed and should not be merged by the author without a review. The
following exceptions apply:

* Hot fixes: Fixing CI issues, reverts, and system breakage

* Release related changes: Changing version file, applying tags and release related activities without
any code changes.

Developers and contributors should always seek review, however there are cases when reviewers are not
available and there is a need to get a code change into the tree as soon as possible.

Reviewers shall not ‘Request Changes’ without comments or justification

Any change requests (-1) on a pull request have to be justified. A reviewer should avoid blocking a
pull-request with no justification. If a reviewer feels that a change should not be merged without their
review, then: Request change of the category: for example:

e Trivial -> Maintainer

* Assign Pull Request to yourself, this will mean that a pull request should not be merged without
your approval.

76 Chapter 4. Development and Contribution Process

Zephyr Project Documentation, Release 2.7.5

Pull Requests should have at least 2 approvals before they are merged

A pull-request shall be merged only with two positive reviews (approval). Beside the person merging
the pull-request (merging ! = approval), two additional approvals are required to be able to merge a pull
request. The person merging the request can merge without approving or approve and merge to get to
the 2 approvals required.

Reviewers should keep track of pull requests they have provided feedback to

If a reviewer has requested changes in a pull request, he or she should monitor the state of the pull
request and/or respond to mention requests to see if his feedback has been addressed. Failing to do
so, negative reviews shall be dismissed by the assignee or an owner of the repository. Reviews will be
dismissed following the criteria below:

* The feedback or concerns were visibly addressed by the author
* The reviewer did not revisit the pull request after 2 week and multiple pings by the author
* The review is unrelated to the code change or asking for unjustified structural changes such as:

Split the PR

Split the commits

Can you fix this unrelated code that happens to appear in the diff

Can you fix unrelated issues

— Etc.

Closing Stale Issues and Pull Requests
* The Pull requests and issues sections on Github are NOT discussion forums. They are items that
we need to execute and drive to closure. Use the mailing lists for discussions.

* In case of both issues and pull-requests the original poster needs to respond to questions and
provide clarifications regarding the issue or the change. After one week without a response to
a request, a second attempt to elicit a response from the contributor will be made. After one
more week without a response the item may be closed (draft and DNM tagged pull requests are
excluded).

4.6.2 Continuous Integration

All changes submitted to GitHub are subject to tests that are run on emulated platforms and architectures
to identify breakage and regressions that can be immediately identified. Testing using Twister addition-
ally performs build tests of all boards and platforms. Documentation changes are also verified through
review and build testing to verify doc generation will be successful.

Any failures found during the CI test run will result in a negative review assigned automatically by the
CI system. Developers are expected to fix issues and rework their patches and submit again.

The CI infrastructure currently runs the following tests:
* Run “checkpatch” for code style issues (can vote -1 on errors; see note)
* Gitlint: Git commit style based on project requirements
* License Check: Check for conflicting licenses
* Run “twister” script
— Run kernel tests in QEMU (can vote -1 on errors)

— Build various samples for different boards (can vote -1 on errors)

4.6. Development Environment and Tools 77

Zephyr Project Documentation, Release 2.7.5

* Verify documentation builds correctly.

Note: “checkpatch” is a Perl script that uses regular expressions to extract information that requires a C
language parser to process accurately. As such it sometimes issues false positives. Known cases include
constructs like:

static uint8_t __aligned(PAGE_SIZE) page_pool [PAGE_SIZE * POOL_PAGES];
IOPCTL_Type *base = config->base;

Both lines produce a diagnostic regarding spaces around the * operator: the first is misidentifed as a
pointer type declaration that would be correct as PAGE_SIZE *POOL_PAGES while the second is misiden-
tified as a multiplication expression that would be correct as IOPCTL_Type * base.

Maintainers can override the -1 in cases where the CI infrastructure gets the wrong answer.

4.6.3 Labeling issues and pull requests in GitHub

The project uses GitHub issues and pull requests (PRs) to track and manage daily and long-term work
and contributions to the Zephyr project. We use GitHub labels to classify and organize these issues and
PRs by area, type, priority, and more, making it easier to find and report on relevant items.

All GitHub issues or pull requests must be appropriately labeled. Issues and PRs often have multiple
labels assigned, to help classify them in the different available categories. When reviewing a PR, if it has
missing or incorrect labels, maintainers shall fix it.

This saves us all time when searching, reduces the chances of the PR or issue being forgotten, speeds up
reviewing, avoids duplicate issue reports, etc.

These are the labels we currently have, grouped by type:

Area
La- Area:*
bels
Ap- PRs and issues
plica-
ble to
De- Indicates subsystems (e.g., Kernel, 12C, Memory Management), project functions (e.g., De-
scrip- | bugging, Documentation, Process), or other categories (e.g., Coding Style, MISRA-C) affected
tion by the bug or pull request.

An area maintainer should be able to filter by an area label and find all issues and PRs which relate to
that area.

Platform

Labels Platform:*
Applicable to | PRs and issues
Description An issue or PR which affects only a particular platform

78 Chapter 4. Development and Contribution Process

Zephyr Project Documentation, Release 2.7.5

To be discussed in a meeting

Labels dev-review, TSC
Applicable to | PRs and issues
Description The issue is to be discussed in the following dev-review/TSC meeting if time permits

Stable API changes

Labels Stable API Change

Applica- PRs and issues

ble to

Descrip- The issue or PR describes a change to a stable API. See additional information in Intro-
tion ducing incompatible changes

Minimum PR review time

Labels Hot Fix, Trivial, Maintainer, Security Review, TSC

Applica- | PRs only

ble to

Descrip- | Depending on the PR complexity, an indication of how long a merge should be held to
tion ensure proper review. See review process

Issue priority labels

Labels priority:{high|medium|low}
Applicable to | Issues only
Description To classify the impact and importance of a bug or feature

Note: Issue priorities are generally set or changed during the bug-triage or TSC meetings.

Miscellaneous labels

For both PRs and issues

Bug The issue is a bug, or the PR is fixing a bug

Coverity A Coverity detected issue or its fix

Waiting for The Zephyr developers are waiting for the submitter to respond to a question,
response or address an issue.

Blocked Blocked by another PR or issue

In progress

For PRs: is work in progress and should not be merged yet. For issues: Is being
worked on

RFC The author would like input from the community. For a PR it should be consid-
ered a draft

LTS Long term release branch related

EXT Related to an external component (in ext/)

4.6. Development Environment and Tools

79

https://github.com/zephyrproject-rtos/zephyr/wiki/Zephyr-Committee-and-Working-Group-Meetings

Zephyr Project Documentation, Release 2.7.5

PR only labels
DNM This PR should not be merged (Do Not Merge). For work in progress, GitHub “draft”
PRs are preferred
Stale PR PR which seems abandoned, and requires attention by the author
Needs The PR needs attention from the maintainers

review
Backport The PR is a backport or should be backported
Licensing | The PR has licensing issues which require a licensing expert to review it

Issue only labels

Regression Something, which was working, but does not anymore (bug subtype)

Question This issue is a question to the Zephyr developers

Enhancement Changes/Updates/Additions to existing features

Feature A request for a new feature

request

Feature A planned feature with a milestone

Duplicate This issue is a duplicate of another issue (please specify)

Good first Good for a first time contributor to take

issue

Release Notes | Issues that need to be mentioned in release notes as known issues with additional
information

Any issue must be classified and labeled as either Bug, Question, Enhancement, Feature, or Feature
Request. More information on how feature requests are handled and become features can be found in
Feature Tracking.

4.7 Bug Reporting

To maintain traceability and relation between proposals, changes, features, and issues, it is recommended
to cross-reference source code commits with the relevant GitHub issues and vice versa. Any changes that
originate from a tracked feature or issue should contain a reference to the feature by mentioning the
corresponding issue or pull-request identifiers.

At any time it should be possible to establish the origin of a change and the reason behind it by following
the references in the code.

4.7.1 Reporting a regression issue

It could happen that the issue being reported is identified as a regression, as the use case is known to be
working on earlier commit or release. In this case, providing directly the guilty commit when submitting
the bug gains a lot of time in the eventual bug fixing.

To identify the commit causing the regression, several methods could be used, but tree bisecting method
is an efficient one that doesn’t require deep code expertise and can be used by every one.

For this, git bisect is the recommended tool.
Recommendations on the process:
* Run west update on each bisection step.

* Once the bisection is over and a culprit identifed, verify manually the result.

80 Chapter 4. Development and Contribution Process

https://git-scm.com/docs/git-bisect

Zephyr Project Documentation, Release 2.7.5

4.8 Communication and Collaboration

The Zephyr project mailing lists are used as the primary communication tool by project members, con-
tributors, and the community. The mailing list is open for topics related to the project and should be
used for collaboration among team members working on the same feature or subsystem or for discussing
project direction and daily development of the code base. In general, bug reports and issues should be
entered and tracked in the bug tracking system (GitHub Issues) and not broadcasted to the mailing list,
the same applies to code reviews. Code should be submitted to GitHub using the appropriate tools.

4.9 Code Documentation

4.9.1 API Documentation

Well documented APIs enhance the experience for developers and are an essential requirement for defin-
ing an API's success. Doxygen is a general purpose documentation tool that the zephyr project uses
for documenting APIs. It generates either an on-line documentation browser (in HTML) and/or pro-
vides input for other tools that is used to generate a reference manual from documented source files.
In particular, doxygen’s XML output is used as an input when producing the Zephyr project’s online
documentation.

4.9.2 Reference to Requirements

APIs for the most part document the implementation of requirements or advertised features and can be
traced back to features. We use the API documentation as the main interface to trace implementation
back to documented features. This is done using custom _doxygen tags that reference requirements
maintained somewhere else in a requirement catalogue.

4.9.3 Test Documentation

To help understand what each test does and which functionality it tests we also document all test code us-
ing the same tools and in the same context and generate documentation for all unit and integration tests
maintained in the same environment. Tests are documented using references to the APIs or functionality
they validate by creating a link back to the APIs and by adding a reference to the original requirements.

4.9.4 Documentation Guidelines
Test Code

The Zephyr project uses several test methodologies, the most common being the Ztest framework. Test
documentation should only be done on the entry test functions (usually prefixed with test) and those
that are called directly by the Ztest framework. Those tests are going to appear in test reports and using
their name and identifier is the best way to identify them and trace back to them from requirements.

Test documentation should not interfere with the actual API documentation and needs to follow a new
structure to avoid confusion. Using a consistent naming scheme and following a well-defined structure
we will be able to group this documentation in its own module and identify it uniquely when parsing
test data for traceability reports. Here are a few guidelines to be followed:

* All test code documentation should be grouped under the all_tests doxygen group
* All test documentation should be under doxygen groups that are prefixed with tests_

The custom doxygen @verify directive signifies that a test verifies a requirement:

4.8. Communication and Collaboration 81

https://lists.zephyrproject.org/g/main/subgroups
https://github.com/zephyrproject-rtos/zephyr/issues

Zephyr Project Documentation, Release 2.7.5

/ *%

* Q@brief Tests for the Semaphore kernel object
* Q@defgroup kernel_semaphore_tests Semaphore

* @ingroup all_tests

* 0f

*/

/ *%

* Q@brief A brief description of the tests
* Some details about the test

* more details
*
*

Qverify{@req{11113}}
*/
void test_sema_thread2thread(void)

{

}

/ *%
* Q}
*/

To get coverage of how an implementation or a piece of code satisfies a requirements, we use the satisfy
alias in doxygen:

VET:

* @brief Give a semaphore.

%

* This routine gives @a sem, unless the semaphore is already at its maximum
* permitted count.

*

* @note Can be called by ISRs.

%

* QOparam sem Address of the semaphore.
*

* Qreturn N/A

* @satisfy{@req{015}}

*/

__syscall void k_sem_give(struct k_sem *sem);
To generate the matrix, you will first need to build the documentation, specifically you will need to build
the doxygen XML output:

$ make doxygen

Parse the generated XML data from doxygen to generate the traceability matrix.

The Zephyr project defines a development process workflow using GitHub Issues to track feature, en-
hancement, and bug reports together with GitHub Pull Requests (PRs) for submitting and reviewing
changes. Zephyr community members work together to review these Issues and PRs, managing fea-
ture enhancements and quality improvements of Zephyr through its regular releases, as outlined in the
program management overview.

We can only manage the volume of Issues and PRs, by requiring timely reviews, feedback, and responses
from the community and contributors, both for initial submissions and for followup questions and clari-
fications. Read about the project’s development processes and tools and specifics about review timelines to

82 Chapter 4. Development and Contribution Process

https://wiki.zephyrproject.org/Program-Management

Zephyr Project Documentation, Release 2.7.5

learn about the project’s goals and guidelines for our active developer community.

TSC Project Roles describes in detail the Zephyr project roles and associated permissions with respect to
the development process workflow.

4.10 Terminology

* mainline: The main tree where the core functionality and core features are being developed.

* subsystem/feature branch: is a branch within the same repository. In our case, we will use the term
branch also when referencing branches not in the same repository, which are a copy of a repository
sharing the same history.

* upstream: A parent branch the source code is based on. This is the branch you pull from and push
to, basically your upstream.

* ITS: Long Term Support

4.10. Terminology 83

Zephyr Project Documentation, Release 2.7.5

84 Chapter 4. Development and Contribution Process

Chapter 5

Build and Configuration Systems

5.1 Build System (CMake)

CMake is used to build your application together with the Zephyr kernel. A CMake build is done in two
stages. The first stage is called configuration. During configuration, the CMakeLists.txt build scripts
are executed. After configuration is finished, CMake has an internal model of the Zephyr build, and can
generate build scripts that are native to the host platform.

CMake supports generating scripts for several build systems, but only Ninja and Make are tested and
supported by Zephyr. After configuration, you begin the build stage by executing the generated build
scripts. These build scripts can recompile the application without involving CMake following most code
changes. However, after certain changes, the configuration step must be executed again before building.
The build scripts can detect some of these situations and reconfigure automatically, but there are cases
when this must be done manually.

Zephyr uses CMake’s concept of a ‘target’ to organize the build. A target can be an executable, a library,
or a generated file. For application developers, the library target is the most important to understand. All
source code that goes into a Zephyr build does so by being included in a library target, even application
code.

Library targets have source code, that is added through CMakelLists.txt build scripts like this:

target_sources(app PRIVATE src/main.c)

In the above CMakeLists.txt, an existing library target named app is configured to include the source
file src/main.c. The PRIVATE keyword indicates that we are modifying the internals of how the library is
being built. Using the keyword PUBLIC would modify how other libraries that link with app are built. In
this case, using PUBLIC would cause libraries that link with app to also include the source file src/main.
c, behavior that we surely do not want. The PUBLIC keyword could however be useful when modifying
the include paths of a target library.

5.1.1 Build and Configuration Phases

The Zephyr build process can be divided into two main phases: a configuration phase (driven by CMake)
and a build phase (driven by Make or Ninja).

Configuration Phase

The configuration phase begins when the user invokes CMake, specifying a source application directory
and a board target.

85

Zephyr Project Documentation, Release 2.7.5

Configuration overview...

.dts/.dtsi files

A

Bindings in dts/bindings/ *.dts.pre.tmp file

Merged devicetree in zephyr.dts (debugging a...

dts_fixup.h files

pri.conf... A4

config can rea..
devicetree_unfixed.h... devicetree_fixups.h

Kconfig files

4 _l Outputs
li

autoconf.h .config devicetree.h... Makefile or Ninja file (...

86 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.5

CMake begins by processing the CMakeLists.txt file in the application directory, which refers to the
CMakeLists.txt file in the Zephyr top-level directory, which in turn refers to CMakeLists.txt files
throughout the build tree (directly and indirectly). Its primary output is a set of Makefiles or Ninja files
to drive the build process, but the CMake scripts also do some processing of their own:

Devicetree *.dts (devicetree source) and *.dtsi (devicetree source include) files are collected from the
target’s architecture, SoC, board, and application directories.

* . dtsi files are included by *. dts files via the C preprocessor (often abbreviated cpp, which should
not be confused with C++). The C preprocessor is also used to merge in any devicetree *.overlay
files, and to expand macros in *.dts, *.dtsi, and *.overlay files.

The preprocessed devicetree sources (stored in *.dts.pre.tmp) are parsed by gen defines.py to
generate a devicetree_unfixed.h header with preprocessor macros.

As a debugging aid, gen_defines.py writes the final devicetree to zephyr.dts. This file is just for
reference. It is not used anywhere.

The dtc devicetree compiler also gets run on the preprocessed devicetree sources to catch any extra
warnings and errors generated by it. The output from dtc is unused otherwise.

The above is just a brief overview. For more information on devicetree, see Devicetree Guide.

Devicetree fixups Files named dts_fixup.h from the target’s architecture, SoC, board, and application
directories are concatenated into a single devicetree_fixups.h file. dts_fixup.h files are used
to rename generated macros to names expected by the source code.

Source code accesses preprocessor macros generated from devicetree by including the devicetree.h
header, which includes devicetree_unfixed.h and devicetree_fixups.h.

Kconfig Kconfig files define available configuration options for for the target architecture, SoC, board,
and application, as well as dependencies between options.

Kconfig configurations are stored in configuration files. The initial configuration is generated by
merging configuration fragments from the board and application (e.g. prj.conf).

The output from Kconfig is an autoconf .h header with preprocessor assignments, and a .config
file that acts both as a saved configuration and as configuration output (used by CMake).

Information from devicetree is available to Kconfig, through the functions defined in kconfigfunc-
tions.py.

See the Kconfig section of the manual for more information.

Build Phase

The build phase begins when the user invokes make or ninja. Its ultimate output is a complete Zephyr
application in a format suitable for loading/flashing on the desired target board (zephyr.elf, zephyr.
hex, etc.) The build phase can be broken down, conceptually, into four stages: the pre-build, first-pass
binary, final binary, and post-processing.

Pre-build Pre-build occurs before any source files are compiled, because during this phase header files
used by the source files are generated.

Offset generation Access to high-level data structures and members is sometimes required when the
definitions of those structures is not immediately accessible (e.g., assembly language). The gener-
ation of offsets.h (by gen_offset_header.py) facilitates this.

System call boilerplate The gen_syscall.py and parse_syscalls.py scripts work together to bind potential
system call functions with their implementations.

5.1. Build System (CMake) 87

https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/dts/gen_defines.py
https://github.com/zephyrproject-rtos/zephyr/blob/main/include/devicetree.h
https://github.com/zephyrproject-rtos/zephyr/blob/main/include/devicetree.h
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/kconfigfunctions.py
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/kconfigfunctions.py

Zephyr Project Documentation, Release 2.7.5

[Not supported by viewer]

[Not supported by viewer] r---==-=====" A
[i
[1

e | s |
Mctsopporidfyviewer] _

[- ----- > [Not supported by viewer] ~ -==--=-3 > [Not supported by viewer]

[Not supported by viewer]

First-pass binary Compilation proper begins with the first-pass binary. Source files (C and assembly)
are collected from various subsystems (which ones is decided during the configuration phase), and com-
piled into archives (with reference to header files in the tree, as well as those generated during the
configuration phase and the pre-build stage).

If memory protection is enabled, then:

Partition grouping The gen_app_partitions.py script scans all the generated archives and outputs linker
scripts to ensure that application partitions are properly grouped and aligned for the target’s mem-
ory protection hardware.

Then cpp is used to combine linker script fragments from the target’s architecture/SoC, the kernel tree,
optionally the partition output if memory protection is enabled, and any other fragments selected during
the configuration process, into a linker.cmd file. The compiled archives are then linked with Id as specified
in the linker.cmd.

In some configurations, this is the final binary, and the next stage is skipped.

Final binary The binary from the previous stage is incomplete, with empty and/or placeholder sections
that must be filled in by, essentially, reflection.

Device dependencies The gen handles.py script scans the first-pass binary to determine relationships
between devices that were recorded from devicetree data, and replaces the encoded relationships
with values that are optimized to locate the devices actually present in the application.

When User Mode is enabled:

Kernel object hashing The gen_kobject list.py scans the ELF DWARF debug data to find the address of
the all kernel objects. This list is passed to gperf, which generates a perfect hash function and table
of those addresses, then that output is optimized by process gperf.py, using known properties of
our special case.

Then, the link from the previous stage is repeated, this time with the missing pieces populated.

Post processing Finally, if necessary, the completed kernel is converted from ELF to the format expected
by the loader and/or flash tool required by the target. This is accomplished in a straightforward manner
with objdump.

88 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.5

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer

v v
‘ [Not supported by viewer] ‘ ‘ [Not supported by viewer] ‘ ‘ [Not supported by viewer] ‘
N er] IN erl
v v v
‘ [Not supported by viewer] ‘ [%m supported by viewe*l [Not supported by viewe%

[Not supported by viewer] =~

[Not supported by viewer]
""" ot supported by viewer}™~~ 1 e} [Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

(

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

[Not supported by viewer]

ot supported by viewer]

[Em supported by e}ﬁ

ﬁ [Not supported by viewer] ‘

[Not supported by viewer] ‘

[Not supported by viewer] ‘

[Not supported by viewer] ‘

---------------- >{ [Not supported by viewer] ‘

[Not supported by viewer] l

[Not supported by viewer] ‘

[Not supported by viewer]

[Not supported by viewer]”
[Not supported by viewer]
s : T ~
[Not supported by viewer] ~==--------------- Nt supported by viewer} - --------------| t-» [Not supported by viewer])

S o

.- oo .
9 \
[Not supported by viewer] F===============-= [Not supported by viewer] 7

.

-

5.1. Build System (CMake)

89

Zephyr Project Documentation, Release 2.7.5

5.1.2 Supporting Scripts and Tools

The following is a detailed description of the scripts used during the build process.

scripts/gen_syscalls.py

Script to generate system call invocation macros
This script parses the system call metadata JSON file emitted by parse_syscalls.py to create several files:

* A file containing weak aliases of any potentially unimplemented system calls, as well as the system
call dispatch table, which maps system call type IDs to their handler functions.

* A header file defining the system call type IDs, as well as function prototypes for all system call
handler functions.

* A directory containing header files. Each header corresponds to a header that was identified as con-
taining system call declarations. These generated headers contain the inline invocation functions
for each system call in that header.

scripts/gen_handles.py

Translate generic handles into ones optimized for the application.

Immutable device data includes information about dependencies, e.g. that a particular sensor is con-
trolled through a specific I2C bus and that it signals event on a pin on a specific GPIO controller. This
information is encoded in the first-pass binary using identifiers derived from the devicetree. This script
extracts those identifiers and replaces them with ones optimized for use with the devices actually present.

For example the sensor might have a first-pass handle defined by its devicetree ordinal 52, with the I2C
driver having ordinal 24 and the GPIO controller ordinal 14. The runtime ordinal is the index of the
corresponding device in the static devicetree array, which might be 6, 5, and 3, respectively.

The output is a C source file that provides alternative definitions for the array contents referenced from
the immutable device objects. In the final link these definitions supersede the ones in the driver-specific
object file.

scripts/gen_kobject_list.py

Script to generate gperf tables of kernel object metadata

User mode threads making system calls reference kernel objects by memory address, as the kernel/driver
APIs in Zephyr are the same for both user and supervisor contexts. It is necessary for the kernel to be
able to validate accesses to kernel objects to make the following assertions:

* That the memory address points to a kernel object
* The kernel object is of the expected type for the API being invoked
» The kernel object is of the expected initialization state
* The calling thread has sufficient permissions on the object
For more details see the Kernel Objects section in the documentation.

The zephyr build generates an intermediate ELF binary, zephyr prebuilt.elf, which this script scans look-
ing for kernel objects by examining the DWARF debug information to look for instances of data structures
that are considered kernel objects. For device drivers, the API struct pointer populated at build time is
also examined to disambiguate between various device driver instances since they are all ‘struct device’.

This script can generate five different output files:

90 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.5

* A gperf script to generate the hash table mapping kernel object memory addresses to kernel object
metadata, used to track permissions, object type, initialization state, and any object-specific data.

* A header file containing generated macros for validating driver instances inside the system call
handlers for the driver subsystem APIs.

* A code fragment included by kernel.h with one enum constant for each kernel object type and each
driver instance.

* The inner cases of a switch/case C statement, included by kernel/userspace.c, mapping the kernel
object types and driver instances to their human-readable representation in the otype to_str()
function.

* The inner cases of a switch/case C statement, included by kernel/userspace.c, mapping ker-
nel object types to their sizes. This is used for allocating instances of them at runtime (CON-
FIG_DYNAMIC_OBJECTS) in the obj_size_get() function.

scripts/gen_offset_header.py

This script scans a specified object file and generates a header file that defined macros for the offsets
of various found structure members (particularly symbols ending with _OFFSET or _SIZEOF), primarily
intended for use in assembly code.

scripts/parse_syscalls.py

Script to scan Zephyr include directories and emit system call and subsystem metadata

System calls require a great deal of boilerplate code in order to implement completely. This script is the
first step in the build system’s process of auto-generating this code by doing a text scan of directories
containing C or header files, and building up a database of system calls and their function call prototypes.
This information is emitted to a generated JSON file for further processing.

This script also scans for struct definitions such as _ subsystem and _ net socket, emitting a JSON
dictionary mapping tags to all the struct declarations found that were tagged with them.

If the output JSON file already exists, its contents are checked against what information this script would
have outputted; if the result is that the file would be unchanged, it is not modified to prevent unnecessary
incremental builds.

arch/x86/gen_idt.py

Generate Interrupt Descriptor Table for x86 CPUs.

This script generates the interrupt descriptor table (IDT) for x86. Please consult the IA Architecture SW
Developer Manual, volume 3, for more details on this data structure.

This script accepts as input the zephyr prebuilt.elf binary, which is a link of the Zephyr kernel without
various build-time generated data structures (such as the IDT) inserted into it. This kernel image has
been properly padded such that inserting these data structures will not disturb the memory addresses
of other symbols. From the kernel binary we read a special section “intList” which contains the desired
interrupt routing configuration for the kernel, populated by instances of the IRQ_CONNECT() macro.

This script outputs three binary tables:
1. The interrupt descriptor table itself.

2. A bitfield indicating which vectors in the IDT are free for installation of dynamic interrupts at
runtime.

3. An array which maps configured IRQ lines to their associated vector entries in the IDT, used to
program the APIC at runtime.

5.1. Build System (CMake) 91

Zephyr Project Documentation, Release 2.7.5

arch/x86/gen_gdt.py

Generate a Global Descriptor Table (GDT) for x86 CPUs.

For additional detail on GDT and x86 memory management, please consult the IA Architecture SW
Developer Manual, vol. 3.

This script accepts as input the zephyr prebuilt.elf binary, which is a link of the Zephyr kernel without
various build-time generated data structures (such as the GDT) inserted into it. This kernel image has
been properly padded such that inserting these data structures will not disturb the memory addresses of
other symbols.

The input kernel ELF binary is used to obtain the following information:

* Memory addresses of the Main and Double Fault TSS structures so GDT descriptors can be created
for them

* Memory addresses of where the GDT lives in memory, so that this address can be populated in the
GDT pseudo descriptor

* whether userspace or HW stack protection are enabled in Kconfig

The output is a GDT whose contents depend on the kernel configuration. With no memory protection
features enabled, we generate flat 32-bit code and data segments. If hardware- based stack overflow
protection or userspace is enabled, we additionally create descriptors for the main and double- fault IA
tasks, needed for userspace privilege elevation and double-fault handling. If userspace is enabled, we
also create flat code/data segments for ring 3 execution.

scripts/gen_relocate_app.py

This script will relocate .text, .rodata, .data and .bss sections from required files and places it in the
required memory region. This memory region and file are given to this python script in the form of a
string.

Example of such a string would be:

SRAM2: /home/xyz/zephyr/samples/hello_world/src/main.c,\
SRAM1: /home/xyz/zephyr/samples/hello_world/src/main2.c

To invoke this script:

python3 gen_relocate_app.py -i input_string -o generated_linker -c generated_code

Configuration that needs to be sent to the python script.
* If the memory is like SRAM1/SRAM2/CCD/AON then place full object in the sections

* If the memory type is appended with DATA / TEXT/ RODATA/ BSS only the selected memory
is placed in the required memory region. Others are ignored.

Multiple regions can be appended together like SRAM2 DATA BSS this will place data and bss inside
SRAM2.

scripts/process_gperf.py

gperf C file post-processor

We use gperf to build up a perfect hashtable of pointer values. The way gperf does this is to create a
table ‘wordlist’ indexed by a string representation of a pointer address, and then doing memcmp() on a
string passed in for comparison

We are exclusively working with 4-byte pointer values. This script adjusts the generated code so that we
work with pointers directly and not strings. This saves a considerable amount of space.

92 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.5

scripts/gen_app_partitions.py

Script to generate a linker script organizing application memory partitions

Applications may declare build-time memory domain partitions with K. APPMEM_PARTITION DEFINE,
and assign globals to them using K APP DMEM or K APP BMEM macros. For each of these partitions,
we need to route all their data into appropriately-sized memory areas which meet the size/alignment
constraints of the memory protection hardware.

This linker script is created very early in the build process, before the build attempts to link the kernel
binary, as the linker script this tool generates is a necessary pre-condition for kernel linking. We extract
the set of memory partitions to generate by looking for variables which have been assigned to input
sections that follow a defined naming convention. We also allow entire libraries to be pulled in to assign
their globals to a particular memory partition via command line directives.

This script takes as inputs:
* The base directory to look for compiled objects
* key/value pairs mapping static library files to what partitions their globals should end up in.

The output is a linker script fragment containing the definition of the app shared memory section, which
is further divided, for each partition found, into data and BSS for each partition.

5.2 Configuration System (Kconfig)

The Zephyr kernel and subsystems can be configured at build time to adapt them for specific application
and platform needs. Configuration is handled through Kconfig, which is the same configuration system
used by the Linux kernel. The goal is to support configuration without having to change any source code.

Configuration options (often called symbols) are defined in Kconfig files, which also specify dependen-
cies between symbols that determine what configurations are valid. Symbols can be grouped into menus
and sub-menus to keep the interactive configuration interfaces organized.

The output from Kconfig is a header file autoconf .h with macros that can be tested at build time. Code
for unused features can be compiled out to save space.

The following sections explain how to set Kconfig configuration options, go into detail on how Kconfig is
used within the Zephyr project, and have some tips and best practices for writing Kconfig files.

5.2.1 Interactive Kconfig interfaces

There are two interactive configuration interfaces available for exploring the available Kconfig options
and making temporary changes: menuconfig and guiconfig. menuconfig is a curses-based interface
that runs in the terminal, while guiconfig is a graphical configuration interface.

Note: The configuration can also be changed by editing zephyr/.config in the application build
directory by hand. Using one of the configuration interfaces is often handier, as they correctly handle
dependencies between configuration symbols.

If you try to enable a symbol with unsatisfied dependencies in zephyr/.config, the assignment will be
ignored and overwritten when re-configuring.

To make a setting permanent, you should set it in a *. conf file, as described in Setting Kconfig configu-
ration values.

Tip: Saving a minimal configuration file (with e.g. D in menuconfig) and inspecting it can be handy
when making settings permanent. The minimal configuration file only lists symbols that differ from their

5.2. Configuration System (Kconfig) 93

Zephyr Project Documentation, Release 2.7.5

default value.

To run one of the configuration interfaces, do this:
1. Build your application as usual using either west or cmake:

Using west:

west build -b <board>

Using CMake and ninja:
mkdir build && cd build
cmake -GNinja -DBOARD=<board> ..
ninja
2. To run the terminal-based menuconfig interface, use either of these commands:
west build -t menuconfig
ninja menuconfig
To run the graphical guiconfig, use either of these commands:

west build -t guiconfig

ninja guiconfig

Note: If you get an import error for tkinter when trying to run guiconfig, you are missing
required packages. See Install Linux Host Dependencies. The package you need is usually called
something like python3-tk/python3-tkinter.

tkinter is not included by default in many Python installations, despite being part of the standard
library.

The two interfaces are shown below:

File

Board Selection (QEMU x86 64) --->
Board Options
SoC/CPU/Configuration Selection (Generic x86 64 PC) ---=
Hardware Configuration ----

[1 Debug logging at lowest level

(6) Power-of-two divisor between TSC and APIC timer

(255) Interrupt vector for irq offload

Architecture (x86 64 architecture) ---=>
General Architecture Options --->
General Kernel Options --->
Device Drivers --->
C Library ---=
Additional libraries --->
Bluetooth ---=
Console ---=
[Space/Enter] Toggle/enter [ESC] Leave menu [S] Save
[0] Load [?] Symbol info [/] Jump to symbol

[F] Toggle show-help mode [C] Toggle show-name mode [A] Toggle show-all mode
[Q] Quit (prompts for save) [D] Save minimal config (advanced)

94 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.5

Save H Save as... H Save minimal (advanced)... H Open... || Jump fo...

[Show name [Show all [Single-menu mode

(Top)

I> Board Selection (QEMU x86_64)
Board Options

I> SoC/CPU/Configuration Selection (Generic x86_64 PC)
Hardware Configuration
[¥]Debug logging at lowest level
€(255) Interrupt vector for irg_offload

I> Architecture (x86_64 architecture)

I> General Architecture Options

I> General Kermel Options

I> Device Drivers

I» C Library

I> Additional libraries

D

-

INEN

XUK_APIC TSC SHIFT

Configures the precision of the APIC timer as a bit shift of
the TSC frequency. High values "slow down" the tick rate of
the APIC timer and allow for longer timeouts at the expense
of precision.

Defaults:
-6

Kconfig definition, with propagated dependencies

[

Modified

guiconfig always shows the help text and other information related to the currently selected item
in the bottom window pane. In the terminal interface, press ? to view the same information.

Note: If you prefer to work in the guiconfig interface, then it’s a good idea to check any changes
to Kconfig files you make in single-menu mode, which is toggled via a checkbox at the top. Un-
like full-tree mode, single-menu mode will distinguish between symbols defined with config and
symbols defined with menuconfig, showing you what things would look like in the menuconfig
interface.

3. Change configuration values in the menuconfig interface as follows:
* Navigate the menu with the arrow keys. Common Vim key bindings are supported as well.

* Use Space and Enter to enter menus and toggle values. Menus appear with ---> next to
them. Press ESC to return to the parent menu.

Boolean configuration options are shown with [] brackets, while numeric and string-valued
configuration symbols are shown with () brackets. Symbol values that can’t be changed are
shown as - - or -*-.

Note: You can also press Y or N to set a boolean configuration symbol to the corresponding
value.

* Press 7 to display information about the currently selected symbol, including its help text.
Press ESC or Q to return from the information display to the menu.

In the guiconfig interface, either click on the image next to the symbol to change its value, or

5.2. Configuration System (Kconfig) 95

https://www.vim.org

Zephyr Project Documentation, Release 2.7.5

double-click on the row with the symbol (this only works if the symbol has no children, as double-
clicking a symbol with children open/closes its menu instead).

guiconfig also supports keyboard controls, which are similar to menuconfig.

4. Pressing Q in the menuconfig interface will bring up the save-and-quit dialog (if there are changes
to save):

File Edit View Search Terminal Help
(Top) - Device Drivers - Watchdog Support
Zephyr Kernel Configuration
(WATCHDOG 0) Watchdog driver instance name
[1 Disable at boot
[1 OMSI Watchdog driver

Save configuration?

(Y)es (N)o (C)ancel

[Space/Enter] Toggle/enter [ESC] Leave menu [S] Save

[0] Load [?] Symbol info [/] Jump to symbol

[F] Toggle show-help mode [C] Toggle show-name mode [A] Toggle show-all mode
[Q] Quit (prompts for save) [D] Save minimal config (advanced)

Press Y to save the kernel configuration options to the default filename (zephyr/.config). You will
typically save to the default filename unless you are experimenting with different configurations.

The guiconfig interface will also prompt for saving the configuration on exit if it has been modi-
fied.

Note: The configuration file used during the build is always zephyr/ . config. If you have another
saved configuration that you want to build with, copy it to zephyr/ . config. Make sure to back up
your original configuration file.

Also note that filenames starting with . are not listed by 1s by default on Linux and macOS. Use
the -a flag to see them.

Finding a symbol in the menu tree and navigating to it can be tedious. To jump directly to a symbol, press
the / key (this also works in guiconfig). This brings up the following dialog, where you can search for
symbols by name and jump to them. In guiconfig, you can also change symbol values directly within
the dialog.

If you jump to a symbol that isn’t currently visible (e.g., due to having unsatisfied dependencies), then
show-all mode will be enabled. In show-all mode, all symbols are displayed, including currently invisible
symbols. To turn off show-all mode, press A in menuconfig or Ctrl-A in guiconfig.

Note: Show-all mode can’t be turned off if there are no visible items in the current menu.

To figure out why a symbol you jumped to isn’t visible, inspect its dependencies, either by pressing ?
in menuconfig or in the information pane at the bottom in guiconfig. If you discover that the symbol
depends on another symbol that isn’t enabled, you can jump to that symbol in turn to see if it can be
enabled.

96 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.5

Edit

watchdogl

IWDG STM32(=n) "Independent Watchdog (IWDG) Driver for STM32 family of MCUs"
WDOG_CMSDK_APB(=n) "CMSDK APB Watchdog Driver for ARM family of MCUs"
WDOG_CMSDK_APB_START AT BOOT(=n) "Start Watchdog during boot"

WDT _© NAME(=WATCHDOG 0) "Watchdog driver instance name"

WDT_ESP32(=n) "ESP32 Watchdog (WDT) Driver"

WDT_ESP32 _IRQ(=) "IRQ line for watchdog interrupt"

WDT QMSI(=n) "QMSI Watchdog driver"

WDT SAM(=n) "Atmel SAM MCU Family Watchdog (WDT) Driver"

WDT SAMO(=n) "Atmel SAMO series Watchdog (WDT) Driver"

l<choice> "Max compiled-in log level for watchdog"

!ype text to narrow the search. Regexes are supported (via Python's 're'
odule). The up/down cursor keys step in the list. [Enter] jumps to the

selected symbol. [ESC] aborts the search. Type multiple space-separated
strings/regexes to find entries that match all of them. Type Ctrl-F to
view the help of the selected item without leaving the dialog.

save Saveas.. | Saveminimal (advanced).. | Open.. Jump to...

[Show name

Jump to symbol/choice/menu/comment

(Top) -> Device L ype one or more strings/regexes and press Enter to list items that match all
b General Kemel of them. Python's regex flavor is used (see the 're' module). Double-clicking
- Device Drivers an item will jump to it. Item values can be toggled directly within the dialog.

[liEee 802.
< Econsole ¢ |watchdog || search

~g [IWatchdog Support WATCHDOG
g -I-CMSDK APB Watchdog Driver for ARM fam WDOG_CMSDK_APB

J -i-Start Watchdog during boot (NEW) WDOG_CMSDK_APB_START_AT_BOOT
e \Watchdog driver instance name (NEW): ~ WDT_0_NAME
§ -I-ESP32 Watchdog (WDT) Driver (NEW) WDT_ESP32
b[Xlserial Dril () IRQ line for watchdog interrupt (NEW) ~ WDT_ESP32_IRQ
--QMsI Watchdog driver (NEW) WDT_QMs!

UART_PIPE_ON D -\-Atmel SAM MCU Family Watchdog (WDT) | WDT_SAM

L

This option SpeIDG_STM32
for pipe UART.
Enable IWDG driver for STM32 line of MCUs
Direct depender
UART PIPEIDirect dependencies (=n):
& CONSOLE(=) s0C_FAMILY STM32(undefined/n)
& WATCHDOG(=n)

Defaults:
Bt Kconfig definition, with propagated dependencies

At drivers/watchdog/Kconfig.stn32:9

Jump to selected item

5.2. Configuration System (Kconfig) 97

Zephyr Project Documentation, Release 2.7.5

Note: In menuconfig, you can press Ctrl-F to view the help of the currently selected item in the
jump-to dialog without leaving the dialog.

For more information on menuconfig and guiconfig, see the Python docstrings at the top of menucon-
fig.py and guiconfig.py.

5.2.2 Setting Kconfig configuration values

The menuconfig and guiconfig interfaces can be used to test out configurations during application devel-
opment. This page explains how to make settings permanent.

An auto-generated list of all Kconfig options can be found in the Kconfig symbol reference.

Note: Before making changes to Kconfig files, it’s a good idea to also go through the Kconfig - Tips and
Best Practices page.

Visible and invisible Kconfig symbols
When making Kconfig changes, it’s important to understand the difference between visible and invisible
symbols.

* A visible symbol is a symbol defined with a prompt. Visible symbols show up in the interactive
configuration interfaces (hence visible), and can be set in configuration files.

Here’s an example of a visible symbol:

config FPU
bool "Support floating point operations"
depends on HAS_FPU

The symbol is shown like this in menuconfig, where it can be toggled:

[1 Support floating point operations

* Aninvisible symbol is a symbol without a prompt. Invisible symbols are not shown in the interactive
configuration interfaces, and users have no direct control over their value. They instead get their
value from defaults or from other symbols.

Here’s an example or an invisible symbol:

config CPU_HAS_FPU
bool
help
This symbol is y if the CPU has a hardware floating point unit.

In this case, CPU_HAS_FPU is enabled through other symbols having select CPU_HAS_FPU.

Setting symbols in configuration files

Visible symbols can be configured by setting them in configuration files. The initial configuration is
produced by merging a *_defconfig file for the board with application settings, usually from prj.conf.
See The Initial Configuration below for more details.

Assignments in configuration files use this syntax:

98 Chapter 5. Build and Configuration Systems

https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/menuconfig.py
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/menuconfig.py
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/guiconfig.py

Zephyr Project Documentation, Release 2.7.5

CONFIG_<symbol name>=<value>

There should be no spaces around the equals sign.

bool symbols can be enabled or disabled by setting them to y or n, respectively. The FPU symbol from
the example above could be enabled like this:

CONFIG_FPU=y

Note: A boolean symbol can also be set to n with a comment formatted like this:

CONFIG_SOME_OTHER_BOOL is not set

This is the format you will see in the merged configuration in zephyr/.config.

This style is accepted for historical reasons: Kconfig configuration files can be parsed as makefiles (though
Zephyr doesn’t use this). Having n-valued symbols correspond to unset variables simplifies tests in Make.

Other symbol types are assigned like this:

CONFIG_SOME_STRING="cool value"
CONFIG_SOME_INT=123

Comments use a #:

This is a comment

Assignments in configuration files are only respected if the dependencies for the symbol are satisfied.
A warning is printed otherwise. To figure out what the dependencies of a symbol are, use one of the
interactive configuration interfaces (you can jump directly to a symbol with /), or look up the symbol in
the Kconfig symbol reference.

The Initial Configuration
The initial configuration for an application comes from merging configuration settings from three
sources:

1. A BOARD-specific configuration file stored in boards/<architecture>/<BOARD>/
<BOARD>_defconfig

2. Any CMake cache entries prefix with CONFIG_
3. The application configuration
The application configuration can come from the sources below. By default, prj.conf is used.

1. If CONF_FILE is set, the configuration file(s) specified in it are merged and used as the application
configuration. CONF_FILE can be set in various ways:

1. In CMakeLists.txt, before calling find_package (Zephyr)
2. By passing -DCONF_FILE=<conf file(s)>, either directly or via west
3. From the CMake variable cache

2. Otherwise if CONF_FILE is set, and a single configuration file of the form prj_<build>.conf is
used, then if file boards/<BOARD>_<build>.conf exists in same folder as file prj_<build>.conf,
the result of merging prj_<build>.conf and boards/<BOARD>_<build>.conf is used.

3. Otherwise, prj_<BOARD>.conf is used if it exists in the application directory.

4. Otherwise, if boards/<BOARD>. conf exists in the application directory, the result of merging it with
prj.conf is used.

5.2. Configuration System (Kconfig) 99

Zephyr Project Documentation, Release 2.7.5

5. Otherwise, if board revisions are used and boards/<BOARD>_<revision>.conf exists in the appli-
cation directory, the result of merging it with prj.conf and boards/<BOARD>.conf is used.

6. Otherwise, prj.conf is used if it exists in the application directory

If a symbol is assigned both in <BOARD>_defconfig and in the application configuration, the value set in
the application configuration takes precedence.

The merged configuration is saved to zephyr/.config in the build directory.

As long as zephyr/.config exists and is up-to-date (is newer than any BOARD and application configu-
ration files), it will be used in preference to producing a new merged configuration. zephyr/.config is
also the configuration that gets modified when making changes in the interactive configuration interfaces.

Configuring invisible Kconfig symbols

When making changes to the default configuration for a board, you might have to configure invisible
symbols. This is done in boards/<architecture>/<BOARD>/Kconfig.defconfig, which is a regular
Kconfig file.

Note: Assignments in .config files have no effect on invisible symbols, so this scheme is not just an
organizational issue.

Assigning values in Kconfig.defconfig relies on defining a Kconfig symbol in multiple locations. As an
example, say we want to set FOO_WIDTH below to 32:

config FOO_WIDTH
int

To do this, we extend the definition of FOO_WIDTH as follows, in Kconfig.defconfig:

if BOARD_MY_BOARD

config FOO_WIDTH
default 32

endif

Note: Since the type of the symbol (int) has already been given at the first definition location, it does
not need to be repeated here. Only giving the type once at the “base” definition of the symbol is a good
idea for reasons explained in Common Kconfig shorthands.

default values in Kconfig.defconfig files have priority over default values given on the “base” defini-
tion of a symbol. Internally, this is implemented by including the Kconfig.defconfig files first. Kconfig
uses the first default with a satisfied condition, where an empty condition corresponds to if y (is
always satisfied).

Note that conditions from surrounding top-level ifs are propagated to symbol properties, so the above
default is equivalent to default 32 if BOARD_MY_BOARD.

Warning: When defining a symbol in multiple locations, dependencies are ORed together rather
than ANDed together. It is not possible to make the dependencies of a symbol more restrictive by
defining it in multiple locations.

For example, the direct dependencies of the symbol below becomes DEP1 || DEP2:

100 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.5

config FOO
depends on DEP1
config FOO

depends on DEP2

When making changes to Kconfig.defconfig files, always check the symbol’s direct dependencies in
one of the interactive configuration interfaces afterwards. It is often necessary to repeat dependencies
from the base definition of the symbol to avoid weakening a symbol’s dependencies.

Motivation for Kconfig.defconfig files One motivation for this configuration scheme is to avoid mak-
ing fixed BOARD-specific settings configurable in the interactive configuration interfaces. If all board
configuration were done via <BOARD>_defconfig, all symbols would have to be visible, as values given
in <BOARD>_defconfig have no effect on invisible symbols.

Having fixed settings be user-configurable would clutter up the configuration interfaces and make them
harder to understand, and would make it easier to accidentally create broken configurations.

When dealing with fixed board-specific settings, also consider whether they should be handled via de-
vicetree instead.

Configuring choices There are two ways to configure a Kconfig choice:
1. By setting one of the choice symbols to y in a configuration file.
Setting one choice symbol to y automatically gives all other choice symbols the value n.

If multiple choice symbols are set to y, only the last one set to y will be honored (the rest will get
the value n). This allows a choice selection from a board defconfig file to be overridden from an
application prj.conf file.

2. By changing the default of the choice in Kconfig.defconfig.

As with symbols, changing the default for a choice is done by defining the choice in multiple
locations. For this to work, the choice must have a name.

As an example, assume that a choice has the following base definition (here, the name of the choice
is F00):

choice F0O
bool "Foo choice"
default B

config A
bool "A"

config B
bool "B"

endchoice

To change the default symbol of FOO to A, you would add the following definition to Kconfig.
defconfig:

choice FOO
default A
endchoice

5.2. Configuration System (Kconfig) 101

Zephyr Project Documentation, Release 2.7.5

The Kconfig.defconfig method should be used when the dependencies of the choice might not be
satisfied. In that case, you’re setting the default selection whenever the user makes the choice visible.

More Kconfig resources The Kconfig - Tips and Best Practices page has some tips for writing Kconfig
files.

The kconfiglib.py docstring docstring (at the top of the file) goes over how symbol values are calculated
in detail.

5.2.3 Kconfig - Tips and Best Practices

This page covers some Kconfig best practices and explains some Kconfig behaviors and features that
might be cryptic or that are easily overlooked.

Note: The official Kconfig documentation is kconfig-language.rst and kconfig-macro-language.rst.

* What to turn into Kconfig options

* What not to turn into Kconfig options
— Options enabling individual devices
— Options that specify a device in the system by name
— Options that specify fixed hardware configuration

* select statements

select pitfalls

Alternatives to select

Using select for helper symbols

select recommendations

* (Lack of) conditional includes
* “Stuck” symbols in menuconfig and guiconfig
* Assignments to promptless symbols in configuration files
* depends onand string/int/hez symbols
* menuconfig symbols
* Checking changes in menuconfig/guiconfig
* Checking changes with scripts/kconfig/lint.py
* Style recommendations and shorthands
— Factoring out common dependencies
— Redundant defaults
— Common Kconfig shorthands
— Prompt strings
— Header comments and other nits

* Lesser-known/used Kconfig features

— The imply statement

102 Chapter 5. Build and Configuration Systems

https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/kconfiglib.py
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html
https://www.kernel.org/doc/html/latest/kbuild/kconfig-macro-language.html

Zephyr Project Documentation, Release 2.7.5

— Optional prompts
— Optional choices

- visible 4f conditions

e Other resources

What to turn into Kconfig options

When deciding whether something belongs in Kconfig, it helps to distinguish between symbols that have
prompts and symbols that don’t.

If a symbol has a prompt (e.g. bool "Enable foo"), then the user can change the symbol’s value
in the menuconfig or guiconfig interface (see Interactive Kconfig interfaces), or by manually editing
configuration files. Conversely, a symbol without a prompt can never be changed directly by the user,
not even by manually editing configuration files.

Only put a prompt on a symbol if it makes sense for the user to change its value.

Symbols without prompts are called hidden or invisible symbols, because they don’t show up in
menuconfig and guiconfig. Symbols that have prompts can also be invisible, when their dependen-
cies are not satisfied.

Symbols without prompts can’t be configured directly by the user (they derive their value from other
symbols), so less restrictions apply to them. If some derived setting is easier to calculate in Kconfig than
e.g. during the build, then do it in Kconfig, but keep the distinction between symbols with and without
prompts in mind.

See the optional prompts section for a way to deal with settings that are fixed on some machines and
configurable on other machines.

What not to turn into Kconfig options

In Zephyr, Kconfig configuration is done after selecting a target board. In general, it does not make sense
to use Kconfig for a value that corresponds to a fixed machine-specific setting. Usually, such settings
should be handled via devicetree instead.

In particular, avoid adding new Kconfig options of the following types:

Options enabling individual devices Existing examples like CONFIG_I2C_0 and CONFIG_I2C_1 were
introduced before Zephyr supported devicetree, and new cases are discouraged. See Write device drivers
using devicetree APIs for details on how to do this with devicetree instead.

Options that specify a device in the system by name For example, if you are writing an 12C device
driver, avoid creating an option named MY_DEVICE_I2C_BUS_NAME for specifying the bus node your device
is controlled by. See Device drivers that depend on other devices for alternatives.

Similarly, if your application depends on a hardware-specific PWM device to control an RGB LED, avoid
creating an option like MY_PWM_DEVICE_NAME. See Applications that depend on board-specific devices for
alternatives.

Options that specify fixed hardware configuration For example, avoid Kconfig options specifying a
GPIO pin.

An alternative applicable to device drivers is to define a GPIO specifier with type phandle-array in the
device binding, and using the GPIO devicetree API from C. Similar advice applies to other cases where

5.2. Configuration System (Kconfig) 103

Zephyr Project Documentation, Release 2.7.5

devicetree.h provides Hardware specific APIs for referring to other nodes in the system. Search the source
code for drivers using these APIs for examples.

An application-specific devicetree binding to identify board specific properties may be appropriate. See
tests/drivers/gpio/gpio basic_api for an example.

For applications, see blinky-sample for a devicetree-based alternative.

select statements

The select statement is used to force one symbol to y whenever another symbol is y. For example, the
following code forces CONSOLE to y whenever USB_CONSOLE is y:

config CONSOLE
bool "Console support"

config USB_CONSOLE
bool "USB console support"
select CONSOLE

This section covers some pitfalls and good uses for select.

select pitfalls select might seem like a generally useful feature at first, but can cause configuration
issues if overused.

For example, say that a new dependency is added to the CONSOLE symbol above, by a developer who is
unaware of the USB_CONSOLE symbol (or simply forgot about it):

config CONSOLE
bool "Console support"
depends on STRING_ROUTINES

Enabling USB_CONSOLE now forces CONSOLE to y, even if STRING_ROUTINES is n.
To fix the problem, the STRING_ROUTINES dependency needs to be added to USB_CONSOLE as well:

config USB_CONSOLE
bool "USB console support"
select CONSOLE
depends on STRING_ROUTINES

config STRING_ROUTINES
bool "Include string routines"
More insidious cases with dependencies inherited from if and menu statements are common.

An alternative attempt to solve the issue might be to turn the depends on into another select:

config CONSOLE
bool "Console support"
select STRING_ROUTINES

config USB_CONSOLE

(continues on next page)

104 Chapter 5. Build and Configuration Systems

https://github.com/zephyrproject-rtos/zephyr/blob/main/tests/drivers/gpio/gpio_basic_api

Zephyr Project Documentation, Release 2.7.5

(continued from previous page)

bool "USB console support"
select CONSOLE

In practice, this often amplifies the problem, because any dependencies added to STRING_ROUTINES now
need to be copied to both CONSOLE and USB_CONSOLE.

In general, whenever the dependencies of a symbol are updated, the dependencies of all symbols that
(directly or indirectly) select it have to be updated as well. This is very often overlooked in practice,
even for the simplest case above.

Chains of symbols selecting each other should be avoided in particular, except for simple helper symbols,
as covered below in Using select for helper symbols.

Liberal use of select also tends to make Kconfig files harder to read, both due to the extra dependencies
and due to the non-local nature of select, which hides ways in which a symbol might get enabled.

Alternatives to select For the example in the previous section, a better solution is usually to turn the
select into a depends on:

config CONSOLE
bool "Console support"

config USB_CONSOLE
bool "USB console support"
depends on CONSOLE

This makes it impossible to generate an invalid configuration, and means that dependencies only ever
have to be updated in a single spot.

An objection to using depends on here might be that configuration files that enable USB_CONSOLE now
also need to enable CONSOLE:

CONFIG_CONSOLE=y
CONFIG_USB_CONSOLE=y

This comes down to a trade-off, but if enabling CONSOLE is the norm, then a mitigation is to make CONSOLE
default to y:

config CONSOLE
bool "Console support"
default y

This gives just a single assignment in configuration files:

CONFIG_USB_CONSOLE=y

Note that configuration files that do not want CONSOLE enabled now have to explicitly disable it:

CONFIG_CONSOLE=n

Using select for helper symbols A good and safe use of select is for setting “helper” symbols that
capture some condition. Such helper symbols should preferably have no prompt or dependencies.

For example, a helper symbol for indicating that a particular CPU/SoC has an FPU could be defined as
follows:

5.2. Configuration System (Kconfig) 105

Zephyr Project Documentation, Release 2.7.5

config CPU_HAS_FPU

bool
help
If y, the CPU has an FPU

config SOC_F0OO

bool "FOO SoC"
select CPU_HAS_FPU

config SOC_BAR

bool "BAR SoC"
select CPU_HAS_FPU

This makes it possible for other symbols to check for FPU support in a generic way, without having to
look for particular architectures:

config FPU

bool "Support floating point operations"
depends on CPU_HAS_FPU

The alternative would be to have dependencies like the following, possibly duplicated in several spots:

config FPU

bool "Support floating point operations"
depends on SOC_FOO || SOC_BAR ||

Invisible helper symbols can also be useful without select. For example, the following code defines a
helper symbol that has the value y if the machine has some arbitrarily-defined “large” amount of memory:

config LARGE_MEM

def_bool MEM_SIZE >= 64

Note: This is short for the following:

config LARGE_MEM
bool
default MEM_SIZE >= 64

select recommendations In summary, here are some recommended practices for select:

* Avoid selecting symbols with prompts or dependencies. Prefer depends on. If depends on causes

annoying bloat in configuration files, consider adding a Kconfig default for the most common value.

Rare exceptions might include cases where you're sure that the dependencies of the selecting and
selected symbol will never drift out of sync, e.g. when dealing with two simple symbols defined
close to one another within the same if.

Common sense applies, but be aware that select often causes issues in practice. depends on is
usually a cleaner and safer solution.

Select simple helper symbols without prompts and dependencies however much you like. They’re
a great tool for simplifying Kconfig files.

106

Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.5

(Lack of) conditional includes

if blocks add dependencies to each item within the if, as if depends on was used.

A common misunderstanding related to if is to think that the following code conditionally includes the
file Kconfig.other:

if DEP
source "Kconfig.other"
endif

In reality, there are no conditional includes in Kconfig. if has no special meaning around a source.

Note: Conditional includes would be impossible to implement, because if conditions may contain
(either directly or indirectly) forward references to symbols that haven’t been defined yet.

Say that Kconfig. other above contains this definition:

config FOO
bool "Support foo"

In this case, FOO will end up with this definition:

config FOO
bool "Support foo"
depends on DEP

Note that it is redundant to add depends on DEP to the definition of FOO in Kconfig. other, because the
DEP dependency has already been added by if DEP.

In general, try to avoid adding redundant dependencies. They can make the structure of the Kconfig
files harder to understand, and also make changes more error-prone, since it can be hard to spot that the
same dependency is added twice.

“Stuck” symbols in menuconfig and guiconfig

There is a common subtle gotcha related to interdependent configuration symbols with prompts. Con-
sider these symbols:

config FOO
bool "Foo"

config STACK_SIZE
hex "Stack size"
default 0x200 if F0O
default 0x100

Assume that the intention here is to use a larger stack whenever FOO is enabled, and that the configuration
initially has FOO disabled. Also, remember that Zephyr creates an initial configuration in zephyr/.config
in the build directory by merging configuration files (including e.g. prj.conf). This configuration file
exists before menuconfig or guiconfig is run.

When first entering the configuration interface, the value of STACK_SIZE is 0x100, as expected. After
enabling FOO, you might reasonably expect the value of STACK_SIZE to change to 0x200, but it stays as
0x100.

To understand what’s going on, remember that STACK_SIZE has a prompt, meaning it is user-
configurable, and consider that all Kconfig has to go on from the initial configuration is this:

5.2. Configuration System (Kconfig) 107

Zephyr Project Documentation, Release 2.7.5

CONFIG_STACK_SIZE=0x100

Since Kconfig can’t know if the 0x100 value came from a default or was typed in by the user, it has to
assume that it came from the user. Since STACK_SIZE is user-configurable, the value from the configura-
tion file is respected, and any symbol defaults are ignored. This is why the value of STACK_SIZE appears
to be “frozen” at 0x100 when toggling FOO.

The right fix depends on what the intention is. Here’s some different scenarios with suggestions:

* If STACK_SIZE can always be derived automatically and does not need to be user-configurable, then
just remove the prompt:

config STACK_SIZE
hex
default 0x200 if FOO
default 0x100

Symbols without prompts ignore any value from the saved configuration.

* If STACK_SIZE should usually be user-configurable, but needs to be set to 0x200 when FQO is
enabled, then disable its prompt when F0OO is enabled, as described in optional prompts:

config STACK_SIZE
hex "Stack size" if !FOO
default 0x200 if FOO
default 0x100

* If STACK_SIZE should usually be derived automatically, but needs to be set to a custom value in
rare circumstances, then add another option for making STACK_SIZE user-configurable:

config CUSTOM_STACK_SIZE
bool "Use a custom stack size"
help
Enable this if you need to use a custom stack size. When disabled, a
suitable stack size is calculated automatically.

config STACK_SIZE
hex "Stack size" if CUSTOM_STACK_SIZE
default 0x200 if FOO
default 0x100

As long as CUSTOM_STACK_SIZE is disabled, STACK_SIZE will ignore the value from the saved con-
figuration.

It is a good idea to try out changes in the menuconfig or guiconfig interface, to make sure that things
behave the way you expect. This is especially true when making moderately complex changes like these.

Assignments to promptless symbols in configuration files

Assignments to hidden (promptless, also called invisible) symbols in configuration files are always ig-
nored. Hidden symbols get their value indirectly from other symbols, via e.g. default and select.

A common source of confusion is opening the output configuration file (zephyr/.config), seeing a
bunch of assignments to hidden symbols, and assuming that those assignments must be respected when
the configuration is read back in by Kconfig. In reality, all assignments to hidden symbols in zephyr/ .
config are ignored by Kconfig, like for other configuration files.

To understand why zephyr/ . config still includes assignments to hidden symbols, it helps to realize that
zephyr/.config serves two separate purposes:

1. It holds the saved configuration, and

108 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.5

2. it holds configuration output. zephyr/.config is parsed by the CMake files to let them query
configuration settings, for example.

The assignments to hidden symbols in zephyr/.config are just configuration output. Kconfig itself
ignores assignments to hidden symbols when calculating symbol values.

Note: A minimal configuration, which can be generated from within the menuconfig and guiconfig
interfaces, could be considered closer to just a saved configuration, without the full configuration output.

depends on and string/int/hex symbols

depends on works not just for bool symbols, but also for string, int, and hex symbols (and for choices).

The Kconfig definitions below will hide the FOO_DEVICE_FREQUENCY symbol and disable any configuration
output for it when FOO_DEVICE is disabled.

config FOO_DEVICE
bool "Foo device"

config FOO_DEVICE_FREQUENCY
int "Foo device frequency"
depends on FOO_DEVICE

In general, it's a good idea to check that only relevant symbols are ever shown in the
menuconfig/guiconfig interface. Having FOO_DEVICE_FREQUENCY show up when FOO_DEVICE is dis-
abled (and possibly hidden) makes the relationship between the symbols harder to understand, even if
code never looks at FOO_DEVICE_FREQUENCY when FOO_DEVICE is disabled.

menuconfig symbols

If the definition of a symbol FOO is immediately followed by other symbols that depend on FOOQ, then
those symbols become children of FOO. If FOO is defined with config FOO, then the children are shown
indented relative to FOO. Defining FOO with menuconfig FOO instead puts the children in a separate menu
rooted at FOO.

menuconfig has no effect on evaluation. It’s just a display option.

menuconfig can cut down on the number of menus and make the menu structure easier to navigate. For
example, say you have the following definitions:

menu "Foo subsystem"

config FOO_SUBSYSTEM
bool "Foo subsystem"

if FOO_SUBSYSTEM

config FOO_FEATURE_1
bool "Foo feature 1"

config FOO_FEATURE_2
bool "Foo feature 2"

config FOO_FREQUENCY
int "Foo frequency"

(continues on next page)

5.2. Configuration System (Kconfig) 109

Zephyr Project Documentation, Release 2.7.5

(continued from previous page)

. lots of other FOO-related symbols
endif # FOO_SUBSYSTEM
endmenu

In this case, it’s probably better to get rid of the menu and turn FOO_SUBSYSTEM into a menuconfig symbol:

menuconfig FOO_SUBSYSTEM
bool "Foo subsystem"

if FOO_SUBSYSTEM

config FOO_FEATURE_1
bool "Foo feature 1"

config FOO_FEATURE_2
bool "Foo feature 2"

config FOO_FREQUENCY
int "Foo frequency"

. lots of other FOO-related symbols
endif # FOO_SUBSYSTEM

In the menuconfig interface, this will be displayed as follows:

[*] Foo subsystem --->

Note that making a symbol without children a menuconfig is meaningless. It should be avoided, because
it looks identical to a symbol with all children invisible:

[*] I have no children ----
[*] All my children are invisible ----

Checking changes in menuconfig/guiconfig

When adding new symbols or making other changes to Kconfig files, it is a good idea to look up the
symbols in menuconfig or guiconfig afterwards. To get to a symbol quickly, use the jump-to feature (press
/).

Here are some things to check:

* Are the symbols placed in a good spot? Check that they appear in a menu where they make sense,
close to related symbols.

If one symbol depends on another, then it’s often a good idea to place it right after the symbol it
depends on. It will then be shown indented relative to the symbol it depends on in the menuconfig
interface, and in a separate menu rooted at the symbol in guiconfig. This also works if several
symbols are placed after the symbol they depend on.

* Is it easy to guess what the symbols do from their prompts?
* If many symbols are added, do all combinations of values they can be set to make sense?

For example, if two symbols FOO_SUPPORT and NO_FOO_SUPPORT are added, and both can be enabled
at the same time, then that makes a nonsensical configuration. In this case, it’s probably better to
have a single FOO_SUPPORT symbol.

110 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.5

* Are there any duplicated dependencies?

This can be checked by selecting a symbol and pressing ? to view the symbol information. If

there are duplicated dependencies, then use the Included via

information to figure out where they come from.

Checking changes with scripts/kconfig/lint.py

... path shown in the symbol

After you make Kconfig changes, you can use the scripts/kconfig/lint.py script to check for some potential
issues, like unused symbols and symbols that are impossible to enable. Use --help to see available

options.

Some checks are necessarily a bit heuristic, so a symbol being flagged by a check does not neces-
sarily mean there’s a problem. If a check returns a false positive e.g. due to token pasting in C

(CONFIG_FOO_##index##_BAR), just ignore it.

When investigating an unknown symbol FOO_BAR, it is a good idea to run git grep FOO_BAR to look for
references. It is also a good idea to search for some components of the symbol name with e.g. git grep

FOO and git grep BAR, as it can help uncover token pasting.

Style recommendations and shorthands

This section gives some style recommendations and explains some common Kconfig shorthands.

Factoring out common dependencies If a sequence of symbols/choices share a common dependency,

the dependency can be factored out with an if.

As an example, consider the following code:

config FOO
bool "Foo"
depends on DEP

config BAR
bool "Bar"
depends on DEP
choice
prompt "Choice"
depends on DEP

config BAZ
bool "Baz"

config QAZ
bool "Qaz"

endchoice

Here, the DEP dependency can be factored out like this:

if DEP

config FOO
bool "Foo"

config BAR

(continues on next page)

5.2. Configuration System (Kconfig)

111

https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/lint.py

Zephyr Project Documentation, Release 2.7.5

(continued from previous page)
bool "Bar"

choice
prompt "Choice"

config BAZ
bool "Baz"

config QAZ
bool "Qaz"

endchoice

endif # DEP

Note: Internally, the second version of the code is transformed into the first.

If a sequence of symbols/choices with shared dependencies are all in the same menu, the dependency
can be put on the menu itself:

menu "Foo features"
depends on FOO_SUPPORT

config FOO_FEATURE_1
bool "Foo feature 1"

config FOO_FEATURE_2
bool "Foo feature 2"

endmenu

If FOO_SUPPORT is n, the entire menu disappears.

Redundant defaults bool symbols implicitly default to n, and string symbols implicitly default to the
empty string. Therefore, default n and default "" are (almost) always redundant.

The recommended style in Zephyr is to skip redundant defaults for bool and string symbols. That
also generates clearer documentation: (Implicitly defaults to n instead of n if <dependencies, possibly
inherited>).

Note: The one case where default n/default "" is not redundant is when defining a symbol in
multiple locations and wanting to override e.g. a default y on a later definition.

Defaults should always be given for int and hex symbols, however, as they implicitly default to the empty
string. This is partly for compatibility with the C Kconfig tools, though an implicit 0 default might be less
likely to be what was intended compared to other symbol types as well.

Common Kconfig shorthands Kconfig has two shorthands that deal with prompts and defaults.

* <type> "prompt" is a shorthand for giving a symbol/choice a type and a prompt at the same time.
These two definitions are equal:

config FOO
bool "foo"

112 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.5

config FOO
bool
prompt "foo"

The first style, with the shorthand, is preferred in Zephyr.

* def_<type> <value> is a shorthand for giving a type and a value at the same time. These two
definitions are equal:

config FOO
def_bool BAR && BAZ

config FOO
bool
default BAR && BAZ

Using both the <type> "prompt" and the def_<type> <value> shorthand in the same definition is
redundant, since it gives the type twice.

The def_<type> <value> shorthand is generally only useful for symbols without prompts, and some-
what obscure.

Note: For a symbol defined in multiple locations (e.g., in a Kconfig.defconfig file in Zephyr), it is
best to only give the symbol type for the “base” definition of the symbol, and to use default (instead
of def_<type> value) for the remaining definitions. That way, if the base definition of the symbol
is removed, the symbol ends up without a type, which generates a warning that points to the other
definitions. That makes the extra definitions easier to discover and remove.

Prompt strings For a Kconfig symbol that enables a driver/subsystem FOO, consider having just “Foo”
as the prompt, instead of “Enable Foo support” or the like. It will usually be clear in the context of an
option that can be toggled on/off, and makes things consistent.

Header comments and other nits A few formatting nits, to help keep things consistent:

* Use this format for any header comments at the top of Kconfig files:

<Overview of symbols defined in the file, preferably in plain English>
(Blank line)
Copyright (c) 2019 ...
SPDX-License-Identifier: <License>
(Blank line)
(Kconfig definitions)
* Format comments as # Comment rather than #Comment
* Put a blank line before/after each top-level if and endif
* Use a single tab for each indentation

* Indent help text with two extra spaces

Lesser-known/used Kconfig features

This section lists some more obscure Kconfig behaviors and features that might still come in handy.

5.2. Configuration System (Kconfig) 113

Zephyr Project Documentation, Release 2.7.5

The imply statement The imply statement is similar to select, but respects dependencies and doesn’t
force a value. For example, the following code could be used to enable USB keyboard support by default
on the FOO SoC, while still allowing the user to turn it off:

config SOC_FOO
bool "FOO SoC"
imply USB_KEYBOARD

config USB_KEYBOARD
bool "USB keyboard support"

imply acts like a suggestion, whereas select forces a value.

Optional prompts A condition can be put on a symbol’s prompt to make it optionally configurable by
the user. For example, a value MASK that’s hardcoded to OxFF on some boards and configurable on others
could be expressed as follows:

config MASK
hex "Bitmask" if HAS_CONFIGURABLE_MASK
default OxFF

Note: This is short for the following:

config MASK
hex
prompt "Bitmask" if HAS_CONFIGURABLE_MASK
default OxFF

The HAS_CONFIGURABLE_MASK helper symbol would get selected by boards to indicate that MASK is con-
figurable. When MASK is configurable, it will also default to OxFF.

Optional choices Defining a choice with the optional keyword allows the whole choice to be toggled
off to select none of the symbols:

choice
prompt "Use legacy protocol"
optional

config LEGACY_PROTOCOL_1
bool "Legacy protocol 1"

config LEGACY_PROTOCOL_2
bool "Legacy protocol 2"

endchoice

In the menuconfig interface, this will be displayed e.g. as [*] Use legacy protocol (Legacy
protocol 1) ---> where the choice can be toggled off to enable neither of the symbols.

visible if conditions Puttingavisible if condition on a menu hides the menu and all the symbols
within it, while still allowing symbol default values to kick in.

As a motivating example, consider the following code:

114 Chapter 5. Build and Configuration Systems

Zephyr Project Documentation, Release 2.7.5

menu "Foo subsystem"
depends on HAS_CONFIGURABLE_FOO

config FOO_SETTING_1
int "Foo setting 1"
default 1

config FOO_SETTING_2
int "Foo setting 2"
default 2

endmenu

When HAS_CONFIGURABLE_FOO0 is n, no configuration output is generated for FOO_SETTING_1 and
FOO_SETTING_2, as the code above is logically equivalent to the following code:

config FOO_SETTING_1
int "Foo setting 1"
default 1
depends on HAS_CONFIGURABLE_FOO

config FOO_SETTING_2
int "Foo setting 2"
default 2
depends on HAS_CONFIGURABLE_FOO

If we want the symbols to still get their default values even when HAS_CONFIGURABLE_FQO is n, but not
be configurable by the user, then we can use visible if instead:

menu "Foo subsystem"
visible if HAS_CONFIGURABLE_FOO

config FOO_SETTING_1
int "Foo setting 1"
default 1

config FOO_SETTING_2
int "Foo setting 2"
default 2

endmenu

This is logically equivalent to the following:

config FOO_SETTING_1
int "Foo setting 1" if HAS_CONFIGURABLE_FOO
default 1

config FOO_SETTING_2
int "Foo setting 2" if HAS_CONFIGURABLE_FO0O
default 2

Note: See the optional prompts section for the meaning of the conditions on the prompts.

When HAS_CONFIGURABLE is n, we now get the following configuration output for the symbols, instead
of no output:

5.2. Configuration System (Kconfig) 115

Zephyr Project Documentation, Release 2.7.5

CONFIG_FOO_SETTING_1=1
CONFIG_FOO_SETTING_2=2

Other resources

The Intro to symbol values section in the Kconfiglib docstring goes over how symbols values are calculated
in more detail.

5.2.4 Custom Kconfig Preprocessor Functions

Kconfiglib supports custom Kconfig preprocessor functions written in Python. These functions are defined
in scripts/kconfig/kconfigfunctions.py.

Note: The official Kconfig preprocessor documentation can be found here.

Most of the custom preprocessor functions are used to get devicetree information into Kconfig. For
example, the default value of a Kconfig symbol can be fetched from a devicetree reg property.

Devicetree-related Functions

The functions listed below are used to get devicetree information into Kconfig. See the Python docstrings
in scripts/kconfig/kconfigfunctions.py for detailed documentation.

The *_int version of each function returns the value as a decimal integer, while the *_hex version returns
a hexadecimal value starting with 0x.

$(dt_chosen_reg_addr_int,<property in /chosen>[,<index>,<unit>])
$(dt_chosen_reg_addr_hex,<property in /chosen>[,<index>,<unit>])
$(dt_chosen_reg_size_int,<property in /chosen>[,<index>,<unit>])
$(dt_chosen_reg_size_hex,<property in /chosen>[,<index>,<unit>])
$(dt_node_reg_addr_int,<node path>[,<index>,<unit>])
$(dt_node_reg_addr_hex,<node path>[,<index>,<unit>])
$(dt_node_reg_size_int,<node path>[,<index>,<unit>])
$(dt_node_reg_size_hex,<node path>[,<index>,<unit>])
$(dt_compat_enabled,<compatible string>)
$(dt_chosen_enabled,<property in /chosen>)
$(dt_node_has_bool_prop,<node path>,<prop>)
$(dt_node_has_prop,<node path>,<prop>)

Example Usage Assume that the devicetree for some board looks like this:

{

soc {
#address-cells = <1>;
#size-cells = <1>;

spi0: spi@10014000 {

compatible = "sifive,spiO";
reg = <0x10014000 0x1000 0x20010000 0x3c0900>;
reg-names = "control", "mem";

(continues on next page)

116 Chapter 5. Build and Configuration Systems

https://github.com/ulfalizer/Kconfiglib/blob/master/kconfiglib.py
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/kconfigfunctions.py
https://www.kernel.org/doc/html/latest/kbuild/kconfig-macro-language.html
https://github.com/zephyrproject-rtos/zephyr/blob/main/scripts/kconfig/kconfigfunctions.py

Zephyr Project Documentation, Release 2.7.5

(continued from previous page)

};
};

The second entry in reg in spi@1001400 (<0x20010000 0x3c0900>) corresponds to mem, and has the
address 0x20010000. This address can be inserted into Kconfig as follows:

config FLASH_BASE_ADDRESS
default $(dt_node_reg_addr_hex,/soc/spi@1001400,1)

After preprocessor expansion, this turns into the definition below:

config FLASH_BASE_ADDRESS
default 0x20010000

5.2.5 Kconfig extensions

Zephyr uses the Kconfiglib implementation of Kconfig, which includes some Kconfig extensions:

* Environment variables in source statements are expanded directly, meaning no “bounce” symbols
with option env="ENV_VAR" need to be defined.

Note: option env has been removed from the C tools as of Linux 4.18 as well.

The recommended syntax for referencing environment variables is $ (FO0) rather than $F00. This
uses the new Kconfig preprocessor. The $F00 syntax for expanding environment variables is only
supported for backwards compatibility.

* The source statement supports glob patterns and includes each matching file. A pattern is required
to match at least one file.

Consider the following example:

source "foo/bar/*/Kconfig"

If the pattern foo/bar/*/Kconfig matches the files foo/bar/baz/Kconfig and foo/bar/qaz/
Kconfig, the statement above is equivalent to the following two source statements:

source "foo/bar/baz/Kconfig"

source "foo/bar/qaz/Kconfig"

If no files match the pattern, an error is generated.

The wildcard patterns accepted are the same as for the Python glob module.

For cases where it’s okay for a pattern to match no files (or for a plain filename to not exist), a
separate osource (optional source) statement is available. osource is a no-op if no file matches.

Note: source and osource are analogous to include and -include in Make.

* An rsource statement is available for including files specified with a relative path. The path is
relative to the directory of the Kconfig file that contains the rsource statement.

As an example, assume that foo/Kconfig is the top-level Kconfig file, and that foo/bar/Kconfig
has the following statements:

5.2. Configuration System (Kconfig) 117

https://github.com/ulfalizer/Kconfiglib
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://raw.githubusercontent.com/torvalds/linux/master/Documentation/kbuild/kconfig-macro-language.txt
https://docs.python.org/3/library/glob.html

Zephyr Project Documentation, Release 2.7.5

source "qaz/Kconfigl"

rsource "qaz/Kconfig2"

This will include the two files foo/qaz/Kconfigl and foo/bar/qaz/Kconfig2.
rsource can be used to create Kconfig “subtrees” that can be moved around freely.
rsource also supports glob patterns.

A drawback of rsource is that it can make it harder to figure out where a file gets included, so only
use it if you need it.

¢ An orsource statement is available that combines osource and rsource.

For example, the following statement will include Kconfigl and Kconfig2 from the current direc-
tory (if they exist):

orsource "Kconfig[12]"
* def_int, def_hex, and def_string keywords are available, analogous to def_bool. These set the
type and add a default at the same time.

Users interested in optimizing their configuraion for security should refer to the Zephyr Security Guide’s
section on the Hardening Tool.

118 Chapter 5. Build and Configuration Systems

Chapter 6

Application Development

Note: In this document, we’ll assume your application directory is <home>/app, and that its build
directory is <home>/app/build. (These terms are defined in the following Overview.) On Linux/macOS,
<home> is equivalent to ~, whereas on Windows it’s userprofile’.

6.1 Overview

Zephyr’s build system is based on CMake.

The build system is application-centric, and requires Zephyr-based applications to initiate building the
kernel source tree. The application build controls the configuration and build process of both the appli-
cation and Zephyr itself, compiling them into a single binary.

Zephyr’s base directory hosts Zephyr’s own source code, its kernel configuration options, and its build
definitions.

The files in the application directory link Zephyr with the application. This directory contains all
application-specific files, such as configuration options and source code.

An application in its simplest form has the following contents:

<home>/app

CMakeLists.txt
prj.conf

src
L— main.c

These contents are:

* CMakelLists.txt: This file tells the build system where to find the other application files, and links
the application directory with Zephyr’s CMake build system. This link provides features supported
by Zephyr’s build system, such as board-specific kernel configuration files, the ability to run and
debug compiled binaries on real or emulated hardware, and more.

* Kernel configuration files: An application typically provides a Kconfig configuration file (usually
called prj.conf) that specifies application-specific values for one or more kernel configuration
options. These application settings are merged with board-specific settings to produce a kernel
configuration.

See Kconfig Configuration below for more information.

119

https://www.cmake.org

Zephyr Project Documentation, Release 2.7.5

* Application source code files: An application typically provides one or more application-specific
files, written in C or assembly language. These files are usually located in a sub-directory called
Src.

Once an application has been defined, you can use CMake to create project files for building it from a
directory where you want to host these files. This is known as the build directory. Application build
artifacts are always generated in a build directory; Zephyr does not support “in-tree” builds.

The following sections describe how to create, build, and run Zephyr applications, followed by more
detailed reference material.

6.2 Source Tree Structure

Understanding the Zephyr source tree can be helpful in locating the code associated with a particular
Zephyr feature.

At the top of the tree there are several files that are of importance:

CMakeLists.txt The top-level file for the CMake build system, containing a lot of the logic required to
build Zephyr.

Kconfig The top-level Kconfig file, which refers to the file Kconfig.zephyr also found at the top-level
directory.

See the Kconfig section of the manual for detailed Kconfig documentation.

west.yml The West (Zephyr’s meta-tool) manifest, listing the external repositories managed by the west
command-line tool.

The Zephyr source tree also contains the following top-level directories, each of which may have one or
more additional levels of subdirectories which are not described here.

arch Architecture-specific kernel and system-on-chip (SoC) code. Each supported architecture (for ex-
ample, x86 and ARM) has its own subdirectory, which contains additional subdirectories for the
following areas:

* architecture-specific kernel source files

* architecture-specific kernel include files for private APIs
soc SoC related code and configuration files.
boards Board related code and configuration files.

doc Zephyr technical documentation source files and tools used to generate the https://docs.
zephyrproject.org web content.

drivers Device driver code.

dts devicetree source files used to describe non-discoverable board-specific hardware details.
include Include files for all public APIs, except those defined under 1ib.

kernel Architecture-independent kernel code.

1ib Library code, including the minimal standard C library.

misc Miscellaneous code that doesn’t belong to any of the other top-level directories.
samples Sample applications that demonstrate the use of Zephyr features.

scripts Various programs and other files used to build and test Zephyr applications.

cmake Additional build scripts needed to build Zephyr.

subsys Subsystems of Zephyr, including:

¢ USB device stack code.

120 Chapter 6. Application Development

https://docs.zephyrproject.org
https://docs.zephyrproject.org

Zephyr Project Documentation, Release 2.7.5

* Networking code, including the Bluetooth stack and networking stacks.
* File system code.
* Bluetooth host and controller

tests Test code and benchmarks for Zephyr features.

share Additional architecture independent data. Currently containing Zephyr CMake package.

6.3 Example standalone application

A reference standalone application contained in its own Git repository can be found in the Example
Application repository. It can be used as a reference on how to structure out-of-tree, Zephyr-based
applications using the T2 star topology. It also demonstrates the out-of-tree use of features commonly
used in applications such as:

* Custom boards
* Custom devicetree bindings
* Custom drivers

* Continuous Integration (CI) setup

6.4 Creating an Application

Follow these steps to create a new application directory. (Refer to the Example Application repository
for a reference standalone application in its own Git repository or to samples-and-demos for existing
applications provided as part of Zephyr.)

1. Create an application directory on your workstation computer, outside of the Zephyr base directory.
Usually you’ll want to create it somewhere under your user’s home directory.

For example, in a Unix shell or Windows cmd. exe prompt, navigate to where you want to create
your application, then enter:

mkdir app

Warning: Building Zephyr or creating an application in a directory with spaces anywhere
on the path is not supported. So the Windows path C:\Users\YourName\app will work, but
C:\Users\Your Name\app will not.

2. It's recommended to place all application source code in a subdirectory named src. This makes it
easier to distinguish between project files and sources.

Continuing the previous example, enter:

cd app
mkdir src

3. Place your application source code in the src sub-directory. For this example, we’ll assume you
created a file named src/main.c.

4. Create a file named CMakeLists.txt in the app directory with the following contents:

6.3. Example standalone application 121

https://github.com/zephyrproject-rtos/example-application
https://github.com/zephyrproject-rtos/example-application
https://github.com/zephyrproject-rtos/example-application

Zephyr Project Documentation, Release 2.7.5

Find Zephyr. This also loads Zephyr's build system.
cmake_minimum_required (VERSION 3.13.1)
find_package(Zephyr)

project (my_zephyr_app)

Add your source file to the "app" target. This must come after
find_package(Zephyr) which defines the target.
target_sources(app PRIVATE src/main.c)

find_package (Zephyr) sets the minimum CMake version and pulls in the Zephyr build system,
which creates a CMake target named app (see Zephyr CMake Package). Adding sources to this
target is how you include them in the build.

Note: cmake_minimum_required() is also invoked by the Zephyr package. The most recent of the
two versions will be enforced by CMake.

5. Set Kconfig configuration options. See Kconfig Configuration.

6. Configure any devicetree overlays needed by your application. See Set devicetree overlays.

Note: include($ENV{ZEPHYR_BASE}/cmake/app/boilerplate.cmake NO_POLICY_SCOPE) is still sup-
ported for backward compatibility with older applications. Including boilerplate.cmake directly in
the sample still requires to run source zephyr-env.sh or execute zephyr-env.cmd before building the
application.

6.5 Setting Variables

6.5.1 Option 1: Just Once

To set the environment variable MY_VARIABLE to foo for the lifetime of your current terminal window:

Linux and macO0S
export MY_VARIABLE=foo

Windows
set MY_VARIABLE=foo

Warning: This is best for experimentation. If you close your terminal window, use another terminal
window or tab, restart your computer, etc., this setting will be lost forever.

Using options 2 or 3 is recommended if you want to keep using the setting.

6.5.2 Option 2: In all Terminals

macOS and Linux:

Add the export MY_VARIABLE=foo line to your shell’s startup script in your home directory. For Bash,
this is usually ~/.bashrc on Linux or ~/.bash_profile on macOS. Changes in these startup scripts don’t
affect shell instances already started; try opening a new terminal window to get the new settings.

Windows:

You can use the setx program in cmd.exe or the third-party RapidEE program.

122 Chapter 6. Application Development

Zephyr Project Documentation, Release 2.7.5

To use setx, type this command, then close the terminal window. Any new cmd . exe windows will have
MY_VARIABLE set to foo.

setx MY_VARIABLE foo

To install RapidEE, a freeware graphical environment variable editor, using Chocolatey in an Adminis-
trator command prompt:

choco install rapidee

You can then run rapidee from your terminal to launch the program and set environment variables.
Make sure to use the “User” environment variables area — otherwise, you have to run RapidEE as admin-
istrator. Also make sure to save your changes by clicking the Save button at top left before exiting.Settings
you make in RapidEE will be available whenever you open a new terminal window.

6.5.3 Option 3: Using zephyrrc files

Choose this option if you don’t want to make the variable’s setting available to all of your terminals, but
still want to save the value for loading into your environment when you are using Zephyr.

macOS and Linux:

Create a file named ~/.zephyrrc if it doesn’t exist, then add this line to it:

export MY_VARIABLE=foo

To get this value back into your current terminal environment, you must run source zephyr-env.sh
from the main zephyr repository. Among other things, this script sources ~/.zephyrrc.

The value will be lost if you close the window, etc.; run source zephyr-env.sh again to get it back.
Windows:

Add the line set MY_VARIABLE=foo to the file juserprofile)\zephyrrc.cmd using a text editor such as
Notepad to save the value.

To get this value back into your current terminal environment, you must run zephyr-env.cmd in a cmd.
exe window after changing directory to the main zephyr repository. Among other things, this script runs
%userprofile)\zephyrrc.cmd.

The value will be lost if you close the window, etc.; run zephyr-env.cmd again to get it back.
These scripts:
* set ZEPHYR_BASE (see below) to the location of the zephyr repository

* adds some Zephyr-specific locations (such as zephyr’s scripts directory) to your PATH environment
variable

* loads any settings from the zephyrrc files described above in Option 3: Using zephyrrc files.

You can thus use them any time you need any of these settings.

6.5.4 Option 4: Using Zephyr Build Configuration CMake package

Choose this option if you want to make those variable settings shared among all users of your project.

Using a Zephyr Build Configuration CMake package allows you to commit the shared settings into the
repository, so that all users can share them.

It also removes the need for running source zephyr-env.sh or zephyr-env.cmd when opening a new
terminal.

6.5. Setting Variables 123

https://chocolatey.org/packages/RapidEE

Zephyr Project Documentation, Release 2.7.5

6.6 Important Build System Variables

You can control the Zephyr build system using many variables. This section describes the most important
ones that every Zephyr developer should know about.

Note: The variables BOARD, CONF_FILE, and DTC_OVERLAY_FILE can be supplied to the build system in
3 ways (in order of precedence):

As a parameter to the west build or cmake invocation via the -D command-line switch. If you
have multiple overlay files, you should use quotations, "filel.overlay;file2.overlay"

As Setting Variables.
As a set (KVARIABLE> <VALUE>) statement in your CMakeLists.txt

ZEPHYR_BASE: Zephyr base variable used by the build system. find_package (Zephyr) will auto-
matically set this as a cached CMake variable. But ZEPHYR_BASE can also be set as an environment
variable in order to force CMake to use a specific Zephyr installation.

BOARD: Selects the board that the application’s build will use for the default configuration. See
boards for built-in boards, and Board Porting Guide for information on adding board support.

CONF_FILE: Indicates the name of one or more Kconfig configuration fragment files. Multiple file-
names can be separated with either spaces or semicolons. Each file includes Kconfig configuration
values that override the default configuration values.

See The Initial Configuration for more information.

OVERLAY_CONFIG: Additional Kconfig configuration fragment files. Multiple filenames can be sepa-
rated with either spaces or semicolons. This can be useful in order to leave CONF_FILE at its default
value, but “mix in” some additional configuration options.

DTC_OVERLAY_FILE: One or more devicetree overlay files to use. Multiple files can be separated
with semicolons. See Set devicetree overlays for examples and Introduction to devicetree for infor-
mation about devicetree and Zephyr.

ZEPHYR_MODULES: A CMake list containing absolute paths of additional directories with source code,
Kconfig, etc. that should be used in the application build. See Modules (External projects) for details.

6.7 Application CMakeLists.txt

Every application must have a CMakeLists.txt file. This file is the entry point, or top level, of the build
system. The final zephyr.elf image contains both the application and the kernel libraries.

This section describes some of what you can do in your CMakeLists.txt. Make sure to follow these
steps in order.

1.

If you only want to build for one board, add the name of the board configuration for your applica-
tion on a new line. For example:

set (BOARD gemu_x86)

Refer to boards for more information on available boards.

The Zephyr build system determines a value for BOARD by checking the following, in order (when
a BOARD value is found, CMake stops looking further down the list):

* Any previously used value as determined by the CMake cache takes highest precedence. This
ensures you don’t try to run a build with a different BOARD value than you set during the build
configuration step.

124

Chapter 6. Application Development

Zephyr Project Documentation, Release 2.7.5

* Any value given on the CMake command line (directly or indirectly via west build) using
-DBOARD=YOUR_BOARD will be checked for and used next.

 If an environment variable BOARD is set, its value will then be used.

* Finally, if you set BOARD in your application CMakeLists.txt as described in this step, this
value will be used.

2. If your application uses a configuration file or files other than the usual prj.conf (or
prj_YOUR_BOARD. conf, where YOUR_BOARD is a board name), add lines setting the CONF_FILE vari-
able to these files appropriately. If multiple filenames are given, separate them by a single space
or semicolon. CMake lists can be used to build up configuration fragment files in a modular way
when you want to avoid setting CONF_FILE in a single place. For example:

set (CONF_FILE "fragment_filel.conf")
list (APPEND CONF_FILE "fragment_file2.conf")
See The Initial Configuration for more information.

3. If your application uses devicetree overlays, you may need to set DTC OVERLAY FILE. See Set
devicetree overlays.

4. If your application has its own kernel configuration options, create a Kconfig file in the same
directory as your application’s CMakeLists.txt.

See the Kconfig section of the manual for detailed Kconfig documentation.

An (unlikely) advanced use case would be if your application has its own unique configuration
options that are set differently depending on the build configuration.

If you just want to set application specific values for existing Zephyr configuration options, refer
to the CONF_FILE description above.

Structure your Kconfig file like this:

SPDX-License-Identifier: Apache-2.0

mainmenu "Your Application Name"

Your application configuration options go here
Sources Kconfig.zephyr in the Zephyr root directory.
to the $srctree environment variable being set to $ZEPHYR_BASE). If you want
to 'source' relative to the current Kconfig file instead, use 'rsource’ (or a

path relative to the Zephyr root).
source "Kconfig.zephyr"

#
#
Note: ALl 'source' statements work relative to the Zephyr root directory (due
#
#
#

Note: Environment variables in source statements are expanded directly, so you do not need to
define an option env="ZEPHYR_BASE" Kconfig “bounce” symbol. If you use such a symbol, it must
have the same name as the environment variable.

See Kconfig extensions for more information.

The Kconfig file is automatically detected when placed in the application directory, but it is also
possible for it to be found elsewhere if the CMake variable KCONFIG_RQOT is set with an absolute
path.

5. Specify that the application requires Zephyr on a new line, after any lines added from the steps
above:

6.7. Application CMakeLists.txt 125

Zephyr Project Documentation, Release 2.7.5

find_package (Zephyr)
project (my_zephyr_app)

Note: find_package(Zephyr REQUIRED HINTS $ENV{ZEPHYR_BASE}) can be used if enforcing a
specific Zephyr installation by explicitly setting the ZEPHYR_BASE environment variable should be
supported. All samples in Zephyr supports the ZEPHYR_BASE environment variable.

6. Now add any application source files to the ‘app’ target library, each on their own line, like so:

target_sources(app PRIVATE src/main.c)

Below is a simple example CMakeList.txt:

set (BOARD gemu_x86)

find_package (Zephyr)
project (my_zephyr_app)

target_sources(app PRIVATE src/main.c)

The Cmake property HEX_FILES_TO_MERGE leverages the application configuration provided by Kconfig
and CMake to let you merge externally built hex files with the hex file generated when building the
Zephyr application. For example:

set_property (GLOBAL APPEND PROPERTY HEX_FILES_TO_MERGE
${app_bootloader_hex}
${PROJECT_BINARY_DIR}/${KERNEL_HEX_NAME}
${app_provision_hex})

6.8 CMakeCache.txt

CMake uses a CMakeCache.txt file as persistent key/value string storage used to cache values between
runs, including compile and build options and paths to library dependencies. This cache file is created
when CMake is run in an empty build folder.

For more details about the CMakeCache.txt file see the official CMake documentation runningcmake .

6.9 Application Configuration

6.9.1 Kconfig Configuration

Application configuration options are usually set in prj.conf in the application directory. For example,
C++ support could be enabled with this assignment:

CONFIG_CPLUSPLUS=y

Looking at existing samples is a good way to get started.

See Setting Kconfig configuration values for detailed documentation on setting Kconfig configuration val-
ues. The The Initial Configuration section on the same page explains how the initial configuration is
derived. See configuration options for a complete list of configuration options. See Hardening Tool for
security information related with Kconfig options.

The other pages in the Kconfig section of the manual are also worth going through, especially if you
planning to add new configuration options.

126 Chapter 6. Application Development

http://cmake.org/runningcmake/

Zephyr Project Documentation, Release 2.7.5

6.9.2 Devicetree Overlays

See Set devicetree overlays.

6.10 Application-Specific Code

Application-specific source code files are normally added to the application’s src directory. If the ap-
plication adds a large number of files the developer can group them into sub-directories under src, to
whatever depth is needed.

Application-specific source code should not use symbol name prefixes that have been reserved by the
kernel for its own use. For more information, see Naming Conventions.

6.10.1 Third-party Library Code

It is possible to build library code outside the application’s src directory but it is important that both
application and library code targets the same Application Binary Interface (ABI). On most architectures
there are compiler flags that control the ABI targeted, making it important that both libraries and ap-
plications have certain compiler flags in common. It may also be useful for glue code to have access to
Zephyr kernel header files.

To make it easier to integrate third-party components, the Zephyr build system has defined CMake
functions that give application build scripts access to the zephyr compiler options. The func-
tions are documented and defined in cmake/extensions.cmake and follow the naming convention
zephyr_get_<type>_<format>.

The following variables will often need to be exported to the third-party build system.
* CMAKE_C_COMPILER, CMAKE_AR.
* ARCH and BOARD, together with several variables that identify the Zephyr kernel version.

samples/application_development/external lib is a sample project that demonstrates some of these fea-
tures.

6.11 Building an Application

The Zephyr build system compiles and links all components of an application into a single application
image that can be run on simulated hardware or real hardware.

Like any other CMake-based system, the build process takes place in two stages. First, build files (also
known as a buildsystem) are generated using the cmake command-line tool while specifying a generator.
This generator determines the native build tool the buildsystem will use in the second stage. The second
stage runs the native build tool to actually build the source files and generate an image. To learn more
about these concepts refer to the CMake introduction in the official CMake documentation.

Although the default build tool in Zephyr is west, Zephyr’s meta-tool, which invokes cmake and the
underlying build tool (ninja or make) behind the scenes, you can also choose to invoke cmake directly
if you prefer. On Linux and macOS you can choose between the make and ninja generators (i.e. build
tools), whereas on Windows you need to use ninja, since make is not supported on this platform. For
simplicity we will use ninja throughout this guide, and if you choose to use west build to build your
application know that it will default to ninja under the hood.

As an example, let’s build the Hello World sample for the reel_board:

Using west:

6.10. Application-Specific Code 127

https://github.com/zephyrproject-rtos/zephyr/wiki/Naming-Conventions
https://github.com/zephyrproject-rtos/zephyr/blob/main/cmake/extensions.cmake
https://github.com/zephyrproject-rtos/zephyr/blob/main/samples/application_development/external_lib
https://cmake.org/cmake/help/latest/manual/cmake.1.html#description

Zephyr Project Documentation, Release 2.7.5

west build -b reel_board samples/hello_world

Using CMake and ninja:

Use cmake to configure a Ninja-based buildsystem:
cmake -B build -GNinja -DBOARD=reel_board samples/hello_world

Now run ninja on the generated build system:

ninja -C build

On Linux and macOS, you can also build with make instead of ninja:
Using west:

* to use make just once, add -- -G"Unix Makefiles" to the west build command line; see the west
build documentation for an example.

* to use make by default from now on, run west config build.generator "Unix Makefiles".

Using CMake directly:

Use cmake to configure a Make-based buildsystem:
cmake -B build -DBOARD=reel_board samples/hello_world

Now run ninja on the generated build system:
make -C build

6.11.1 Basics

Note: In the below example, west is used outside of a west workspace. For this to work, you must
set the ZEPHYR_BASE environment variable to the path of your zephyr git repository, using one of the
methods on the Environment Variables page.

1. Navigate to the application directory <home>/app.

2. Enter the following commands to build the application’s zephyr.elf image for the board specified
in the command-line parameters:

Using west:

west build -b <board>

Using CMake and ninja:

mkdir build && cd build

Use cmake to configure a Ninja-based buildsystem:
cmake -GNinja -DBOARD=<board>

Now run ninja on the generated build system:
ninja

If desired, you can build the application using the configuration settings specified in an alternate
.conf file using the CONF_FILE parameter. These settings will override the settings in the applica-
tion’s . config file or its default . conf file. For example:

Using west:

128 Chapter 6. Application Development

Zephyr Project Documentation, Release 2.7.5

west build -b <board> -- -DCONF_FILE=prj.alternate.conf

Using CMake and ninja:

mkdir build && cd build
cmake -GNinja -DBOARD=<board> -DCONF_FILE=prj.alternate.conf ..
ninja

As described in the previous section, you can instead choose to permanently set the board and
configuration settings by either exporting BOARD and CONF_FILE environment variables or by setting
their values in your CMakeLists.txt using set () statements. Additionally, west allows you to set
a default board.

6.11.2 Build Directory Contents

When using the Ninja generator a build directory looks like this:

<home>/app/build
build.ninja
CMakeCache. txt
CMakeFiles
cmake_install.cmake
rules.ninja
zephyr

The most notable files in the build directory are:

* build.ninja, which can be invoked to build the application.

* A zephyr directory, which is the working directory of the generated build system, and where most
generated files are created and stored.

After running ninja, the following build output files will be written to the zephyr sub-directory of the
build directory. (This is not the Zephyr base directory, which contains the Zephyr source code etc. and
is described above.)

* .config, which contains the configuration settings used to build the application.

Note: The previous version of .config is saved to .config.old whenever the configuration is
updated. This is for convenience, as comparing the old and new versions can be handy.

* Various object files (.o files and .a files) containing compiled kernel and application code.

* zephyr.elf, which contains the final combined application and kernel binary. Other binary output
formats, such as .hex and .bin, are also supported.

6.11.3 Rebuilding an Application

Application development is usually fastest when changes are continually tested. Frequently rebuilding
your application makes debugging less painful as the application becomes more complex. It’s usually a
good idea to rebuild and test after any major changes to the application’s source files, CMakelLists.txt
files, or configuration settings.

Important: The Zephyr build system rebuilds only the parts of the application image potentially affected
by the changes. Consequently, rebuilding an application is often significantly faster than building it the
first time.

6.11. Building an Application 129

Zephyr Project Documentation, Release 2.7.5

Sometimes the build system doesn’t rebuild the application correctly because it fails to recompile one or
more necessary files. You can force the build system to rebuild the entire application from scratch with
the following procedure:

1. Open a terminal console on your host computer, and navigate to the build directory <home>/app/
build.

2. Enter one of the following commands, depending on whether you want to use west or cmake
directly to delete the application’s generated files, except for the .config file that contains the
application’s current configuration information.

west build -t clean

or

ninja clean

Alternatively, enter one of the following commands to delete all generated files, including the .
config files that contain the application’s current configuration information for those board types.

west build -t pristine

or
ninja pristine

If you use west, you can take advantage of its capability to automatically make the build folder
pristine whenever it is required.

3. Rebuild the application normally following the steps specified in Building an Application above.

6.11.4 Building for a board revision

The Zephyr build system has support for specifying multiple hardware revisions of a single board with
small variations. Using revisions allows the board support files to make minor adjustments to a board
configuration without duplicating all the files described in Create your board directory for each revision.

To build for a particular revision, use <board>@<revision> instead of plain <board>. For example:

Using west:

west build -b <board>Q@<revision>

Using CMake and ninja:

mkdir build && cd build
cmake -GNinja -DBOARD=<board>@<revision> ..
ninja

Check your board’s documentation for details on whether it has multiple revisions, and what revisions
are supported.

When targeting a board revision, the active revision will be printed at CMake configure time, like this:

-- Board: plank, Revision: 1.5.0

6.12 Run an Application

An application image can be run on a real board or emulated hardware.

130 Chapter 6. Application Development

Zephyr Project Documentation, Release 2.7.5

6.12.1 Running on a Board
Most boards supported by Zephyr let you flash a compiled binary using the flash target to copy the
binary to the board and run it. Follow these instructions to flash and run an application on real hardware:
1. Build your application, as described in Building an Application.
2. Make sure your board is attached to your host computer. Usually, you’ll do this via USB.

3. Run one of these console commands from the build directory, <home>/app/build, to flash the
compiled Zephyr image and run it on your board:

west flash

or

ninja flash
The Zephyr build system integrates with the board support files to use hardware-specific tools to flash
the Zephyr binary to your hardware, then run it.
Each time you run the flash command, your application is rebuilt and flashed again.

In cases where board support is incomplete, flashing via the Zephyr build system may not be supported. If
you receive an error message about flash support being unavailable, consult your board’s documentation
for additional information on how to flash your board.

Note: When developing on Linux, it's common to need to install board-specific udev rules to enable
USB device access to your board as a non-root user. If flashing fails, consult your board’s documentation
to see if this is necessary.

6.12.2 Running in an Emulator

The kernel has built-in emulator support for QEMU (on Linux/macOS only, this is not yet supported
on Windows). It allows you to run and test an application virtually, before (or in lieu of) loading and
running it on actual target hardware. Follow these instructions to run an application via QEMU:

1. Build your application for one of the QEMU boards, as described in Building an Application.
For example, you could set BOARD to:
* gemu_x86 to emulate running on an x86-based board
* gemu_cortex_m3 to emulate running on an ARM Cortex M3-based board

2. Run one of these console commands from the build directory, <home>/app/build, to run the Zephyr
binary in QEMU:

west build -t run
or
ninja run
3. Press Ctrl A, X to stop the application from running in QEMU.

The application stops running and the terminal console prompt redisplays.

Each time you execute the run command, your application is rebuilt and run again.

6.12. Run an Application 131

Zephyr Project Documentation, Release 2.7.5

Note: If the (Linux only) Zephyr SDK is installed, the run target will use the SDK’s QEMU binary by
default. To use another version of QEMU, set the environment variable QEMU_BIN_PATH to the path of the
QEMU binary you want to use instead.

6.13 Application Debugging

This section is a quick hands-on reference to start debugging your application with QEMU. Most content
in this section is already covered in QEMU and GNU Debugger reference manuals.

In this quick reference, you’ll find shortcuts, specific environmental variables, and parameters that can
help you to quickly set up your debugging environment.

The simplest way to debug an application running in QEMU is using the GNU Debugger and setting a
local GDB server in your development system through QEMU.

You will need an Executable and Linkable Format (ELF) binary image for debugging purposes. The build
system generates the image in the build directory. By default, the kernel binary name is zephyr.elf.
The name can be changed using a Kconfig option.

We will use the standard 1234 TCP port to open a GDB (GNU Debugger) server instance. This port
number can be changed for a port that best suits the development environment.

You can run QEMU to listen for a “gdb connection” before it starts executing any code to debug it.

gemu -s -S <image>

will setup Qemu to listen on port 1234 and wait for a GDB connection to it.
The options used above have the following meaning:

* -S Do not start CPU at startup; rather, you must type ‘c’ in the monitor.

* -s Shorthand for -gdb tcp::1234: open a GDB server on TCP port 1234.

To debug with QEMU and to start a GDB server and wait for a remote connect, run either of the following
inside the build directory of an application:

ninja debugserver

The build system will start a QEMU instance with the CPU halted at startup and with a GDB server
instance listening at the TCP port 1234.

Using a local GDB configuration .gdbinit can help initialize your GDB instance on every run. In this
example, the initialization file points to the GDB server instance. It configures a connection to a remote
target at the local host on the TCP port 1234. The initialization sets the kernel’s root directory as a
reference.

The .gdbinit file contains the following lines:

target remote localhost:1234
dir ZEPHYR_BASE

Note: Substitute the correct ZEPHYR BASE for your system.

Execute the application to debug from the same directory that you chose for the gdbinit file. The
command can include the --tui option to enable the use of a terminal user interface. The following
commands connects to the GDB server using gdb. The command loads the symbol table from the elf
binary file. In this example, the elf binary file name corresponds to zephyr.elf file:

132 Chapter 6. Application Development

http://wiki.qemu.org/Main_Page
http://www.gnu.org/software/gdb

Zephyr Project Documentation, Release 2.7.5

..../path/to/gdb --tui zephyr.elf

Note: The GDB version on the development system might not support the —tui option. Please make sure
you use the GDB binary from the SDK which corresponds to the toolchain that has been used to build
the binary.

If you are not using a .gdbinit file, issue the following command inside GDB to connect to the remote
GDB server on port 1234:

(gdb) target remote localhost:1234

Finally, the command below connects to the GDB server using the Data Displayer Debugger (ddd). The
command loads the symbol table from the elf binary file, in this instance, the zephyr.elf file.

The DDD (Data Displayer Debugger) may not be installed in your development system by default. Fol-
low your system instructions to install it. For example, use sudo apt-get install ddd on an Ubuntu
system.

ddd --gdb --debugger "gdb zephyr.elf"

Both commands execute the GDB (GNU Debugger). The command name might change depending on the
toolchain you are using and your cross-development tools.

6.14 Custom Board, Devicetree and SOC Definitions

In cases where the board or platform you are developing for is not yet supported by Zephyr, you can
add board, Devicetree and SOC definitions to your application without having to add them to the Zephyr
tree.

The structure needed to support out-of-tree board and SOC development is similar to how boards and
SOCs are maintained in the Zephyr tree. By using this structure, it will be much easier to upstream your
platform related work into the Zephyr tree after your initial development is done.

Add the custom board to your application or a dedicated repository using the following structure:

boards/

soc/
CMakeLists.txt
prj.conf
README.rst
src/

where the boards directory hosts the board you are building for:

—— boards
L— x86

L— my_custom_board
doc
{:: — img
support

and the soc directory hosts any SOC code. You can also have boards that are supported by a SOC that is
available in the Zephyr tree.

— SIC

6.14. Custom Board, Devicetree and SOC Definitions 133

Zephyr Project Documentation, Release 2.7.5

6.14.1 Boards

Use the proper architecture folder name (e.g., x86, arm, etc.) under boards for my_custom_board. (See
boards for a list of board architectures.)

Documentation (under doc/) and support files (under support/) are optional, but will be needed when
submitting to Zephyr.

The contents of my_custom_board should follow the same guidelines for any Zephyr board, and provide
the following files:

my_custom_board_defconfig
my_custom_board.dts
my_custom_board.yaml
board.cmake

board.h
CMakelists.txt

doc/

dts_fixup.h
Kconfig.board
Kconfig.defconfig
pinmux.c

support/

Once the board structure is in place, you can build your application targeting this board by specifying
the location of your custom board information with the -DBOARD_ROOT parameter to the CMake build
system:

Using west:

west build -b <board name> -- -DBOARD_ROOT=<path to boards>

Using CMake and ninja:

cmake -B build -GNinja -DBOARD=<board name> -DBOARD_ROOT=<path to boards> .
ninja -C build

This will use your custom board configuration and will generate the Zephyr binary into your application
directory.

You can also define the BOARD_ROOT variable in the application CMakeLists.txt file. Make sure to do so
before pulling in the Zephyr boilerplate with find_package (Zephyr ...).

Note: When specifying BOARD_ROOT in a CMakeLists.txt, then an absolute path must be provided,
for example 1ist (APPEND BOARD_ROOT ${CMAKE_CURRENT_SOURCE_DIR}/<extra-board-root>. When
using -DBOARD_ROOT=<board-root> both absolute and relative paths can be used. Relative paths are
treated relatively to the application directory.

6.14.2 SOC Definitions

Similar to board support, the structure is similar to how SOCs are maintained in the Zephyr tree, for
example:

|: common
stm3210

134 Chapter 6. Application Development

Zephyr Project Documentation, Release 2.7.5

The file soc/Kconfig will create the top-level SoC/CPU/Configuration Selection menu in Kconfig.

Out of tree SoC definitions can be added to this menu using the SOC_R00T CMake variable. This variable
contains a semicolon-separated list of directories which contain SoC support files.

Following the structure above, the following files can be added to load more SoCs into the menu.

L— arm
L st_stm32

Kconfig
Kconfig.soc
Kconfig.defconfig
The Kconfig files above may describe the SoC or load additional SoC Kconfig files.

An example of loading stm3110 specific Kconfig files in this structure:

stm3210
L Kconfig.series

can be done with the following content in st_stm32/Kconfig.soc:

rsource "*/Kconfig.series"

Once the SOC structure is in place, you can build your application targeting this platform by specifying
the location of your custom platform information with the -DSOC_ROOT parameter to the CMake build
system:

Using west:

west build -b <board name> -- -DSOC_RO0T=<path to soc> -DBOARD_ROOT=<path to boards>

Using CMake and ninja:

cmake -B build -GNinja -DBOARD=<board name> -DSOC_RO0T=<path to soc> -DBOARD_ROOT=
—<path to boards> .
ninja -C build

This will use your custom platform configurations and will generate the Zephyr binary into your appli-
cation directory.
See Build settings for information on setting SOC_ROOT in a module’s zephyr/module.yml file.

Or you can define the SOC_ROQT variable in the application CMakeLists.txt file. Make sure to do so
before pulling in the Zephyr boilerplate with find_package (Zephyr ...).

Note: When specifying SOC_ROOT in a CMakeLists.txt, then an absolute path must be provided,
for example list (APPEND SOC_ROOT ${CMAKE_CURRENT_SOURCE_DIR}/<extra-soc-root> When us-
ing -DSOC_RO0T=<soc-root> both absolute and relative paths can be used. Relative paths are treated
relatively to the application directory.

6.14.3 Devicetree Definitions

Devicetree directory trees are found in APPLICATION_SOURCE_DIR, BOARD_DIR, and ZEPHYR_BASE, but
additional trees, or DTS _ROOQTs, can be added by creating this directory tree:

6.14. Custom Board, Devicetree and SOC Definitions 135

https://github.com/zephyrproject-rtos/zephyr/blob/main/soc/Kconfig

Zephyr Project Documentation, Release 2.7.5

include/
dts/common/
dts/arm/

dts/
dts/bindings/

Where ‘arm’ is changed to the appropriate architecture. Each directory is optional. The binding directory
contains bindings and the other directories contain files that can be included from DT sources.

Once the directory structure is in place, you can use it by specifying its location through the DTS_ROOT
CMake Cache variable:

Using west:

west build -b <board name> -- -DDTS_ROOT=<path to dts root>

Using CMake and ninja:

cmake -B build -GNinja -DBOARD=<board name> -DDTS_RO0T=<path to dts root> .
ninja -C build

You can also define the variable in the application CMakeLists.txt file. Make sure to do so before
pulling in the Zephyr boilerplate with find_package (Zephyr ...).

Note: When specifying DTS_ROOT in a CMakeLists.txt, then an absolute path must be provided,
for example 1list(APPEND DTS_ROOT ${CMAKE_CURRENT_SOURCE_DIR}/<extra-dts-root>. When us-
ing -DDTS_RO0T=<dts-root> both absolute and relative paths can be used. Relative paths are treated
relatively to the application directory.

Devicetree source are passed through the C preprocessor, so you can include files that can be located in
a DTS_ROOT directory. By convention devicetree include files have a .dtsi extension.

You can also use the preprocessor to control the content of a devicetree file, by specifying directives
through the DTS_EXTRA_CPPFLAGS CMake Cache variable:

Using west:

west build -b <board name> -- -DDTS_EXTRA_CPPFLAGS=-DTEST_ENABLE_FEATURE

Using CMake and ninja:

cmake -B build -GNinja -DBOARD=<board name> -DDTS_EXTRA_CPPFLAGS=-DTEST_ENABLE_
—FEATURE .
ninja -C build

6.15 Debug with Eclipse

6.15.1 Overview

CMake supports generating a project description file that can be imported into the Eclipse Integrated
Development Environment (IDE) and used for graphical debugging.

The GNU MCU Eclipse plug-ins provide a mechanism to debug ARM projects in Eclipse with pyOCD,
Segger J-Link, and OpenOCD debugging tools.

The following tutorial demonstrates how to debug a Zephyr application in Eclipse with pyOCD in Win-
dows. It assumes you have already installed the GCC ARM Embedded toolchain and pyOCD.

136 Chapter 6. Application Development

https://gnu-mcu-eclipse.github.io/plugins/install/

Zephyr Project Documentation, Release 2.7.5

6.15.2 Set Up the Eclipse Development Environment

1. Download and install Eclipse IDE for C/C+ + Developers.

2. In Eclipse, install the GNU MCU Eclipse plug-ins by opening the menu Window->Eclipse
Marketplace. . ., searching for GNU MCU Eclipse, and clicking Install on the matching result.

3. Configure the path to the pyOCD GDB server by opening the menu Window->Preferences, navi-
gating to MCU, and setting the Global pyOCD Path.

6.15.3 Generate and Import an Eclipse Project

1. Set up a GNU Arm Embedded toolchain as described in 3rd Party Toolchains.

2. Navigate to a folder outside of the Zephyr tree to build your application.

On Windows
cd Yuserprofile

Note: If the build directory is a subdirectory of the source directory, as is usually done in Zephyr,
CMake will warn:

“The build directory is a subdirectory of the source directory.

This is not supported well by Eclipse. It is strongly recommended to use a build directory which is
a sibling of the source directory.”

3. Configure your application with CMake and build it with ninja. Note the different CMake gener-
ator specified by the -G"Eclipse CDT4 - Ninja" argument. This will generate an Eclipse project
description file, .project, in addition to the usual ninja build files.

Using west:

west build -b frdm_k64f JZEPHYR_BASE)\samples\synchronization -- -G"Eclipse CDT4
—- Ninja"

Using CMake and ninja:

cmake -B build -GNinja -DBOARD=frdm_k64f -G"Eclipse CDT4 - Ninja" %ZEPHYR_BASEJ\
—»samples\synchronization
ninja -C build

4. In Eclipse, import your generated project by opening the menu File->Import. .. and selecting the
option Existing Projects into Workspace. Browse to your application build directory in the
choice, Select root directory:. Check the box for your project in the list of projects found and
click the Finish button.

6.15.4 Create a Debugger Configuration

1. Open the menu Run->Debug Configurations.. ..
2. Select GDB PyOCD Debugging, click the New button, and configure the following options:
* In the Main tab:
— Project: my_zephyr app@build
— C/C++ Application: zephyr/zephyr.elf
* In the Debugger tab:

6.15. Debug with Eclipse 137

https://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/oxygen2
mailto:my_zephyr_app@build

Zephyr Project Documentation, Release 2.7.5

— pyOCD Setup
% Executable path: $pyocd_path\$pyocd_ezecutable
« Uncheck “Allocate console for semihosting”
— Board Setup
* Bus speed: 8000000 Hz
* Uncheck “Enable semihosting”
— GDB Client Setup

+ Executable path example (use your GNUARMEMB_TOOLCHAIN_PATH): C:\
gcc-arm-none-eabi-6_2017-q2-update\bin\arm-none-eabi-gdb.exe

* In the SVD Path tab:
— File path: <workspace top>\modules\hal\nxp\mcux\devices\MK64F12\MK64F12.xml

Note: This is optional. It provides the SoC’s memory-mapped register addresses and bitfields
to the debugger.

3. Click the Debug button to start debugging.

6.15.5 RTOS Awareness

Support for Zephyr RTOS awareness is implemented in pyOCD v0.11.0 and later. It is compatible with
GDB PyOCD Debugging in Eclipse, but you must enable CONFIG DEBUG THREAD INFO=y in your
application.

138 Chapter 6. Application Development

https://github.com/mbedmicro/pyOCD/releases/tag/v0.11.0

Chapter 7

API Reference

7.1 API Status / Guidelines

7.1.1 API Overview

The table lists Zephyr’s APIs and information about them, including their current stability level.

API Status Version Introduced | Version Modified
ADC Stable 1.0 2.6
Audio Codec Experimental | 1.13 1.13
Audio DMIC Experimental | 1.13 1.13
Bluetooth Stable 1.0 2.4
Clock Control Stable 1.0 2.6
CoAP Unstable 1.10 2.4
Controller Area Network (CAN) Unstable 1.14 2.6
Counter Unstable 1.14 2.6
Crypto Stable 1.7 2.2
DAC Experimental | 2.3 2.3
DMA Stable 1.5 2.6
Device Driver Model Stable 1.0 2.4
Devicetree API Stable 2.2 2.6
Disk Access Stable 1.6 2.0
Display Interface Unstable 1.14 2.2
EC Host Command Experimental | 2.4 2.4
Error Detection And Correction (EDAC) API | Experimental | 2.5 2.5
EEPROM Stable 2.1 2.1
Entropy Stable 1.10 1.12
File Systems Stable 1.5 2.4
Flash Stable 1.2 2.6
Flash Circular Buffer (FCB) Stable 1.11 2.1
Flash map Stable 1.11 2.6
GNA Experimental | 1.14 1.14
GPIO Stable 1.0 2.6
Hardware Information Stable 1.14 2.3
I2C EEPROM Slave Stable 1.13 1.13
I2C Stable 1.0 2.6
12C Slave API Experimental | 1.12 1.12
128 Stable 1.9 2.6
IPM Stable 1.0 2.4

continues on next page

139

Zephyr Project Documentation, Release 2.7.5

Table 1 — continued from previous page

API Status Version Introduced | Version Modified
KSCAN Stable 2.1 2.6
Kernel Services Stable 1.0 2.6
LED Stable 1.12 2.6
Lightweight M2M (LWM2M) Unstable 1.9 2.5
Logging Stable 1.13 1.14
MQTT Unstable 1.14 2.4
Miscellaneous APIs Stable 1.0 2.2
Networking Stable 1.0 2.4
Non-Volatile Storage (NVS) Stable 1.12 1.14
PECI Stable 2.1 2.6
bS/2 Stable 2.1 2.6
PWM Stable 1.0 2.6
Pinmux Stable 1.0 1.11
Power Management Experimental | 1.2 2.2
Random Number Generation Stable 1.0 2.1
Regulators Experimental | 2.4 2.4
SPI Stable 1.0 2.6
Sensors Stable 1.2 2.6
Settings Stable 1.12 2.1
Shell Stable 1.14 2.4
Stream Flash Experimental | 2.3 2.3
Task Watchdog Experimental | 2.5 2.5
UART Stable 1.0 2.6
UART async Unstable 1.14 2.2
USB device support Stable 1.5 2.4
User Mode Stable 1.11 1.11
Utilities Experimental | 2.4 2.4
Video Stable 2.1 2.6
Watchdog Stable 1.0 2.0

7.1.2 API Lifecycle

Developers using Zephyr’s APIs need to know how long they can trust that a given API will not change
in future releases. At the same time, developers maintaining and extending Zephyr’s APIs need to be
able to introduce new APIs that aren’t yet fully proven, and to potentially retire old APIs when they’re no
longer optimal or supported by the underlying platforms.

An up-to-date table of all APIs and their maturity level can be found in the API Overview page.

Experimental

Experimental APIs denote that a feature was introduced recently, and may change or be removed in
future versions. Try it out and provide feedback to the community via the Developer mailing list.

The following requirements apply to all new APIs:

* Documentation of the API (usage) explaining its design and assumptions, how it is to be used,
current implementation limitations, and future potential, if appropriate.

* The API introduction should be accompanied by at least one implementation of said API (in the
case of peripheral APIs, this corresponds to one driver)

* At least one sample using the new API (may only build on one single board)

140 Chapter 7. API Reference

https://lists.zephyrproject.org/g/devel

Zephyr Project Documentation, Release 2.7.5

Experimental Stable Deprecated

Publication
Deprecation
Retirement

API Deprecation

API Production Phase
Phase

Backwards compatible updates, (bug)/security fixes
bug/security fixes

Y
APl available in Zephyr

Fig. 1: API Life Cycle

Peripheral APIs (Hardware Related) When introducing an API (public header file with documenta-
tion) for a new peripheral or driver subsystem, review of the API is enforced and is driven by the API
working group consisting of representatives from different vendors.

The API shall be promoted to unstable when it has at least two implementations on different hardware
platforms.

Unstable

The API is in the process of settling, but has not yet had sufficient real-world testing to be considered
stable. The API is considered generic in nature and can be used on different hardware platforms.

Note: Changes will not be announced.

Peripheral APIs (Hardware Related) The API shall be promoted from experimental to unstable
when it has at least two implementations on different hardware platforms.

Hardware Agnostic APIs For hardware agnostic APIs, multiple applications using it are required to
promote an API from experimental to unstable.

Stable

The API has proven satisfactory, but cleanup in the underlying code may cause minor changes.
Backwards-compatibility will be maintained if reasonable.

An API can be declared stable after fulfilling the following requirements:
* Test cases for the new API with 100% coverage

* Complete documentation in code. All public interfaces shall be documented and available in online
documentation.

* The API has been in-use and was available in at least 2 development releases

7.1. API Status / Guidelines 141

Zephyr Project Documentation, Release 2.7.5

* Stable APIs can get backward compatible updates, bug fixes and security fixes at any time.
In order to declare an API stable, the following steps need to be followed:
1. A Pull Request must be opened that changes the corresponding entry in the API Overview table
2. An email must be sent to the devel mailing list announcing the API upgrade request

3. The Pull Request must be submitted for discussion in the next Zephyr API meeting where, barring
any objections, the Pull Request will be merged

Introducing incompatible changes A stable API, as described above strives to remain backwards-
compatible through its life-cycle. There are however cases where fulfilling this objective prevents tech-
nical progress or is simply unfeasible without unreasonable burden on the maintenance of the API and
its implementation(s).

An incompatible change is defined as one that forces users to modify their existing code in order to
maintain the current behavior of their application. The need for recompilation of applications (without
changing the application itself) is not considered an incompatible change.

In order to restrict and control the introduction of a change that breaks the promise of backwards com-
patibility the following steps must be followed whenever such a change is considered necessary in order
to accept it in the project:

1. An RFC issue must be opened on GitHub with the following content:

Title: RFC: API Change: <subsystem>

Contents: - Problem Description:

- Background information on why the change is required

Proposed Change (detailed):

- Brief description of the API change

Detailed RFC:

- Function call changes

- Device Tree changes (source and bindings)

- Kconfig option changes

Dependencies:

- Impact to users of the API, including the steps required
to adapt out-of-tree users of the API to the change

Instead of a written description of the changes, the RFC issue may link to a Pull Request containing
those changes in code form.

2. The RFC issue must be labeled with the GitHub Stable API Change label
3. The RFC issue must be submitted for discussion in the next Zephyr API meeting

4. An email must be sent to the devel mailing list with a subject identical to the RFC issue title and
that links to the RFC issue

The RFC will then receive feedback through issue comments and will also be discussed in the Zephyr API
meeting, where the stakeholders and the community at large will have a chance to discuss it in detail.

Finally, and if not done as part of the first step, a Pull Request must be opened on GitHub. It is left to
the person proposing the change to decide whether to introduce both the RFC and the Pull Request at
the same time or to wait until the RFC has gathered consensus enough so that the implementation can
proceed with confidence that it will be accepted. The Pull Request must include the following:

* A title that matches the RFC issue
* A link to the RFC issue
* The actual changes to the API
— Changes to the API header file

— Changes to the API implementation(s)

142 Chapter 7. API Reference

https://github.com/zephyrproject-rtos/zephyr/wiki/Zephyr-Committee-and-Working-Group-Meetings#zephyr-api-meeting
https://github.com/zephyrproject-rtos/zephyr/wiki/Zephyr-Committee-and-Working-Group-Meetings#zephyr-api-meeting

Zephyr Project Documentation, Release 2.7.5

— Changes to the relevant API documentation
— Changes to Device Tree source and bindings

* The changes required to adapt in-tree users of the API to the change. Depending on the scope of
this task this might require additional help from the corresponding maintainers

* An entry in the “API Changes” section of the release notes for the next upcoming release
* The labels API, Stable API Change and Release Notes, as well as any others that are applicable

Once the steps above have been completed, the outcome of the proposal will depend on the approval of
the actual Pull Request by the maintainer of the corresponding subystem. As with any other Pull Request,
the author can request for it to be discussed and ultimately even voted on in the Zephyr TSC meeting.

If the Pull Request is merged then an email must be sent to the devel and user mailing lists informing
them of the change.

Note: Incompatible changes will be announced in the “API Changes” section of the release notes.

Deprecated

Note: Unstable APIs can be removed without deprecation at any time. Deprecation and removal of APIs
will be announced in the “API Changes” section of the release notes.

The following are the requirements for deprecating an existing API:

* Deprecation Time (stable APIs): 2 Releases The API needs to be marked as deprecated in at least
two full releases. For example, if an API was first deprecated in release 1.14, it will be ready to
be removed in 1.16 at the earliest. There may be special circumstances, determined by the API
working group, where an API is deprecated sooner.

* What is required when deprecating:

— Mark as deprecated. This can be done by using the compiler itself (__deprecated for function
declarations and __DEPRECATED_MACRO for macro definitions), or by introducing a Kconfig
option (typically one that contains the DEPRECATED word in it) that, when enabled, reverts the
APIs back to their previous form

— Document the deprecation

- Include the deprecation in the “API Changes” of the release notes for the next upcoming release
— Code using the deprecated API needs to be modified to remove usage of said API

— The change needs to be atomic and bisectable

— Create a GitHub issue to track the removal of the deprecated API, and add it to the roadmap
targeting the appropriate release (in the example above, 1.16).

During the deprecation waiting period, the API will be in the deprecated state. The Zephyr maintainers
will track usage of deprecated APIs on docs. zephyrproject . org and support developers migrating their
code. Zephyr will continue to provide warnings:

* API documentation will inform users that the API is deprecated.
* Attempts to use a deprecated API at build time will log a warning to the console.

Retired

In this phase, the API is removed.

7.1. API Status / Guidelines 143

https://github.com/zephyrproject-rtos/zephyr/wiki/Zephyr-Committee-and-Working-Group-Meetings#technical-steering-committee-tsc

Zephyr Project Documentation, Release 2.7.5

The target removal date is 2 releases after deprecation is announced. The Zephyr maintainers will decide
when to actually remove the API: this will depend on how many developers have successfully migrated
from the deprecated API, and on how urgently the API needs to be removed.

If it’s OK to remove the API, it will be removed. The maintainers will remove the corresponding doc-
umentation, and communicate the removal in the usual ways: the release notes, mailing lists, Github
issues and pull-requests.

If it’s not OK to remove the API, the maintainers will continue to support migration and update the
roadmap with the aim to remove the API in the next release.

7.1.3 API Design Guidelines

Zephyr development and evolution is a group effort, and to simplify maintenance and enhancements
there are some general policies that should be followed when developing a new capability or interface.

Using Callbacks

Many APIs involve passing a callback as a parameter or as a member of a configuration structure. The
following policies should be followed when specifying the signature of a callback:

* The first parameter should be a pointer to the object most closely associated with the callback. In
the case of device drivers this would be struct device *dev. For library functions it may be a
pointer to another object that was referenced when the callback was provided.

* The next parameter(s) should be additional information specific to the callback invocation, such as
a channel identifier, new status value, and/or a message pointer followed by the message length.

* The final parameter should be a void *user_data pointer carrying context that allows a shared
callback function to locate additional material necessary to process the callback.

An exception to providing user_data as the last parameter may be allowed when the callback itself was
provided through a structure that will be embedded in another structure. An example of such a case is
gpio_callback, normally defined within a data structure specific to the code that also defines the call-
back function. In those cases further context can accessed by the callback indirectly by CONTAINER_OF.

Examples

* The requirements of k_timer_ezpiry_t invoked when a system timer alarm fires are satisfied by:

void handle_timeout (struct k_timer *timer)

{ ...}

The assumption here, as with gpio_callback, is that the timer is embedded in a structure reach-
able from CONTAINER_OF that can provide additional context to the callback.

* The requirements of counter_alarm_callback_t invoked when a counter device alarm fires are
satisfied by:

void handle_alarm(const struct device *dev,
uint8_t chan_id,
uint32_t ticks,
void *user_data)

{...}%

This provides more complete useful information, including which counter channel timed-out and
the counter value at which the timeout occurred, as well as user context which may or may not be
the counter_alarm_cfg used to register the callback, depending on user needs.

144 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

Conditional Data and APIs

APIs and libraries may provide features that are expensive in RAM or code size but are optional in
the sense that some applications can be implemented without them. Examples of such feature include
capturing a timestamp Or providing an alternative interface. The developer in coordination
with the community must determine whether enabling the features is to be controllable through a Kconfig
option.

In the case where a feature is determined to be optional the following practices should be followed.

* Any data that is accessed only when the feature is enabled should be conditionally included via
#ifdef CONFIG_MYFEATURE in the structure or union declaration. This reduces memory use for
applications that don’t need the capability.

* Function declarations that are available only when the option is enabled should be provided un-
conditionally. Add a note in the description that the function is available only when the specified
feature is enabled, referencing the required Kconfig symbol by name. In the cases where the func-
tion is used but not enabled the definition of the function shall be excluded from compilation, so
references to the unsupported API will result in a link-time error.

* Where code specific to the feature is isolated in a source file that has no other content that file
should be conditionally included in CMakeLists.txt:

zephyr_sources_ifdef (CONFIG_MYFEATURE foo_funcs.c)
* Where code specific to the feature is part of a source file that has other content the feature-specific
code should be conditionally processed using #ifdef CONFIG_MYFEATURE.

The Kconfig flag used to enable the feature should be added to the PREDEFINED variable in doc/zephyr.
doxyfile.1in to ensure the conditional API and functions appear in generated documentation.

Return Codes

Implementations of an API, for example an API for accessing a peripheral might implement only a subset
of the functions that is required for minimal operation. A distinction is needed between APIs that are not
supported and those that are not implemented or optional:

* APIs that are supported but not implemented shall return -ENOSYS.

* Optional APIs that are not supported by the hardware should be implemented and the return code
in this case shall be ~-ENOTSUP.

* When an API is implemented, but the particular combination of options requested in the call cannot
be satisfied by the implementation the call shall return -ENOTSUP. (For example, a request for a
level-triggered GPIO interrupt on hardware that supports only edge-triggered interrupts)

7.1.4 API Terminology

The following terms may be used as shorthand API tags to indicate the allowed calling context (thread,
ISR, pre-kernel), the effect of a call on the current thread state, and other behavioral characteristics.
reschedule if executing the function reaches a reschedule point

sleep if executing the function can cause the invoking thread to sleep

no-wait if a parameter to the function can prevent the invoking thread from trying to sleep

isr-ok if the function can be safely called and will have its specified effect whether invoked from interrupt
or thread context

pre-kernel-ok if the function can be safely called before the kernel has been fully initialized and will
have its specified effect when invoked from that context.

7.1. API Status / Guidelines 145

Zephyr Project Documentation, Release 2.7.5

async if the function may return before the operation it initializes is complete (i.e. function return and
operation completion are asynchronous)

supervisor if the calling thread must have supervisor privileges to execute the function

Details on the behavioral impact of each attribute are in the following sections.

reschedule

The reschedule attribute is used on a function that can reach a reschedule point within its execution.

Details The significance of this attribute is that when a rescheduling function is invoked by a thread
it is possible for that thread to be suspended as a consequence of a higher-priority thread being made
ready. Whether the suspension actually occurs depends on the operation associated with the reschedule
point and the relative priorities of the invoking thread and the head of the ready queue.

Note that in the case of timeslicing, or reschedule points executed from interrupts, any thread may be
suspended in any function.

Functions that are not reschedule may be invoked from either thread or interrupt context.
Functions that are reschedule may be invoked from thread context.

Functions that are reschedule but not sleep may be invoked from interrupt context.

sleep

The sleep attribute is used on a function that can cause the invoking thread to sleep.

Explanation This attribute is of relevance specifically when considering applications that use only non-
preemptible threads, because the kernel will not replace a running cooperative-only thread at a resched-
ule point unless that thread has explicitly invoked an operation that caused it to sleep.

This attribute does not imply the function will sleep unconditionally, but that the operation may require
an invoking thread that would have to suspend, wait, or invoke k_yield() before it can complete its
operation. This behavior may be mediated by no-wait.

Functions that are sleep are implicitly reschedule.
Functions that are sleep may be invoked from thread context.

Functions that are sleep may be invoked from interrupt and pre-kernel contexts if and only if invoked in
no-wait mode.

no-wait

The no-wait attribute is used on a function that is also sleep to indicate that a parameter to the function
can force an execution path that will not cause the invoking thread to sleep.

Explanation The paradigmatic case of a no-wait function is a function that takes a timeout, to which
K_NO_WAIT can be passed. The semantics of this special timeout value are to execute the function’s
operation as long as it can be completed immediately, and to return an error code rather than sleep if it
cannot.

It is use of the no-wait feature that allows functions like k_sem_take () to be invoked from ISRs, since it
is not permitted to sleep in interrupt context.

A function with a no-wait path does not imply that taking that path guarantees the function is syn-
chronous.

146 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

Functions with this attribute may be invoked from interrupt and pre-kernel contexts only when the
parameter selects the no-wait path.

isr-ok

The isr-ok attribute is used on a function to indicate that it works whether it is being invoked from
interrupt or thread context.

Explanation Any function that is not sleep is inherently isr-ok. Functions that are sleep are isr-ok
if the implementation ensures that the documented behavior is implemented even if called from an
interrupt context. This may be achieved by having the implementation detect the calling context and
transfer the operation that would sleep to a thread, or by documenting that when invoked from a non-
thread context the function will return a specific error (generally -EWOULDBLOCK).

Note that a function that is no-wait is safe to call from interrupt context only when the no-wait path is
selected. isr-ok functions need not provide a no-wait path.

pre-kernel-ok

The pre-kernel-ok attribute is used on a function to indicate that it works as documented even when
invoked before the kernel main thread has been started.

Explanation This attribute is similar to isr-ok in function, but is intended for use by any API that is
expected to be called in DEVICE_DEFINE() or SYS_INIT() calls that may be invoked with PRE_KERNEL_1
or PRE_KERNEL_2 initialization levels.

Generally a function that is pre-kernel-ok checks k_<s_pre_kernel () when determining whether it can
fulfill its required behavior. In many cases it would also check k_is_4n_isr() so it can be isr-ok as well.

async

A function is async (i.e. asynchronous) if it may return before the operation it initiates has completed. An
asynchronous function will generally provide a mechanism by which operation completion is reported,
e.g. a callback or event.

A function that is not asynchronous is synchronous, i.e. the operation will always be complete when the
function returns. As most functions are synchronous this behavior does not have a distinct attribute to
identify it.

Explanation Be aware that async is orthogonal to context-switching. Some APIs may provide comple-
tion information through a callback, but may suspend while waiting for the resource necessary to initiate
the operation; an example is spi_transceive_async().

If a function is both no-wait and async then selecting the no-wait path only guarantees that the function
will not sleep. It does not affect whether the operation will be completed before the function returns.

supervisor

The supervisor attribute is relevant only in user-mode applications, and indicates that the function cannot
be invoked from user mode.

7.1. API Status / Guidelines 147

Zephyr Project Documentation, Release 2.7.5

7.2 Audio

7.2.1 Audio Codec

Overview

The Audio Codec API provides access to digital audio codecs.

Configuration Options

Related configuration options:

* CONFIG_AUDIO_CODEC

API Reference

group audio_codec_interface

Abstraction for audio codecs.

Enums

enum audio_pcm_rate_t

PCM audio sample rates

Values:

enumerator AUDIO_PCM_RATE_8K = 8000
enumerator AUDIO_PCM_RATE_16K = 16000
enumerator AUDIO_PCM_RATE_24K = 24000
enumerator AUDIO_PCM_RATE_32K = 32000
enumerator AUDIO_PCM_RATE_44P1K = 44100
enumerator AUDIO_PCM_RATE_48K = 48000
enumerator AUDIO_PCM_RATE_96K = 96000
enumerator AUDIO_PCM_RATE_192K = 192000

enum audio_pcm_width_t
PCM audio sample bit widths

Values:

enumerator AUDIO_PCM_WIDTH_16_BITS = 16

148 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

enumerator AUDIO_PCM_WIDTH_20_BITS = 20

enumerator AUDIO_PCM_WIDTH_24_BITS = 24

enumerator AUDIO_PCM_WIDTH_32_BITS = 32

enum audio_dai_type_t
Digital Audio Interface (DAI) type

Values:

enumerator AUDIO_DAI_TYPE_I2S

enumerator AUDIO_DAI_TYPE_INVALID

enum audio_property_t
Codec properties that can be set by audio codec set property()

Values:

enumerator AUDIO_PROPERTY_OUTPUT_VOLUME

enumerator AUDIO_PROPERTY_OUTPUT_MUTE

enum audio_channel_t

Audio channel identifiers to use in audio codec set property()

Values:

enumerator AUDIO_CHANNEL_FRONT_LEFT

enumerator AUDIO_CHANNEL_FRONT_RIGHT

enumerator AUDIO_CHANNEL_LFE

enumerator AUDIO_CHANNEL_FRONT_CENTER

enumerator AUDIO_CHANNEL_REAR_LEFT

enumerator AUDIO_CHANNEL_REAR_RIGHT

enumerator AUDIO_CHANNEL_REAR_CENTER

enumerator AUDIO_CHANNEL_SIDE_LEFT

enumerator AUDIO_CHANNEL_SIDE_RIGHT

enumerator AUDIO_CHANNEL_ALL

7.2. Audio

149

Zephyr Project Documentation, Release 2.7.5

Functions

static inline int audio_codec_configure (const struct device *dev, struct audio codec cfg *cfg)
Configure the audio codec.

Configure the audio codec device according to the configuration parameters provided as input
Parameters
* dev - Pointer to the device structure for codec driver instance.
* cfg — Pointer to the structure containing the codec configuration.
Returns 0 on success, negative error code on failure

static inline void audio_codec_start_output (const struct device *dev)

Set codec to start output audio playback.
Setup the audio codec device to start the audio playback
Parameters
* dev — Pointer to the device structure for codec driver instance.
Returns none

static inline void audio_codec_stop_output (const struct device *dev)
Set codec to stop output audio playback.

Setup the audio codec device to stop the audio playback
Parameters
* dev — Pointer to the device structure for codec driver instance.
Returns none

static inline int audio_codec_set_property (const struct device *dev, audio property t property,
audio_channel t channel, audio property value t
val)

Set a codec property defined by audio_property t.
Set a property such as volume level, clock configuration etc.
Parameters
* dev - Pointer to the device structure for codec driver instance.
* property — The codec property to set
* channel — The audio channel for which the property has to be set
* val — pointer to a property value of type audio_codec_property value t
Returns 0 on success, negative error code on failure

static inline int audio_codec_apply_properties (const struct device *dev)
Atomically apply any cached properties.

Following one or more invocations of audio_codec_set property, that may have been cached
by the driver, audio_codec_apply properties can be invoked to apply all the properties as
atomic as possible

Parameters
e dev — Pointer to the device structure for codec driver instance.

Returns 0 on success, negative error code on failure

150 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

union audio_dai_cfg_t

#include <codec.h> Digital Audio Interface Configuration Configuration is dependent on DAI

type

Public Members

struct i2s_config i2s

struct audio_codec_cfg

#include <codec.h> Codec configuration parameters

union audio_property_value_t

#include <codec.h> Codec property values

Public Members

int vol

bool mute

7.2.2 Audio DMIC

Overview

The audio DMIC interface provides access to digital microphones.

Configuration Options
Related configuration options:
* CONFIG_AUDIQ_DMIC

API Reference

group audio_dmic_interface

Abstraction for digital microphones.

Enums

enum dmic_state
DMIC driver states

Values:

enumerator DMIC_STATE_UNINIT

7.2. Audio

151

Zephyr Project Documentation, Release 2.7.5

enumerator DMIC_STATE_INITIALIZED
enumerator DMIC_STATE_CONFIGURED
enumerator DMIC_STATE_ACTIVE
enumerator DMIC_STATE_PAUSED

enum dmic_trigger

DMIC driver trigger commands

Values:

enumerator DMIC_TRIGGER_STOP
enumerator DMIC_TRIGGER_START
enumerator DMIC_TRIGGER_PAUSE
enumerator DMIC_TRIGGER_RELEASE
enumerator DMIC_TRIGGER_RESET

enum pdm_1r
PDM Channels LEFT / RIGHT

Values:

enumerator PDM_CHAN_LEFT

enumerator PDM_CHAN_RIGHT

Functions

static inline uint32_t dmic_build_channel_map (uint8 t channel, uint8 t pdm, enum pdm _[r Ir)
Build the channel map to populate struct pdm_chan_cfg

Returns the map of PDM controller and LEFT/RIGHT channel shifted to the bit position cor-
responding to the input logical channel value

Parameters
* channel — The logical channel number
* pdm — The PDM hardware controller number
* 1r — LEFT/RIGHT channel within the chosen PDM hardware controller

Returns Bit-map containing the PDM and L/R channel information

152 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

static inline void dmic_parse_channel_map (uint32_t channel map lo, uint32_t channel map_ hi,
uint8_t channel, uint8_t *pdm, enum pdm_[r *Ir)

Helper function to parse the channel map in pdm chan_cfg

Returns the PDM controller and LEFT/RIGHT channel corresponding to the channel map and
the logical channel provided as input

Parameters
* channel_map_lo — Lower order/significant bits of the channel map
* channel_map_hi — Higher order/significant bits of the channel map
* channel — The logical channel number
* pdm - Pointer to the PDM hardware controller number
* 1r - Pointer to the LEFT/RIGHT channel within the PDM controller
Returns none

static inline uint32_t dmic_build_clk_skew_map (uint8 t pdm, uint8 t skew)
Build a bit map of clock skew values for each PDM channel

Returns the bit-map of clock skew value shifted to the bit position corresponding to the input
PDM controller value

Parameters

* pdm — The PDM hardware controller number

* skew — The skew to apply for the clock output from the PDM controller
Returns Bit-map containing the clock skew information

static inline int dmic_configure (const struct device *dev, struct dmic_cfg *cfg)
Configure the DMIC driver and controller(s)

Configures the DMIC driver device according to the number of channels, channel mapping,
PDM 1/0 configuration, PCM stream configuration, etc.

Parameters

* dev — Pointer to the device structure for DMIC driver instance

* cfg - Pointer to the structure containing the DMIC configuration
Returns O on success, a negative error code on failure

static inline int dmic_trigger (const struct device *dev, enum dmic_trigger cmd)
Send a command to the DMIC driver

Sends a command to the driver to perform a specific action
Parameters
* dev — Pointer to the device structure for DMIC driver instance
* cmd — The command to be sent to the driver instance
Returns 0 on success, a negative error code on failure

static inline int dmic_read (const struct device *dev, uint8_t stream, void **buffer, size t *size,
int32_t timeout)

Read received decimated PCM data stream

Optionally waits for audio to be received and provides the received audio buffer from the
requested stream

Parameters

¢ dev — Pointer to the device structure for DMIC driver instance

7.2.

Audio 153

Zephyr Project Documentation, Release 2.7.5

e stream — Stream identifier
e buffer — Pointer to the received buffer address
e size — Pointer to the received buffer size

* timeout — Timeout in milliseconds to wait in case audio is not yet received, or
SYS _FOREVER_MS

Returns 0 on success, a negative error code on failure

struct pdm_io_cfg
#include <dmic.h> PDM Input/Output signal configuration

struct pcm_stream_cfg
#include <dmic.h> Configuration of the PCM streams to be output by the PDM hardware

struct pdm_chan_cfg
#include <dmic.h> Mapping/ordering of the PDM channels to logical PCM output channel

struct dmic_cfg

#include <dmic.h> Input configuration structure for the DMIC configuration API

7.2.3 128

Overview

The 12S (Inter-IC Sound) API provides support for the standard 12S interface as well as common non-
standard extensions such as PCM Short/Long Frame Sync and Left/Right Justified Data Formats.

Configuration Options

Related configuration options:

* CONFIG_I2S

API Reference

group i2s_interface

12S (Inter-IC Sound) Interface.

The 12S API provides support for the standard I2S interface standard as well as common non-
standard extensions such as PCM Short/Long Frame Sync, Left/Right Justified Data Format.

Defines

I2S_FMT_DATA_FORMAT_SHIFT
Data Format bit field position.

I2S_FMT_DATA_FORMAT_MASK
Data Format bit field mask.

154

Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

I2S_FMT_DATA_FORMAT_I2S
Standard 12S Data Format.

Serial data is transmitted in two’s complement with the MSB first. Both Word Select (WS) and
Serial Data (SD) signals are sampled on the rising edge of the clock signal (SCK). The MSB is
always sent one clock period after the WS changes. Left channel data are sent first indicated
by WS = 0, followed by right channel data indicated by WS = 1.

SD | |MSB| [...] ILSB| x |...| x [MSB| ... ILSB| x |...| x |

' 1 1 1 1 1 1 ' 1 1 1 1 1 1 1 1 1 1

| Left channel | Right channel |

I2S_FMT_DATA_FORMAT_PCM_SHORT
PCM Short Frame Sync Data Format.

Serial data is transmitted in two’s complement with the MSB first. Both Word Select (WS) and
Serial Data (SD) signals are sampled on the falling edge of the clock signal (SCK). The falling
edge of the frame sync signal (WS) indicates the start of the PCM word. The frame sync is
one clock cycle long. An arbitrary number of data words can be sent in one frame.

SD | |MSB| [...] |LSB|MSB| [...] |LSB|MSB| ... |LSB]|

1 1 ' 1 1 1 1 1 ' ! 1 1 1 1 1 ' 1

| Word 1 | Word 2 | Word 3 | Word n |

I2S_FMT_DATA_FORMAT_PCM_LONG
PCM Long Frame Sync Data Format.

Serial data is transmitted in two’s complement with the MSB first. Both Word Select (WS)
and Serial Data (SD) signals are sampled on the falling edge of the clock signal (SCK). The
rising edge of the frame sync signal (WS) indicates the start of the PCM word. The frame sync
has an arbitrary length, however it has to fall before the start of the next frame. An arbitrary
number of data words can be sent in one frame.

SD | |MSB| [...] |LSB|MSB| [...] |LSB|MSB| ... |LSB|

[} [} 1 | 1 1 | [1 1 | 1 1 [[} 1 1

| Word 1 | Word 2 | Word 3 | Word n |

I2S_FMT_DATA_FORMAT_LEFT_JUSTIFIED
Left Justified Data Format.

Serial data is transmitted in two’s complement with the MSB first. Both Word Select (WS)
and Serial Data (SD) signals are sampled on the rising edge of the clock signal (SCK). The

7.2. Audio 155

Zephyr Project Documentation, Release 2.7.5

bits within the data word are left justified such that the MSB is always sent in the clock period
following the WS transition. Left channel data are sent first indicated by WS = 1, followed by
right channel data indicated by WS = 0.

SCK ="' "= 't vt v nn N

ws ___ (I [}

SD |MSB| ... ILSB| x |...| x |MSB| ... ILSBl x |...] x |

1 1 1 1 1 1 1 1 1 1 1 ! 1 1 1 1 1

| Left channel | Right channel |

I2S_FMT_DATA_FORMAT_RIGHT_JUSTIFIED
Right Justified Data Format.

Serial data is transmitted in two’s complement with the MSB first. Both Word Select (WS)
and Serial Data (SD) signals are sampled on the rising edge of the clock signal (SCK). The bits
within the data word are right justified such that the LSB is always sent in the clock period
preceding the WS transition. Left channel data are sent first indicated by WS = 1, followed
by right channel data indicated by WS = 0.

SCK ' '"—' '_von_v v v

ws " L 1

SD | x |...| x |MSB] [...] |[LSB| x |...| x |MSB| [...] |LSB|

1 1 1 1 1 ! 1 1 1 1 1 ' 1 1 1 1 1

| Left channel | Right channel

I2S_FMT_DATA_ORDER_MSB
Send MSB first

I2S_FMT_DATA_ORDER_LSB
Send LSB first

I2S_FMT_DATA_ORDER_INV
Invert bit ordering, send LSB first

I2S_FMT_CLK_FORMAT_SHIFT
Data Format bit field position.

I2S_FMT_CLK_FORMAT_MASK
Data Format bit field mask.

I2S_FMT_BIT_CLK_INV

Invert bit clock

I2S_FMT_FRAME_CLK_INV

Invert frame clock

I2S_FMT_CLK_NF_NB

156 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

NF represents “Normal Frame” whereas IF represents “Inverted Frame” NB represents “Normal
Bit CIk” whereas IB represents “Inverted Bit clk”

I2S_FMT_CLK_NF_IB

I2S_FMT_CLK_IF_NB

I2S_FMT_CLK_IF_IB

I2S_0PT_BIT_CLK_CONT

Run bit clock continuously

I2S_0OPT_BIT_CLK_GATED

Run bit clock when sending data only

I2S_0OPT_BIT_CLK_MASTER

12S driver is bit clock master

I2S_0OPT_BIT_CLK_SLAVE

12S driver is bit clock slave

I2S_0OPT_FRAME_CLK_MASTER

12S driver is frame clock master

I2S_0OPT_FRAME_CLK_SLAVE

12S driver is frame clock slave

I2S_0PT_LOOPBACK
Loop back mode.

In loop back mode RX input will be connected internally to TX output. This is used primarily
for testing.

I2S_0OPT_PINGPONG

Ping pong mode.

In ping pong mode TX output will keep alternating between a ping buffer and a pong buffer.
This is normally used in audio streams when one buffer is being populated while the other
is being played (DMAed) and vice versa. So, in this mode, 2 sets of buffers fixed in size are
used. Static Arrays are used to achieve this and hence they are never freed.

Typedefs

typedef uint8 t i2s_fmt_t

typedef uint8 t i2s_opt_t

7.2. Audio 157

Zephyr Project Documentation, Release 2.7.5

Enums

enum i2s_dir
12C Direction.

Values:

enumerator I2S_DIR_RX

Receive data

enumerator I2S_DIR_TX

Transmit data

enumerator I2S_DIR_BOTH

Both receive and transmit data

enum i2s_state

Interface state

Values:

enumerator I2S_STATE_NOT_READY

The interface is not ready.

The interface was initialized but is not yet ready to receive /
transmit data. Call i2s_configure() to configure interface and change
its state to READY.

enumerator I2S_STATE_READY

The interface is ready to receive / transmit data.

enumerator I2S_STATE_RUNNING

The interface is receiving / transmitting data.

enumerator I2S_STATE_STOPPING

The interface is draining its transmit queue.

enumerator I2S_STATE_ERROR

TX buffer underrun or RX buffer overrun has occurred.

enum i2s_trigger_cmd

Trigger command

Values:

enumerator I2S_TRIGGER_START
Start the transmission / reception of data.
If I28_DIR_TX is set some data has to be queued for transmission by

the i2s_write() function. This trigger can be used in READY state
only and changes the interface state to RUNNING.

158 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

enumerator I2S_TRIGGER_STOP
Stop the transmission / reception of data.
Stop the transmission / reception of data at the end of the current
memory block. This trigger can be used in RUNNING state only and at
first changes the interface state to STOPPING. When the current TX /
RX block is transmitted / received the state is changed to READY.

Subsequent START trigger will resume transmission / reception where
it stopped.

enumerator I2S_TRIGGER_DRAIN

Empty the transmit queue.

Send all data in the transmit queue and stop the transmission.

If the trigger is applied to the RX queue it has the same effect as
I2S_TRIGGER_STOP. This trigger can be used in RUNNING state only and
at first changes the interface state to STOPPING. When all TX blocks
are transmitted the state is changed to READY.

enumerator I2S_TRIGGER_DROP

Discard the transmit / receive queue.

Stop the transmission / reception immediately and discard the
contents of the respective queue. This trigger can be used in any
state other than NOT_READY and changes the interface state to READY.

enumerator I2S_TRIGGER_PREPARE

Prepare the queues after underrun/overrun error has occurred.

This trigger can be used in ERROR state only and changes the
interface state to READY.

Functions

int i2s_configure (const struct device *dev, enum i2s_dir dir, const struct i2s_config *cfg)
Configure operation of a host 12S controller.

The dir parameter specifies if Transmit (TX) or Receive (RX) direction will be configured by
data provided via cfg parameter.

The function can be called in NOT_READY or READY state only. If executed successfully the
function will change the interface state to READY.

If the function is called with the parameter cfg->frame clk freq set to O the interface state
will be changed to NOT READY.

Parameters
¢ dev — Pointer to the device structure for the driver instance.

* dir — Stream direction: RX, TX, or both, as defined by I2S DIR *. The
I2S_DIR BOTH value may not be supported by some drivers. For those, the
RX and TX streams need to be configured separately.

* cfg — Pointer to the structure containing configuration parameters.

Return values

. Audio 159

Zephyr Project Documentation, Release 2.7.5

* 0 - If successful.
e -EINVAL - Invalid argument.
* -ENOSYS —I2S_DIR BOTH value is not supported.

static inline const struct i2s_config *i2s_config_get (const struct device *dev, enum i2s_dir dir)
Fetch configuration information of a host I2S controller.

Parameters
¢ dev — Pointer to the device structure for the driver instance
* dir — Stream direction: RX or TX as defined by I2S DIR *

Return values Pointer — to the structure containing configuration parameters, or
NULL if un-configured

static inline int i2s_read (const struct device *dev, void **mem_block, size t *size)
Read data from the RX queue.

Data received by the I2S interface is stored in the RX queue consisting of memory blocks
preallocated by this function from rx_mem_slab (as defined by i2s_configure). Ownership of
the RX memory block is passed on to the user application which has to release it.

The data is read in chunks equal to the size of the memory block. If the interface is in READY
state the number of bytes read can be smaller.

If there is no data in the RX queue the function will block waiting for the next RX memory
block to fill in. This operation can timeout as defined by i2s_configure. If the timeout value is
set to K NO_WAIT the function is non-blocking.

Reading from the RX queue is possible in any state other than NOT READY. If the interface is
in the ERROR state it is still possible to read all the valid data stored in RX queue. Afterwards
the function will return -EIO error.

Parameters
* dev — Pointer to the device structure for the driver instance.
* mem_block — Pointer to the RX memory block containing received data.
* size — Pointer to the variable storing the number of bytes read.
Return values
* 0 - If successful.

* -EIO - The interface is in NOT _READY or ERROR state and there are no more
data blocks in the RX queue.

* -EBUSY - Returned without waiting.
* -EAGAIN — Waiting period timed out.

int i2s_buf_read (const struct device *dev, void *buf, size_t *size)
Read data from the RX queue into a provided buffer.

Data received by the 12S interface is stored in the RX queue consisting of memory blocks
preallocated by this function from rx_mem_slab (as defined by i2s_configure). Calling this
function removes one block from the queue which is copied into the provided buffer and then
freed.

The provided buffer must be large enough to contain a full memory block of data, which is
parameterized for the channel via i2s_configure().

This function is otherwise equivalent to i2s read().
Parameters

¢ dev — Pointer to the device structure for the driver instance.

160 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

* buf — Destination buffer for read data, which must be at least the as large as
the configured memory block size for the RX channel.

* size — Pointer to the variable storing the number of bytes read.
Return values
* 0 - If successful.

* -EIO - The interface is in NOT _READY or ERROR state and there are no more
data blocks in the RX queue.

* -EBUSY - Returned without waiting.
* -EAGAIN — Waiting period timed out.

static inline int i2s_write (const struct device *dev, void *mem _block, size t size)
Write data to the TX queue.

Data to be sent by the I2S interface is stored first in the TX queue. TX queue consists of
memory blocks preallocated by the user from tx_mem slab (as defined by i2s_configure).
This function takes ownership of the memory block and will release it when all data are
transmitted.

If there are no free slots in the TX queue the function will block waiting for the next TX
memory block to be send and removed from the queue. This operation can timeout as defined
by i2s_configure. If the timeout value is set to K_NO_WAIT the function is non-blocking.

Writing to the TX queue is only possible if the interface is in READY or RUNNING state.
Parameters
* dev - Pointer to the device structure for the driver instance.
* mem_block — Pointer to the TX memory block containing data to be sent.

* size — Number of bytes to write. This value has to be equal or smaller than the
size of the memory block.

Return values
* 0 - If successful.
* -EIO - The interface is not in READY or RUNNING state.
* -EBUSY - Returned without waiting.
* _EAGAIN — Waiting period timed out.

int i2s_buf_write(const struct device *dev, void *buf, size t size)
Write data to the TX queue from a provided buffer.

This function acquires a memory block from the 12S channel TX queue and copies the provided
data buffer into it. It is otherwise equivalent to i2s write().

Parameters
¢ dev — Pointer to the device structure for the driver instance.
* buf — Pointer to a buffer containing the data to transmit.

* size — Number of bytes to write. This value has to be equal or smaller than the
size of the channel’s TX memory block configuration.

Return values
* 0 - If successful.
* _EIO - The interface is not in READY or RUNNING state.
* -EBUSY - Returned without waiting.

* -EAGAIN — Waiting period timed out.

7.2.

Audio 161

Zephyr Project Documentation, Release 2.7.5

-ENOMEM — No memory in TX slab queue.

-EINVAL - Size parameter larger than TX queue memory block.

int i2s_trigger (const struct device *dev, enum i2s_dir dir, enum i2s_trigger cmd cmd)

Send a trigger command.

Parameters

dev — Pointer to the device structure for the driver instance.

dir - Stream direction: RX, TX, or both, as defined by 12S DIR *. The
I2S DIR_BOTH value may not be supported by some drivers. For those, trig-
gering need to be done separately for the RX and TX streams.

cmd — Trigger command.

Return values

0 — If successful.
-EINVAL - Invalid argument.

-EIO - The trigger cannot be executed in the current state or a DMA channel
cannot be allocated.

-ENOMEM — RX/TX memory block not available.
-ENOSYS — I12S_DIR_BOTH value is not supported.

struct i2s_config

#include <i2s.h> Interface configuration options.

Memory slab pointed to by the mem_slab field has to be defined and initialized by the user.
For 12S driver to function correctly number of memory blocks in a slab has to be at least 2
per queue. Size of the memory block should be multiple of frame size where frame size =
(channels * word_size_bytes). As an example 16 bit word will occupy 2 bytes, 24 or 32 bit

word will occupy 4 bytes.

Please check Zephyr Kernel Primer for more information on memory slabs.

Remark

When 12S data format is selected parameter channels is ignored, number of words in a frame

is always 2.

Param word_size Number of bits representing one data word.

Param channels Number of words per frame.

Param format Data stream format as defined by I2S_ FMT _* constants.

Param options Configuration options as defined by I2S OPT * constants.

Param frame_clk_freq Frame clock (WS) frequency, this is sampling rate.

Param mem_slab memory slab to store RX/TX data.

Param block_size Size of one RX/TX memory block (buffer) in bytes.

Param timeout Read/Write timeout. Number of milliseconds to wait in case TX
queue is full or RX queue is empty, or 0, or SYS FOREVER_MS.

162

Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

7.3 Asynchronous Notification APIs

Zephyr APIs often include async functions where an operation is initiated and the application needs to
be informed when it completes, and whether it succeeded. Using k_poll () is often a good method, but
some application architectures may be more suited to a callback notification, and operations like enabling
clocks and power rails may need to be invoked before kernel functions are available so a busy-wait for
completion may be needed.

This API is intended to be embedded within specific subsystems such as On-Off Manager and other APIs
that support async transactions. The subsystem wrappers are responsible for extracting operation-specific
data from requests that include a notification element, and for invoking callbacks with the parameters
required by the API.

A limitation is that this API is not suitable for System Calls because:
* sys_notify is not a kernel object;

* copying the notification content from userspace will break use of CONTAINER_OF in the implement-
ing function;

* neither the spin-wait nor callback notification methods can be accepted from userspace callers.

Where a notification is required for an asynchronous operation invoked from a user mode thread the
subsystem or driver should provide a syscall API that uses k_poll_signal for notification.

7.3.1 API Reference

group sys_notify_apis

Typedefs

typedef void (*sys_notify_generic_callback)()
Generic signature used to notify of result completion by callback.

Functions with this role may be invoked from any context including pre-kernel, ISR, or coop-
erative or pre-emptible threads. Compatible functions must be isr-ok and not sleep.

Parameters that should generally be passed to such functions include:

* a pointer to a specific client request structure, i.e. the one that contains the sys notify
structure.

* the result of the operation, either as passed to sys _notify finalize() or extracted afterwards
using sys_notify fetch result(). Expected values are service-specific, but the value shall be
non-negative if the operation succeeded, and negative if the operation failed.

Functions

static inline uint32_t sys_notify_get_method (const struct sys notify *notify)
int sys_notify_validate (struct sys_notify *notify)
Validate and initialize the notify structure.

This should be invoked at the start of any service-specific configuration validation. It ensures
that the basic asynchronous notification configuration is consistent, and clears the result.

7.3. Asynchronous Notification APIs 163

Zephyr Project Documentation, Release 2.7.5

Note that this function does not validate extension bits (zeroed by async notify API init func-
tions like sys notify init_callback()). It may fail to recognize that an uninitialized structure
has been passed because only method bits of flags are tested against method settings. To re-
duce the chance of accepting an uninititalized operation service validation of structures that
contain an sys notify instance should confirm that the extension bits are set or cleared as
expected.

Return values
e 0 - on successful validation and reinitialization
* -EINVAL - if the configuration is not valid.

sys_notify generic _callback sys_notify_finalize (struct sys notify *notify, int res)
Record and signal the operation completion.

Parameters
* notify — pointer to the notification state structure.

* res - the result of the operation. Expected values are service-specific, but the
value shall be non-negative if the operation succeeded, and negative if the
operation failed.

Returns If the notification is to be done by callback this returns the generic version
of the function to be invoked. The caller must immediately invoke that function
with whatever arguments are expected by the callback. If notification is by spin-
wait or signal, the notification has been completed by the point this function
returns, and a null pointer is returned.

static inline int sys_notify_fetch_result (const struct sys notify *notify, int *result)
Check for and read the result of an asynchronous operation.

Parameters

* notify — pointer to the object used to specify asynchronous function behavior
and store completion information.

* result - pointer to storage for the result of the operation. The result is stored
only if the operation has completed.

Return values
* 0 - if the operation has completed.
* -EAGAIN - if the operation has not completed.

static inline void sys_notify_init_spinwait (struct sys notify *notify)
Initialize a notify object for spin-wait notification.

Clients that use this initialization receive no asynchronous notification, and instead must pe-
riodically check for completion using sys notify fetch result().

On completion of the operation the client object must be reinitialized before it can be re-used.
Parameters
* notify — pointer to the notification configuration object.

static inline void sys_notify_init_signal (struct sys notify *notify, struct k_poll signal *sigp)
Initialize a notify object for (k_poll) signal notification.

Clients that use this initialization will be notified of the completion of operations through the
provided signal.

On completion of the operation the client object must be reinitialized before it can be re-used.

164 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

Note: This capability is available only when CONFIG_POLL is selected.

Parameters
* notify — pointer to the notification configuration object.

* sigp - pointer to the signal to use for notification. The value must not be null.
The signal must be reset before the client object is passed to the on-off service
APL.

static inline void sys_notify_init_callback(struct sys notify *notify, sys notify generic callback
handler)

Initialize a notify object for callback notification.
Clients that use this initialization will be notified of the completion of operations through the

provided callback. Note that callbacks may be invoked from various contexts depending on
the specific service; see sys notify generic_callback.

On completion of the operation the client object must be reinitialized before it can be re-used.
Parameters
* notify — pointer to the notification configuration object.
* handler — a function pointer to use for notification.

static inline bool sys_notify_uses_callback(const struct sys notify *notify)
Detect whether a particular notification uses a callback.

The generic handler does not capture the signature expected by the callback, and the transla-
tion to a service-specific callback must be provided by the service. This check allows abstracted
services to reject callback notification requests when the service doesn’t provide a translation
function.

Returns true if and only if a callback is to be used for notification.

struct sys_notify

#include <notify.h> State associated with notification for an asynchronous operation.

Objects of this type are allocated by a client, which must use an initialization function (e.g.
sys_notify _init signal()) to configure them. Generally the structure is a member of a service-
specific client structure, such as onoff client.

Control of the containing object transfers to the service provider when a pointer to the ob-
ject is passed to a service function that is documented to take control of the object, such as
onoff service request(). While the service provider controls the object the client must not
change any object fields. Control reverts to the client:

e if the call to the service API returns an error;

* when operation completion is posted. This may occur before the call to the service API
returns.

Operation completion is technically posted when the flags field is updated so that
sys_notify fetch result() returns success. This will happen before the signal is posted or call-
back is invoked. Note that although the manager will no longer reference the sys notify object
past this point, the containing object may have state that will be referenced within the call-
back. Where callbacks are used control of the containing object does not revert to the client
until the callback has been invoked. (Re-use within the callback is explicitly permitted.)

After control has reverted to the client the notify object must be reinitialized for the next
operation.

7.3. Asynchronous Notification APIs 165

Zephyr Project Documentation, Release 2.7.5

The content of this structure is not public API to clients: all configuration and inspection
should be done with functions like sys notify init callback() and sys notify fetch result().
However, services that use this structure may access certain fields directly.

union method
#include <notify.h>

Public Members

struct k_poll _signal *signal

sys_notify generic callback callback

7.4 Bluetooth

7.4.1 Connection Management

The Zephyr Bluetooth stack uses an abstraction called bt_conn to represent connections to other devices.
The internals of this struct are not exposed to the application, but a limited amount of information (such
as the remote address) can be acquired using the bt_conn_get_info() APL Connection objects are
reference counted, and the application is expected to use the bt_conn_ref () API whenever storing a
connection pointer for a longer period of time, since this ensures that the object remains valid (even if the
connection would get disconnected). Similarly the b¢_conn_unref () APIis to be used when releasing a
reference to a connection.

An application may track connections by registering a bt_conn_cb struct using the
bt_conn_cb_register() or c:func:BT_CONN_CB_DEFINE() APIs. This struct lets the application
define callbacks for connection & disconnection events, as well as other events related to a connection
such as a change in the security level or the connection parameters. When acting as a central the appli-
cation will also get hold of the connection object through the return value of the bt_conn_create_le()
APIL.

API Reference

group bt_conn

Connection management.

Defines

BT_LE_CONN_PARAM_INIT(int min, int max, lat, to)
Initialize connection parameters.

Parameters
e int_min — Minimum Connection Interval (N * 1.25 ms)
e int_max — Maximum Connection Interval (N * 1.25 ms)
* lat — Connection Latency

* to — Supervision Timeout (N * 10 ms)

166 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

BT_LE_CONN_PARAM(int_min, int_max, lat, to)
Helper to declare connection parameters inline

Parameters
* int_min — Minimum Connection Interval (N * 1.25 ms)
e int_max — Maximum Connection Interval (N * 1.25 ms)
* lat — Connection Latency

* to — Supervision Timeout (N * 10 ms)

BT_LE_CONN_PARAM_DEFAULT

Default LE connection parameters: Connection Interval: 30-50 ms Latency: 0 Timeout: 4 s

BT_CONN_LE_PHY_PARAM_INIT(pref tx phy, pref rx_phy)
Initialize PHY parameters

Parameters
* _pref_tx_phy - Bitmask of preferred transmit PHYs.
* _pref_rx_phy - Bitmask of preferred receive PHYs.

BT_CONN_LE_PHY_PARAM(_ pref tx_phy, pref rx phy)
Helper to declare PHY parameters inline

Parameters
* _pref_tx_phy - Bitmask of preferred transmit PHYs.

* _pref_rx_phy - Bitmask of preferred receive PHYs.

BT_CONN_LE_PHY_PARAM_1M
Only LE 1M PHY

BT_CONN_LE_PHY_PARAM_2M
Only LE 2M PHY

BT_CONN_LE_PHY_PARAM_CODED
Only LE Coded PHY.

BT_CONN_LE_PHY_PARAM_ALL
All LE PHYs.

BT_CONN_LE_DATA_LEN_PARAM_INIT(tx max len, tx max time)
Initialize transmit data length parameters

Parameters
* _tx_max_len — Maximum Link Layer transmission payload size in bytes.
* _tx_max_time — Maximum Link Layer transmission payload time in us.

BT_CONN_LE_DATA_LEN_PARAM(_tx max len, tx max_time)
Helper to declare transmit data length parameters inline

Parameters
* _tx_max_len — Maximum Link Layer transmission payload size in bytes.

* _tx_max_time — Maximum Link Layer transmission payload time in us.

7.4. Bluetooth 167

Zephyr Project Documentation, Release 2.7.5

BT_LE_DATA_LEN_PARAM_DEFAULT
Default LE data length parameters.

BT_LE_DATA_LEN_PARAM_MAX

Maximum LE data length parameters.

BT_CONN_ROLE_MASTER

Connection role (central or peripheral)

BT_CONN_ROLE_SLAVE
BT_CONN_LE_CREATE_PARAM_INIT(options, _interval, window)
Initialize create connection parameters.
Parameters
* _options — Create connection options.
* _interval — Create connection scan interval (N * 0.625 ms).
e _window — Create connection scan window (N * 0.625 ms).

BT_CONN_LE_CREATE_PARAM(_options, _interval, window)
Helper to declare create connection parameters inline

Parameters
* _options — Create connection options.
e _interval — Create connection scan interval (N * 0.625 ms).

e _window — Create connection scan window (N * 0.625 ms).

BT_CONN_LE_CREATE_CONN

Default LE create connection parameters. Scan continuously by setting scan interval equal to
scan window.

BT_CONN_LE_CREATE_CONN_AUTO

Default LE create connection using filter accept list parameters. Scan window: 30 ms. Scan
interval: 60 ms.

BT_CONN_CB_DEFINE(_name)
Register a callback structure for connection events.

Parameters

e _name — Name of callback structure.

BT_PASSKEY_INVALID

Special passkey value that can be used to disable a previously set fixed passkey.

BT_BR_CONN_PARAM_INIT(role switch)
Initialize BR/EDR connection parameters.

Parameters

e role_switch — True if role switch is allowed

168 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

BT_BR_CONN_PARAM(role switch)
Helper to declare BR/EDR connection parameters inline

Parameters

e role_switch — True if role switch is allowed

BT_BR_CONN_PARAM_DEFAULT

Default BR/EDR connection parameters: Role switch allowed

Enums

enum [anonymous]

Connection PHY options

Values:

enumerator BT_CONN_LE_PHY_OPT_NONE = 0O

Convenience value when no options are specified.

enumerator BT_CONN_LE_PHY_OPT_CODED_S2 = BIT(0)

LE Coded using S=2 coding preferred when transmitting.

enumerator BT_CONN_LE_PHY_OPT_CODED_S8 = BIT (1)

LE Coded using S=8 coding preferred when transmitting.

enum [anonymous]

Connection Type

Values:

enumerator BT_CONN_TYPE_LE = BIT(0)
LE Connection Type

enumerator BT_CONN_TYPE_BR = BIT(1)
BR/EDR Connection Type

enumerator BT_CONN_TYPE_SCO = BIT(2)
SCO Connection Type

enumerator BT_CONN_TYPE_ISO = BIT(3)
ISO Connection Type

enumerator BT_CONN_TYPE_ALL = BT CONN TYPE LE | BT CONN _TYPE BR |
BT CONN_TYPE_SCO | BT _CONN_TYPE_ISO

All Connection Type

enum [anonymous]

Values:

enumerator BT_CONN_ROLE_CENTRAL = O

. Bluetooth 169

Zephyr Project Documentation, Release 2.7.5

enumerator BT_CONN_ROLE_PERIPHERAL = 1

enum bt_conn_le_tx_power_phy

Values:

enumerator BT_CONN_LE_TX_POWER_PHY_NONE

Convenience macro for when no PHY is set.

enumerator BT_CONN_LE_TX_POWER_PHY_1M
LE 1M PHY

enumerator BT_CONN_LE_TX_POWER_PHY_2M
LE 2M PHY

enumerator BT_CONN_LE_TX_POWER_PHY_CODED_S8
LE Coded PHY using S=8 coding.

enumerator BT_CONN_LE_TX_POWER_PHY_CODED_S2
LE Coded PHY using S=2 coding.

enum [anonymous]

Values:

enumerator BT_CONN_LE_OPT_NONE = 0

Convenience value when no options are specified.
enumerator BT_CONN_LE_OPT_CODED = BIT(0)
Enable LE Coded PHY.

Enable scanning on the LE Coded PHY.

enumerator BT_CONN_LE_OPT_NO_1M = BIT(1)
Disable LE 1M PHY.

Disable scanning on the LE 1M PHY.

Onote Requires @ref BT_CONN_LE_OPT_CODED.

enum bt_security_t

Security level.

Values:

enumerator BT_SECURITY_LO
Level 0: Only for BR/EDR special cases, like SDP

enumerator BT_SECURITY_L1

Level 1: No encryption and no authentication.

170

Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

enumerator BT_SECURITY_L2
Level 2: Encryption and no authentication (no MITM).

enumerator BT_SECURITY_L3
Level 3: Encryption and authentication (MITM).

enumerator BT_SECURITY_L4

Level 4: Authenticated Secure Connections and 128-bit key.

enumerator BT_SECURITY_FORCE_PAIR = BIT(7)

Bit to force new pairing procedure, bit-wise OR with requested security level.

enum bt_security_err

Values:

enumerator BT_SECURITY_ERR_SUCCESS

Security procedure successful.

enumerator BT_SECURITY_ERR_AUTH_FAIL

Authentication failed.

enumerator BT_SECURITY_ERR_PIN_OR_KEY_MISSING

PIN or encryption key is missing.

enumerator BT_SECURITY_ERR_OOB_NOT_AVAILABLE
OOB data is not available.

enumerator BT_SECURITY_ERR_AUTH_REQUIREMENT

The requested security level could not be reached.

enumerator BT_SECURITY_ERR_PAIR_NOT_SUPPORTED

Pairing is not supported

enumerator BT_SECURITY_ERR_PAIR_NOT_ALLOWED

Pairing is not allowed.

enumerator BT_SECURITY_ERR_INVALID_PARAM

Invalid parameters.

enumerator BT_SECURITY_ERR_KEY_REJECTED
Distributed Key Rejected

enumerator BT_SECURITY_ERR_UNSPECIFIED

Pairing failed but the exact reason could not be specified.

Functions

7.4. Bluetooth 171

Zephyr Project Documentation, Release 2.7.5

struct bt_conn *bt_conn_ref (struct bt_conn *conn)
Increment a connection’s reference count.

Increment the reference count of a connection object.

Note: Will return NULL if the reference count is zero.

Parameters
* conn - Connection object.
Returns Connection object with incremented reference count, or NULL if the refer-

ence count is zero.

void bt_conn_unref (struct bt_conn *conn)
Decrement a connection’s reference count.

Decrement the reference count of a connection object.
Parameters
* conn — Connection object.

void bt_conn_foreach (int type, void (*func)(struct bt_conn *conn, void *data), void *data)
Iterate through all existing connections.

Parameters
* type — Connection Type
* func - Function to call for each connection.
* data — Data to pass to the callback function.

struct bt_conn *bt_conn_lookup_addr_le(uint8 tid, const bt addr le t *peer)
Look up an existing connection by address.

Look up an existing connection based on the remote address.

The caller gets a new reference to the connection object which must be released with
bt conn_unref() once done using the object.

Parameters
* id - Local identity (in most cases BT ID DEFAULT).
* peer — Remote address.

Returns Connection object or NULL if not found.

const bt addr le t *bt_conn_get_dst (const struct bt _conn *conn)
Get destination (peer) address of a connection.

Parameters
* conn - Connection object.
Returns Destination address.

uint8_t bt_conn_index (struct bt_conn *conn)
Get array index of a connection.

This function is used to map bt _conn to index of an array of connections. The array has
CONFIG BT MAX CONN elements.

Parameters

* conn — Connection object.

172 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

Returns Index of the connection object. The range of the returned value is
0..CONFIG_BT MAX CONN-1

int bt_conn_get_info (const struct bt_conn *conn, struct bt _conn_info *info)
Get connection info.

Parameters
* conn — Connection object.
* info — Connection info object.
Returns Zero on success or (negative) error code on failure.

int bt_conn_get_remote_info (struct bt_conn *conn, struct bt conn_remote_info *remote_info)
Get connection info for the remote device.

Note: In order to retrieve the remote version (version, manufacturer and subversion)
CONFIG_BT_REMOTE_VERSION must be enabled

Note: The remote information is exchanged directly after the connection has been es-
tablished. The application can be notified about when the remote information is available
through the remote_info_available callback.

Parameters

* conn — Connection object.

* remote_info — Connection remote info object.
Returns Zero on success or (negative) error code on failure.
Returns -EBUSY The remote information is not yet available.

int bt_conn_le_get_tx_power_level(struct bt conn *conn, struct bt conn le tx power
*tx_power_level)

Get connection transmit power level.
Parameters
* conn — Connection object.
* tx_power_level — Transmit power level descriptor.
Returns Zero on success or (negative) error code on failure.
Returns -ENOBUFS HCI command buffer is not available.

int bt_conn_le_param_update (struct bt_conn *conn, const struct bt le conn_param *param)
Update the connection parameters.

If the local device is in the peripheral role then updating the connection parameters will be de-
layed. This delay can be configured by through the CONFIG_BT_CONN_PARAM_UPDATE_TIMEQUT
option.

Parameters
* conn — Connection object.
* param - Updated connection parameters.

Returns Zero on success or (negative) error code on failure.

7.4.

Bluetooth 173

Zephyr Project Documentation, Release 2.7.5

int bt_conn_le_data_len_update (struct bt _conn *conn, const struct bt conn_le data len param
*param)

Update the connection transmit data length parameters.
Parameters
* conn - Connection object.
* param - Updated data length parameters.
Returns Zero on success or (negative) error code on failure.

int bt_conn_le_phy_update (struct bt _conn *conn, const struct bt conn_le phy param *param)
Update the connection PHY parameters.

Update the preferred transmit and receive PHYs of the connection. Use
BT GAP_LE PHY NONE to indicate no preference.

Parameters
* conn — Connection object.
» param — Updated connection parameters.
Returns Zero on success or (negative) error code on failure.

int bt_conn_disconnect (struct bt_conn *conn, uint8 t reason)
Disconnect from a remote device or cancel pending connection.

Disconnect an active connection with the specified reason code or cancel pending outgoing
connection.

The disconnect reason for a normal disconnect should be:
BT _HCI_ERR_REMOTE_USER_TERM_CONN.

The following disconnect reasons are accepted:
« BT HCI ERR AUTH FAIL
« BT _HCI ERR_REMOTE_USER_TERM_CONN
« BT _HCI ERR_REMOTE_LOW_RESOURCES
 BT_HCI_ERR_REMOTE_POWER_OFF
« BT _HCI_ERR_UNSUPP_REMOTE_FEATURE
« BT _HCI_ERR_PAIRING NOT SUPPORTED
« BT _HCI ERR_UNACCEPT CONN_PARAM

Parameters
¢ conn — Connection to disconnect.
e reason — Reason code for the disconnection.
Returns Zero on success or (negative) error code on failure.
int bt_conn_le_create(const bt addr le t *peer, const struct bt conn_le_create param

*create_param, const struct bt le conn_param *conn_param, struct
bt _conn **conn)

Initiate an LE connection to a remote device.
Allows initiate new LE link to remote peer using its address.

The caller gets a new reference to the connection object which must be released with
bt conn_unref() once done using the object.

This uses the General Connection Establishment procedure.

174 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

The application must disable explicit scanning before initiating a new LE connection.
Parameters
* peer — [in] Remote address.
* create_param — [in] Create connection parameters.
* conn_param — [in] Initial connection parameters.
* conn - [out] Valid connection object on success.
Returns Zero on success or (negative) error code on failure.

int bt_conn_le_create_auto(const struct bt _conn_le create param *create_param, const struct
bt le conn_param *conn_param)

Automatically connect to remote devices in the filter accept list..

This uses the Auto Connection Establishment procedure. The procedure will continue until a
single connection is established or the procedure is stopped through bt conn_create_auto_stop.
To establish connections to all devices in the the filter accept list the procedure should be
started again in the connected callback after a new connection has been established.

Parameters

* create_param - Create connection parameters

* conn_param — [nitial connection parameters.
Returns Zero on success or (negative) error code on failure.
Returns -ENOMEM No free connection object available.

int bt_conn_create_auto_stop(void)

Stop automatic connect creation.
Returns Zero on success or (negative) error code on failure.

int bt_le_set_auto_conn(const bt _addr le t *addr, const struct bt le conn_param *param)
Automatically connect to remote device if it’s in range.
This function enables/disables automatic connection initiation. Every time the device loses

the connection with peer, this connection will be re-established if connectable advertisement
from peer is received.

Note: Auto connect is disabled during explicit scanning.

Parameters
e addr — Remote Bluetooth address.

* param - If non-NULL, auto connect is enabled with the given parameters. If
NULL, auto connect is disabled.

Returns Zero on success or error code otherwise.

int bt_conn_set_security(struct bt_conn *conn, bt security t sec)
Set security level for a connection.

This function enable security (encryption) for a connection. If the device has bond information
for the peer with sufficiently strong key encryption will be enabled. If the connection is already
encrypted with sufficiently strong key this function does nothing.

If the device has no bond information for the peer and is not already paired then the pairing
procedure will be initiated. If the device has bond information or is already paired and the
keys are too weak then the pairing procedure will be initiated.

7.4.

Bluetooth 175

Zephyr Project Documentation, Release 2.7.5

This function may return error if required level of security is not possible to achieve due to
local or remote device limitation (e.g., input output capabilities), or if the maximum number
of paired devices has been reached.

This function may return error if the pairing procedure has already been initiated by the local
device or the peer device.

Note: When CONFIG_BT_SMP_SC_ONLY is enabled then the security level will always be level
4.

Note: When CONFIG_BT_SMP_0OB_LEGACY_PAIR_ONLY is enabled then the security level will
always be level 3.

Parameters
* conn — Connection object.
* sec — Requested security level.

Returns 0 on success or negative error

bt security t bt_conn_get_security(struct bt_conn *conn)
Get security level for a connection.

Returns Connection security level

uint8 t bt_conn_enc_key_size (struct bt_conn *conn)
Get encryption key size.

This function gets encryption key size. If there is no security (encryption) enabled 0 will be
returned.

Parameters
* conn - Existing connection object.
Returns Encryption key size.

void bt_conn_cb_register (struct bt conn_cb *cb)
Register connection callbacks.

Register callbacks to monitor the state of connections.
Parameters
* cb — Callback struct. Must point to memory that remains valid.

void bt_set_bondable (bool enable)
Enable/disable bonding.

Set/clear the Bonding flag in the Authentication Requirements of SMP Pairing Re-
quest/Response data. The initial value of this flag depends on BT BONDABLE Kconfig setting.
For the vast majority of applications calling this function shouldn’t be needed.

Parameters
* enable - Value allowing/disallowing to be bondable.

void bt_set_oob_data_flag(bool enable)
Allow/disallow remote OOB data to be used for pairing.

Set/clear the OOB data flag for SMP Pairing Request/Response data. The initial value of this
flag depends on BT _OOB_DATA PRESENT Kconfig setting.

176 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

Parameters
* enable - Value allowing/disallowing remote OOB data.
int bt_le_oob_set_legacy_tk(struct bt _conn *conn, const uint8 t *tk)
Set OOB Temporary Key to be used for pairing.

This function allows to set OOB data for the LE legacy pairing procedure. The function should
only be called in response to the oob_data_request() callback provided that the legacy method
is user pairing.

Parameters

* conn — Connection object

* tk — Pointer to 16 byte long TK array
Returns Zero on success or -EINVAL if NULL

int bt_le_oob_set_sc_data(struct bt_conn *conn, const struct bt le_oob _sc_data *oobd_local,
const struct bt le oob_sc_data *oobd_remote)

Set OOB data during LE Secure Connections (SC) pairing procedure.

This function allows to set OOB data during the LE SC pairing procedure. The function should
only be called in response to the oob_data_request() callback provided that LE SC method is

used for pairing.

The user should submit OOB data according to the information received in the callback. This
may yield three different configurations: with only local OOB data present, with only remote
OOB data present or with both local and remote OOB data present.

Parameters
* conn — Connection object
* oobd_local — Local OOB data or NULL if not present
* oobd_remote — Remote OOB data or NULL if not present

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_le_oob_get_sc_data(struct bt _conn *conn, const struct bt _le oob sc_data **oobd_local,
const struct bt _le oob _sc_data **oobd_remote)

Get OOB data used for LE Secure Connections (SC) pairing procedure.

This function allows to get OOB data during the LE SC pairing procedure that were set by the
bt le oob set sc _data() API.

Note: The OOB data will only be available as long as the connection object associated with
it is valid.

Parameters
* conn — Connection object
* oobd_local — Local OOB data or NULL if not set
* oobd_remote — Remote OOB data or NULL if not set

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

7.4. Bluetooth 177

Zephyr Project Documentation, Release 2.7.5

int bt_passkey_set (unsigned int passkey)
Set a fixed passkey to be used for pairing.

This API is only available when the CONFIG BT FIXED PASSKEY configuration option has
been enabled.

Sets a fixed passkey to be used for pairing. If set, the pairing confim() callback will be called
for all incoming pairings.

Parameters

* passkey — A valid passkey (0 - 999999) or BT PASSKEY INVALID to disable a
previously set fixed passkey.

Returns 0 on success or a negative error code on failure.

int bt_conn_auth_cb_register (const struct bt_conn_auth_cb *cb)
Register authentication callbacks.

Register callbacks to handle authenticated pairing. Passing NULL unregisters a previous call-
backs structure.

Parameters
e cb — Callback struct.
Returns Zero on success or negative error code otherwise

int bt_conn_auth_passkey_entry (struct bt_conn *conn, unsigned int passkey)
Reply with entered passkey.

This function should be called only after passkey entry callback from bt _conn_auth_cb struc-
ture was called.

Parameters
* conn — Connection object.
* passkey — Entered passkey.
Returns Zero on success or negative error code otherwise

int bt_conn_auth_cancel (struct bt_conn *conn)
Cancel ongoing authenticated pairing.

This function allows to cancel ongoing authenticated pairing.
Parameters
* conn — Connection object.
Returns Zero on success or negative error code otherwise

int bt_conn_auth_passkey_confirm(struct bt conn *conn)
Reply if passkey was confirmed to match by user.

This function should be called only after passkey confirm callback from bt conn_auth cb
structure was called.

Parameters
* conn — Connection object.
Returns Zero on success or negative error code otherwise

int bt_conn_auth_pairing_confirm(struct bt_conn *conn)

Reply if incoming pairing was confirmed by user.

This function should be called only after pairing confirm callback from bt conn_auth_cb struc-
ture was called if user confirmed incoming pairing.

178 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

Parameters
* conn - Connection object.
Returns Zero on success or negative error code otherwise

int bt_conn_auth_pincode_entry (struct bt _conn *conn, const char *pin)
Reply with entered PIN code.

This function should be called only after PIN code callback from bt conn_auth cb structure
was called. It’s for legacy 2.0 devices.

Parameters
* conn — Connection object.
* pin - Entered PIN code.
Returns Zero on success or negative error code otherwise

struct bt_conn *bt_conn_create_br (const bt addr t *peer, const struct bt br _conn_param
*param)

Initiate an BR/EDR connection to a remote device.
Allows initiate new BR/EDR link to remote peer using its address.

The caller gets a new reference to the connection object which must be released with
bt conn_unref() once done using the object.

Parameters
* peer — Remote address.
* param - Initial connection parameters.
Returns Valid connection object on success or NULL otherwise.

struct bt_conn *bt_conn_create_sco(const bt_addr t *peer)
Initiate an SCO connection to a remote device.

Allows initiate new SCO link to remote peer using its address.

The caller gets a new reference to the connection object which must be released with
bt conn_unref() once done using the object.

Parameters
* peer — Remote address.

Returns Valid connection object on success or NULL otherwise.

struct bt_le_conn_param

#include <conn.h> Connection parameters for LE connections

struct bt_conn_le_phy_info

#include <conn.h> Connection PHY information for LE connections

Public Members

uint8 t rx_phy

Connection transmit PHY

struct bt_conn_le_phy_param

#include <conn.h> Preferred PHY parameters for LE connections

7.4.

Bluetooth 179

Zephyr Project Documentation, Release 2.7.5

Public Members

uint8_t pref_tx_phy
Connection PHY options.

uint8 t pref_rx_phy
Bitmask of preferred transmit PHYs

struct bt _conn_le_data_len_info

#include <conn.h> Connection data length information for LE connections

Public Members

uintl6 t tx_max_len

Maximum Link Layer transmission payload size in bytes.

uintl6_t tx_max_time

Maximum Link Layer transmission payload time in us.

uintl6 t rx_max_len

Maximum Link Layer reception payload size in bytes.

uintl6 t rx_max_time

Maximum Link Layer reception payload time in us.

struct bt_conn_le_data_len_param
#include <conn.h> Connection data length parameters for LE connections

Public Members

uintl6 t tx_max_len

Maximum Link Layer transmission payload size in bytes.

uintl6_t tx_max_time
Maximum Link Layer transmission payload time in us.

struct bt_conn_le_info

#include <conn.h> LE Connection Info Structure

Public Members

const bt_addr le t *src
Source (Local) Identity Address

const bt addr le t *dst

Destination (Remote) Identity Address or remote Resolvable Private Address (RPA) before
identity has been resolved.

180 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

const bt addr le t *local

Local device address used during connection setup.

const bt addr le t *remote

Remote device address used during connection setup.

uintl6 t latency

Connection interval

uintl6_t timeout

Connection peripheral latency

const struct bt conn_le_phy info *phy

Connection supervision timeout

struct bt_conn_br_info

#include <conn.h> BR/EDR Connection Info Structure

struct bt_conn_info

#include <conn.h> Connection Info Structure
Public Members
uint8 t type

Connection Type.

uint8 trole

Connection Role.

uint8 t id

Which local identity the connection was created with

struct bt _conn_le_info le

LE Connection specific Info.

struct bt _conn_br_info br

BR/EDR Connection specific Info.

union bt_conn_info.[anonymous] [anonymous]

Connection Type specific Info.

struct bt_conn_le_remote_info

#include <conn.h> LE Connection Remote Info Structure

Public Members

7.4. Bluetooth 181

Zephyr Project Documentation, Release 2.7.5

const uint8 t *features

Remote LE feature set (bitmask).

struct bt_conn_br_remote_info

#include <conn.h> BR/EDR Connection Remote Info structure

Public Members

const uint8_t *features

Remote feature set (pages of bitmasks).

uint8_t num_pages

Number of pages in the remote feature set.

struct bt_conn_remote_info

#include <conn.h> Connection Remote Info Structure.

Note: The version, manufacturer and subversion fields will only contain valid data if
CONFIG_BT_REMOTE_VERSION is enabled.

Public Members
uint8 _t type
Connection Type

uint8 t version

Remote Link Layer version

uintl6_t manufacturer

Remote manufacturer identifier

uintl6_t subversion

Per-manufacturer unique revision

struct bt _conn_le_remote_info le

LE connection remote info

struct bt_conn_br_remote_info br

BR/EDR connection remote info

struct bt_conn_le_tx_power

#include <conn.h> LE Transmit Power Level Structure

182 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

Public Members

uint8_t phy
Input: 1M, 2M, Coded S2 or Coded S8

int8_t current_level

Output: current transmit power level

int8 tmax_level

Output: maximum transmit power level

struct bt_conn_le_create_param

#include <conn.h>

Public Members

uint32_t options
Bit-field of create connection options.

uintl6 t interval
Scan interval (N * 0.625 ms)

uintl6_t window
Scan window (N * 0.625 ms)

uintl6 t interval_coded
Scan interval LE Coded PHY (N * 0.625 MS)

Set zero to use same as LE 1M PHY scan interval

uintl6 t window_coded
Scan window LE Coded PHY (N * 0.625 MS)

Set zero to use same as LE 1M PHY scan window.

uintl6_t timeout
Connection initiation timeout (N * 10 MS)

Set zero to use the default CONFIG_BT_CREATE_CONN_TIMEQUT timeout.

Note: Unused in bt conn_le create_auto

struct bt_conn_cb
#include <conn.h> Connection callback structure.

This structure is used for tracking the state of a connection. It is registered with the help of
the bt _conn_cb_register() APL It’s permissible to register multiple instances of this bt conn_cb
type, in case different modules of an application are interested in tracking the connection
state. If a callback is not of interest for an instance, it may be set to NULL and will as a
consequence not be used for that instance.

7.4. Bluetooth 183

Zephyr Project Documentation, Release 2.7.5

Public Members

void (*connected)(struct bt_conn *conn, uint8 t err)

A new connection has been established.

This callback notifies the application of a new connection. In case the err parameter is
non-zero it means that the connection establishment failed.

err can mean either of the following:

* BT HCI ERR UNKNOWN CONN ID Creating the connection started by
bt conn_le create was canceled either by the user through bt conn disconnect
or by the timeout in the host through bt conn_le create_param timeout parameter,
which defaults to CONFIG_BT_CREATE_CONN_TIMEQUT seconds.

e BT_HCI_ERR_ADV_TIMEQUT High duty cycle directed connectable advertiser started by
bt le adv start failed to be connected within the timeout.

Note: If the connection was established from an advertising set then the advertising set
cannot be restarted directly from this callback. Instead use the connected callback of the
advertising set.

Param conn New connection object.
Param err HCI error. Zero for success, non-zero otherwise.

void (*disconnected)(struct bt_conn *conn, uint8_t reason)

A connection has been disconnected.
This callback notifies the application that a connection has been disconnected.

When this callback is called the stack still has one reference to the connection object. If
the application in this callback tries to start either a connectable advertiser or create a
new connection this might fail because there are no free connection objects available. To
avoid this issue it is recommended to either start connectable advertise or create a new
connection using k work submit or increase CONFIG_BT_MAX_CONN .

Param conn Connection object.

Param reason HCI reason for the disconnection.

bool (*le_param_req)(struct bt_conn *conn, struct bt le conn_param *param)

LE connection parameter update request.

This callback notifies the application that a remote device is requesting to update the
connection parameters. The application accepts the parameters by returning true, or
rejects them by returning false. Before accepting, the application may also adjust the
parameters to better suit its needs.

It is recommended for an application to have just one of these callbacks for simplicity.
However, if an application registers multiple it needs to manage the potentially different
requirements for each callback. Each callback gets the parameters as returned by previous
callbacks, i.e. they are not necessarily the same ones as the remote originally sent.

If the application does not have this callback then the default is to accept the parameters.
Param conn Connection object.
Param param Proposed connection parameters.
Return true to accept the parameters, or false to reject them.

void (*le_param_updated)(struct bt conn *conn, uint16 t interval, uintl6_t latency,
uintl6_t timeout)

The parameters for an LE connection have been updated.

184

Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

This callback notifies the application that the connection parameters for an LE connection
have been updated.

Param conn Connection object.

Param interval Connection interval.

Param latency Connection latency.

Param timeout Connection supervision timeout.

void (*identity_resolved)(struct bt_conn *conn, const bt addr le t *rpa, const
bt addr le t *identity)

Remote Identity Address has been resolved.

This callback notifies the application that a remote Identity Address has been resolved
Param conn Connection object.
Param rpa Resolvable Private Address.
Param identity Identity Address.

void (*security_changed)(struct bt_conn *conn, bt security t level, enum bt security err
err)

The security level of a connection has changed.
This callback notifies the application that the security of a connection has changed.

The security level of the connection can either have been increased or remain unchanged.
An increased security level means that the pairing procedure has been performed or the
bond information from a previous connection has been applied. If the security level re-
mains unchanged this means that the encryption key has been refreshed for the connec-
tion.

Param conn Connection object.

Param level New security level of the connection.

Param err Security error. Zero for success, non-zero otherwise.

void (*remote_info_available)(struct bt _conn *conn, struct bt conn_remote_info
*remote_info)

Remote information procedures has completed.

This callback notifies the application that the remote information has been retrieved from
the remote peer.

Param conn Connection object.

Param remote_info Connection information of remote device.

void (*le_phy_updated)(struct bt _conn *conn, struct bt conn le phy info *param)
The PHY of the connection has changed.

This callback notifies the application that the PHY of the connection has changed.
Param conn Connection object.
Param info Connection LE PHY information.

void (*le_data_len_updated)(struct bt_conn *conn, struct bt _conn le data len_info *info)

The data length parameters of the connection has changed.

This callback notifies the application that the maximum Link Layer payload length or
transmission time has changed.

Param conn Connection object.

Param info Connection data length information.

struct bt_conn_oob_info

#include <conn.h> Info Structure for OOB pairing

7.4.

Bluetooth 185

Zephyr Project Documentation, Release 2.7.5

Public Types

enum [anonymous]

Type of OOB pairing method

Values:

enumerator BT_CONN_OOB_LE_LEGACY
LE legacy pairing

enumerator BT_CONN_QOOB_LE_SC
LE SC pairing

Public Members

enum bt_conn_oob_info.[anonymous] type

Type of OOB pairing method

enum bt_conn_oob_info.[anonymous].[anonymous].[anonymous] oob_config

OOB data configuration

struct bt _conn_oob_info.[anonymous].[anonymous] lesc

LE Secure Connections OOB pairing parameters

struct bt_conn_pairing_feat

#include <conn.h> Pairing request and pairing response info structure.

This structure is the same for both smp_pairing req and smp_pairing rsp and a subset of the
packet data, except for the initial Code octet. It is documented in Core Spec. Vol. 3, Part H,
3.5.1 and 3.5.2.

Public Members

uint8 tio_capability
IO Capability, Core Spec. Vol 3, Part H, 3.5.1, Table 3.4

uint8 t oob_data_flag
OOB data flag, Core Spec. Vol 3, Part H, 3.5.1, Table 3.5

uint8 tauth_req
AuthReq, Core Spec. Vol 3, Part H, 3.5.1, Fig. 3.3

uint8 tmax_enc_key_size

Maximum Encryption Key Size, Core Spec. Vol 3, Part H, 3.5.1

uint8 t init_key_dist
Initiator Key Distribution/Generation, Core Spec. Vol 3, Part H, 3.6.1, Fig. 3.11

186 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

uint8 t resp_key_dist
Responder Key Distribution/Generation, Core Spec. Vol 3, Part H 3.6.1, Fig. 3.11

struct bt_conn_auth_cb

#include <conn.h> Authenticated pairing callback structure

Public Members

enum bt_security err (*pairing_accept)(struct bt _conn *conn, const struct
bt conn_pairing feat *const feat)

Query to proceed incoming pairing or not.

On any incoming pairing req/rsp this callback will be called for the application to decide
whether to allow for the pairing to continue.

The pairing info received from the peer is passed to assist making the decision.

As this callback is synchronous the application should return a response value immedi-
ately. Otherwise it may affect the timing during pairing. Hence, this information should
not be conveyed to the user to take action.

The remaining callbacks are not affected by this, but do notice that other callbacks can
be called during the pairing. Eg. if pairing confirm is registered both will be called for
Just-Works pairings.

This callback may be unregistered in which case pairing continues as if the Kconfig flag
was not set.

This callback is not called for BR/EDR Secure Simple Pairing (SSP).
Param conn Connection where pairing is initiated.
Param feat Pairing req/resp info.

void (*passkey_display)(struct bt _conn *conn, unsigned int passkey)
Display a passkey to the user.

When called the application is expected to display the given passkey to the user, with the
expectation that the passkey will then be entered on the peer device. The passkey will be
in the range of 0 - 999999, and is expected to be padded with zeroes so that six digits are
always shown. E.g. the value 37 should be shown as 000037.

This callback may be set to NULL, which means that the local device lacks the ability do
display a passkey. If set to non-NULL the cancel callback must also be provided, since this
is the only way the application can find out that it should stop displaying the passkey.
Param conn Connection where pairing is currently active.
Param passkey Passkey to show to the user.

void (*passkey_entry)(struct bt_conn *conn)
Request the user to enter a passkey.
When called the user is expected to enter a passkey. The passkey must be in the range of

0 - 999999, and should be expected to be zero-padded, as that’s how the peer device will
typically be showing it (e.g. 37 would be shown as 000037).

Once the user has entered the passkey its value should be given to the stack using the
bt conn_auth_passkey entry() API.

This callback may be set to NULL, which means that the local device lacks the ability to
enter a passkey. If set to non-NULL the cancel callback must also be provided, since this is

7.4. Bluetooth 187

Zephyr Project Documentation, Release 2.7.5

the only way the application can find out that it should stop requesting the user to enter
a passkey.
Param conn Connection where pairing is currently active.

void (*passkey_confirm)(struct bt _conn *conn, unsigned int passkey)

Request the user to confirm a passkey.

When called the user is expected to confirm that the given passkey is also shown on the
peer device.. The passkey will be in the range of 0 - 999999, and should be zero-padded
to always be six digits (e.g. 37 would be shown as 000037).

Once the user has confirmed the passkey to match, the bt conn_auth_passkey confirm()
API should be called. If the user concluded that the passkey doesn’t match the
bt conn_auth cancel() API should be called.

This callback may be set to NULL, which means that the local device lacks the ability to
confirm a passkey. If set to non-NULL the cancel callback must also be provided, since
this is the only way the application can find out that it should stop requesting the user to
confirm a passkey.

Param conn Connection where pairing is currently active.

Param passkey Passkey to be confirmed.

void (*oob_data_request)(struct bt_conn *conn, struct bt conn_oob_info *info)

Request the user to provide Out of Band (OOB) data.

When called the user is expected to provide OOB data. The required data are indicated
by the information structure.

For LE Secure Connections OOB pairing, the user should provide local OOB data, remote
OOB data or both depending on their availability. Their value should be given to the stack
using the bt le oob_set sc_data() APL

This callback must be set to non-NULL in order to support OOB pairing.
Param conn Connection where pairing is currently active.
Param info OOB pairing information.

void (*cancel)(struct bt_conn *conn)

Cancel the ongoing user request.

This callback will be called to notify the application that it should cancel any previous
user request (passkey display, entry or confirmation).

This may be set to NULL, but must always be provided whenever the passkey display,
passkey entry passkey confirm or pairing confirm callback has been provided.
Param conn Connection where pairing is currently active.

void (*pairing_confirm)(struct bt conn *conn)

Request confirmation for an incoming pairing.

This callback will be called to confirm an incoming pairing request where none of the
other user callbacks is applicable.

If the user decides to accept the pairing the bt conn auth pairing confirm() API should
be called. If the user decides to reject the pairing the bt conn auth cancel() API should
be called.

This callback may be set to NULL, which means that the local device lacks the ability to
confirm a pairing request. If set to non-NULL the cancel callback must also be provided,
since this is the only way the application can find out that it should stop requesting the
user to confirm a pairing request.

Param conn Connection where pairing is currently active.

188

Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

void (*pincode_entry)(struct bt_conn *conn, bool highsec)

Request the user to enter a passkey.

This callback will be called for a BR/EDR (Bluetooth Classic) connection where pairing
is being performed. Once called the user is expected to enter a PIN code with a length
between 1 and 16 digits. If the highsec parameter is set to true the PIN code must be 16
digits long.

Once entered, the PIN code should be given to the stack using the
bt conn_auth_pincode_entry() APL

This callback may be set to NULL, however in that case pairing over BR/EDR will not be
possible. If provided, the cancel callback must be provided as well.

Param conn Connection where pairing is currently active.

Param highsec true if 16 digit PIN is required.

void (*pairing_complete)(struct bt _conn *conn, bool bonded)

notify that pairing procedure was complete.

This callback notifies the application that the pairing procedure has been completed.
Param conn Connection object.
Param bonded Bond information has been distributed during the pairing proce-
dure.

void (*pairing_failed)(struct bt_conn *conn, enum bt security err reason)

notify that pairing process has failed.
Param conn Connection object.
Param reason Pairing failed reason

void (*bond_deleted)(uint8 t id, const bt addr le_t *peer)
Notify that bond has been deleted.

This callback notifies the application that the bond information for the remote peer has
been deleted

Param id Which local identity had the bond.

Param peer Remote address.

struct bt_br_conn_param
#include <conn.h> Connection parameters for BR/EDR connections
7.4.2 Bluetooth Controller

API Reference

group bt_ctrl

Bluetooth Controller.

Functions

void bt_ctlr_set_public_addr (const uint8_t *addr)
Set public address for controller.

Should be called before bt enable().

Parameters

7.4. Bluetooth 189

Zephyr Project Documentation, Release 2.7.5

¢ addr — Public address

7.4.3 Cryptography

API Reference

group bt_crypto

Cryptography.

Functions

int bt_rand (void *buf, size_t len)
Generate random data.

A random number generation helper which utilizes the Bluetooth controller’s own RNG.
Parameters
* buf - Buffer to insert the random data
* len - Length of random data to generate

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error

int bt_encrypt_le(const uint8 t key[16], const uint8 t plaintext[16], uint8 t enc_data[16])
AES encrypt little-endian data.

An AES encrypt helper is used to request the Bluetooth controller’s own hardware to encrypt
the plaintext using the key and returns the encrypted data.

Parameters
* key — 128 bit LS byte first key for the encryption of the plaintext
* plaintext — 128 bit LS byte first plaintext data block to be encrypted
* enc_data — 128 bit LS byte first encrypted data block

Returns Zero on success or error code otherwise.

int bt_encrypt_be (const uint8 t key[16], const uint8_t plaintext[16], uint8 t enc_data[16])
AES encrypt big-endian data.

An AES encrypt helper is used to request the Bluetooth controller’s own hardware to encrypt
the plaintext using the key and returns the encrypted data.

Parameters
* key — 128 bit MS byte first key for the encryption of the plaintext
* plaintext — 128 bit MS byte first plaintext data block to be encrypted
* enc_data — 128 bit MS byte first encrypted data block

Returns Zero on success or error code otherwise.

int bt_ccm_decrypt (const uint8_t key[16], uint8 t nonce[13], const uint8 t *enc_data, size t
len, const uint8 t *aad, size t aad_len, uint8 t *plaintext, size t mic_size)

Decrypt big-endian data with AES-CCM.

Decrypts and authorizes enc_data with AES-CCM, as described in https://tools.ietf.org/html/
rfc3610.

Assumes that the MIC follows directly after the encrypted data.

190

Chapter 7. API Reference

https://tools.ietf.org/html/rfc3610
https://tools.ietf.org/html/rfc3610

Zephyr Project Documentation, Release 2.7.5

Parameters

key — 128 bit MS byte first key

nonce — 13 byte MS byte first nonce
enc_data — Encrypted data

len — Length of the encrypted data

aad — Additional input data

aad_len — Additional input data length
plaintext — Plaintext buffer to place result in

mic_size — Size of the trailing MIC (in bytes)

Return values

0 — Successfully decrypted the data.
-EINVAL - Invalid parameters.

-EBADMSG — Authentication failed.

int bt_ccm_encrypt (const uint8_t key[16], uint8 t nonce[13], const uint8_t *plaintext, size t
len, const uint8 t *aad, size t aad len, uint8 t *enc_data, size_t mic_size)

Encrypt big-endian data with AES-CCM.

Encrypts and generates a MIC from plaintext with AES-CCM, as described in https://tools.
ietf.org/html/rfc3610.

Places the MIC directly after the encrypted data.

Parameters

key — 128 bit MS byte first key

nonce — 13 byte MS byte first nonce
plaintext — Plaintext buffer to encrypt

len — Length of the encrypted data

aad — Additional input data

aad_len — Additional input data length
enc_data — Buffer to place encrypted data in

mic_size — Size of the trailing MIC (in bytes)

Return values

0 — Successfully encrypted the data.
-EINVAL - Invalid parameters.

7.4.4 Data Buffers

API Reference

group bt_buf
Data buffers.

7.4. Bluetooth

191

https://tools.ietf.org/html/rfc3610
https://tools.ietf.org/html/rfc3610

Zephyr Project Documentation, Release 2.7.5

Defines

BT_BUF_RESERVE

BT_BUF_SIZE(size)
Helper to include reserved HCI data in buffer calculations

BT_BUF_ACL_SIZE(size)
Helper to calculate needed buffer size for HCI ACL packets

BT_BUF_EVT_SIZE(size)
Helper to calculate needed buffer size for HCI Event packets.

BT_BUF_CMD_SIZE(size)
Helper to calculate needed buffer size for HCI Command packets.

BT_BUF_ACL_RX_SIZE
Data size needed for HCI ACL RX buffers

BT_BUF_EVT_RX_SIZE
Data size needed for HCI Event RX buffers

BT_BUF_RX_SIZE
Data size needed for HCI ACL or Event RX buffers

BT_BUF_CMD_TX_SIZE
Data size needed for HCI Command buffers.

Enums

enum bt_buf_type
Possible types of buffers passed around the Bluetooth stack

Values:

enumerator BT_BUF_CMD

HCI command

enumerator BT_BUF_EVT
HCI event

enumerator BT_BUF_ACL_0UT
Outgoing ACL data

enumerator BT_BUF_ACL_IN
Incoming ACL data

enumerator BT_BUF_ISO_0UT
Outgoing ISO data

192

Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

enumerator BT_BUF_ISO_IN
Incoming ISO data

enumerator BT_BUF_H4
H:4 data

Functions

struct net_buf *bt_buf_get_rx(enum bt buf type type, k_timeout t timeout)
Allocate a buffer for incoming data

This will set the buffer type so bt buf set type() does not need to be explicitly called before
bt recv_prio().

Parameters
* type — Type of buffer. Only BT BUF_EVT and BT _BUF_ACL_IN are allowed.

* timeout — Non-negative waiting period to obtain a buffer or one of the special
values K NO_WAIT and K FOREVER.

Returns A new buffer.

struct net_buf *bt_buf_get_tx(enum bt _buf type type, k_timeout t timeout, const void *data,
size_t size)

Allocate a buffer for outgoing data

This will set the buffer type so bt buf set type() does not need to be explicitly called before
bt send().

Parameters

* type — Type of buffer. Only BT _BUF_CMD, BT BUF_ACL_OUT or BT BUF_H4,
when operating on H:4 mode, are allowed.

* timeout — Non-negative waiting period to obtain a buffer or one of the special
values K NO_WAIT and K FOREVER.

* data - Initial data to append to buffer.
e size — Initial data size.
Returns A new buffer.

struct net_buf *bt_buf_get_cmd_complete (k timeout t timeout)
Allocate a buffer for an HCI Command Complete/Status Event

This will set the buffer type so bt _buf set type() does not need to be explicitly called before
bt recv_prio().

Parameters

* timeout — Non-negative waiting period to obtain a buffer or one of the special
values K NO_WAIT and K FOREVER.

Returns A new buffer.

struct net_buf *bt_buf_get_evt (uint8_t evt, bool discardable, k timeout t timeout)
Allocate a buffer for an HCI Event

This will set the buffer type so bt _buf set type() does not need to be explicitly called before
bt_recv_prio() or bt_recv().

Parameters

¢ evt — HCI event code

7.4.

Bluetooth 193

Zephyr Project Documentation, Release 2.7.5

e discardable — Whether the driver considers the event discardable.

* timeout — Non-negative waiting period to obtain a buffer or one of the special
values K NO_WAIT and K_FOREVER.

Returns A new buffer.

static inline void bt_buf_set_type (struct net buf *buf, enum bt buf type type)
Set the buffer type

Parameters
¢ buf — Bluetooth buffer
* type — The BT _* type to set the buffer to

static inline enum bt buf type bt_buf_get_type (struct net buf *buf)
Get the buffer type

Parameters
¢ buf — Bluetooth buffer
Returns The BT * type to of the buffer

struct bt_buf_data
#include <bufh> This is a base type for bt_buf user data.

7.4.5 Generic Access Profile (GAP)

API Reference

group bt_gap
Generic Access Profile.

Defines

BT_ID_DEFAULT

Convenience macro for specifying the default identity. This helps make the code more read-
able, especially when only one identity is supported.

BT_DATA(_type, data, data_len)
Helper to declare elements of bt data arrays.

This macro is mainly for creating an array of struct bt data elements which is then passed to
e.g. bt le adv start().

Parameters
* _type — Type of advertising data field
* _data — Pointer to the data field payload
* _data_len — Number of bytes behind the _data pointer

BT_DATA_BYTES(_type, bytes...)
Helper to declare elements of bt data arrays.

This macro is mainly for creating an array of struct bt data elements which is then passed to
e.g. bt _le adv_start().

Parameters

194 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

* _type — Type of advertising data field
* _bytes — Variable number of single-byte parameters

BT_LE_ADV_PARAM_INIT(_ options, int min, int max, _peer)
Initialize advertising parameters.

Parameters
* _options — Advertising Options
* _int_min — Minimum advertising interval
* _int_max — Maximum advertising interval

* _peer — Peer address, set to NULL for undirected advertising or address of peer
for directed advertising.

BT_LE_ADV_PARAM(options, int min, int max, peer)
Helper to declare advertising parameters inline.

Parameters
* _options — Advertising Options
* _int_min — Minimum advertising interval
* _int_max — Maximum advertising interval

* _peer — Peer address, set to NULL for undirected advertising or address of peer
for directed advertising.

BT_LE_ADV_CONN_DIR(peer)

BT_LE_ADV_CONN

BT_LE_ADV_CONN_NAME

BT_LE_ADV_CONN_NAME_AD

BT_LE_ADV_CONN_DIR_LOW_DUTY (_peer)

BT_LE_ADV_NCONN

Non-connectable advertising with private address

BT_LE_ADV_NCONN_NAME
Non-connectable advertising with BT LE ADV OPT USE NAME

BT_LE_ADV_NCONN_IDENTITY
Non-connectable advertising with BT LE ADV OPT USE IDENTITY

BT_LE_EXT_ADV_CONN_NAME
Connectable extended advertising with BT LE ADV_OPT USE NAME

BT_LE_EXT_ADV_SCAN_NAME
Scannable extended advertising with BT LE ADV_OPT USE NAME

BT_LE_EXT_ADV_NCONN

Non-connectable extended advertising with private address

7.4.

Bluetooth 195

Zephyr Project Documentation, Release 2.7.5

BT_LE_EXT_ADV_NCONN_NAME

Non-connectable extended advertising with BT LE ADV_OPT USE NAME

BT_LE_EXT_ADV_NCONN_IDENTITY

Non-connectable extended advertising with BT LE ADV_OPT USE IDENTITY

BT_LE_EXT_ADV_CODED_NCONN

Non-connectable extended advertising on coded PHY with private address

BT_LE_EXT_ADV_CODED_NCONN_NAME

Non-connectable extended advertising on coded PHY with BT LE ADV OPT USE NAME

BT_LE_EXT_ADV_CODED_NCONN_IDENTITY

Non-connectable extended advertising on coded PHY with BT LE ADV OPT USE IDENTITY

BT_LE_EXT_ADV_START_PARAM_INIT(timeout, n_evts)
Helper to initialize extended advertising start parameters inline

Parameters
* _timeout — Advertiser timeout
* _n_evts — Number of advertising events

BT_LE_EXT_ADV_START_PARAM(timeout, n_evts)
Helper to declare extended advertising start parameters inline

Parameters
e _timeout — Advertiser timeout

* _n_evts — Number of advertising events

BT_LE_EXT_ADV_START_DEFAULT
BT_LE_PER_ADV_PARAM_INIT(_int_min, _int_max, _options)
Helper to declare periodic advertising parameters inline
Parameters
* _int_min — Minimum periodic advertising interval
* _int_max — Maximum periodic advertising interval
* _options — Periodic advertising properties bitfield.

BT_LE_PER_ADV_PARAM(_int min, _int max, _options)
Helper to declare periodic advertising parameters inline

Parameters
* _int_min — Minimum periodic advertising interval
* _int_max — Maximum periodic advertising interval

* _options — Periodic advertising properties bitfield.

BT_LE_PER_ADV_DEFAULT

BT_LE_SCAN_OPT_FILTER_WHITELIST

196

Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

BT_LE_SCAN_PARAM_INIT(type, options, interval, window)
Initialize scan parameters.

Parameters

« _type - Scan Type, BT LE_SCAN TYPE_ACTIVE or
BT LE_SCAN_TYPE_PASSIVE.

* _options — Scan options
e _interval — Scan Interval (N * 0.625 ms)
¢ _window — Scan Window (N * 0.625 ms)

BT_LE_SCAN_PARAM(_type, options, _interval, window)
Helper to declare scan parameters inline.

Parameters

* _type - Scan Type, BT LE SCAN TYPE ACTIVE or
BT LE SCAN TYPE PASSIVE.

* _options — Scan options
e _interval — Scan Interval (N * 0.625 ms)

¢ _window — Scan Window (N * 0.625 ms)

BT_LE_SCAN_ACTIVE

Helper macro to enable active scanning to discover new devices.

BT_LE_SCAN_PASSIVE

Helper macro to enable passive scanning to discover new devices.

This macro should be used if information required for device identification (e.g., UUID) are
known to be placed in Advertising Data.

BT_LE_SCAN_CODED_ACTIVE

Helper macro to enable active scanning to discover new devices. Include scanning on Coded
PHY in addition to 1M PHY.

BT_LE_SCAN_CODED_PASSIVE

Helper macro to enable passive scanning to discover new devices. Include scanning on Coded
PHY in addition to 1M PHY.

This macro should be used if information required for device identification (e.g., UUID) are
known to be placed in Advertising Data.

Typedefs

typedef void (*bt_ready_cb_t)(int err)
Callback for notifying that Bluetooth has been enabled.
Param err zero on success or (negative) error code otherwise.

typedef void bt_le_scan_cb_t (const bt _addr le t *addr, int8 t rssi, uint8 t adv_type, struct
net_buf simple *buf)

Callback type for reporting LE scan results.

A function of this type is given to the bt le scan start() function and will be called for any
discovered LE device.

7.4. Bluetooth 197

Zephyr Project Documentation, Release 2.7.5

Param addr Advertiser LE address and type.

Param rssi Strength of advertiser signal.

Param adv_type Type of advertising response from advertiser.
Param buf Buffer containing advertiser data.

typedef void bt_br_discovery_cb_t (struct bt br discovery result *results, size t count)
Callback type for reporting BR/EDR discovery (inquiry) results.

A callback of this type is given to the bt _br discovery start() function and will be called at the
end of the discovery with information about found devices populated in the results array.

Param results Storage used for discovery results

Param count Number of valid discovery results.

Enums

enum [anonymous]

Advertising options

Values:

enumerator BT_LE_ADV_OPT_NONE = 0

Convenience value when no options are specified.

enumerator BT_LE_ADV_OPT_CONNECTABLE = BIT(0)
Advertise as connectable.
Advertise as connectable. If not connectable then the type of advertising is determined

by providing scan response data. The advertiser address is determined by the type of
advertising and/or enabling privacy CONFIG_BT_PRIVACY .

enumerator BT_LE_ADV_OPT_ONE_TIME = BIT(1)

Advertise one time.

Don’t try to resume connectable advertising after a connection. This option is only mean-
ingful when used together with BT LE ADV_OPT CONNECTABLE. If set the advertising
will be stopped when bt le_adv stop() is called or when an incoming (peripheral) con-
nection happens. If this option is not set the stack will take care of keeping advertising
enabled even as connections occur. If Advertising directed or the advertiser was started
with bt le ext adv start then this behavior is the default behavior and this flag has no
effect.

enumerator BT_LE_ADV_QPT_USE_IDENTITY = BIT(2)

Advertise using identity address.

Advertise using the identity address as the advertiser address.

Note: The address used for advertising will not be the same as returned by
bt le _oob get local, instead bt _id get should be used to get the LE address.

Warning: This will compromise the privacy of the device, so care must be taken when
using this option.

198 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

enumerator BT_LE_ADV_OPT_USE_NAME = BIT(3)
Advertise using GAP device name.

Include the GAP device name automatically when advertising.
By default the GAP device name is put at the end of the scan
response data.
When advertising using Oref BT_LE_ADV_OPT_EXT_ADV and not
Oref BT_LE_ADV_OPT_SCANNABLE then it will be put at the end of the
advertising data.
If the GAP device name does not fit into advertising data it will be
converted to a shortened name if possible.
Oref BT_LE_ADV_OPT_FORCE_NAME_IN_AD can be used to force the device
name to appear in the advertising data of an advert with scan
response data.

The application can set the device name itself by including the
following in the advertising data.

Qcode

BT_DATA(BT_DATA_NAME_COMPLETE, name, sizeof(name) - 1)

@endcode

enumerator BT_LE_ADV_OPT_DIR_MODE_LOW_DUTY = BIT(4)

Low duty cycle directed advertising.

Use low duty directed advertising mode, otherwise high duty mode will be used.

enumerator BT_LE_ADV_OPT_DIR_ADDR_RPA = BIT(5)

Directed advertising to privacy-enabled peer.

Enable use of Resolvable Private Address (RPA) as the target address in directed adver-
tisements. This is required if the remote device is privacy-enabled and supports address
resolution of the target address in directed advertisement. It is the responsibility of the
application to check that the remote device supports address resolution of directed adver-
tisements by reading its Central Address Resolution characteristic.

enumerator BT_LE_ADV_OPT_FILTER_SCAN_REQ = BIT(6)

Use filter accept list to filter devices that can request scan response data.

enumerator BT_LE_ADV_OPT_FILTER_CONN = BIT(7)

Use filter accept list to filter devices that can connect.

enumerator BT_LE_ADV_OPT_NOTIFY_SCAN_REQ = BIT(8)

Notify the application when a scan response data has been sent to an active scanner.

enumerator BT_LE_ADV_0OPT_SCANNABLE = BIT(9)

Support scan response data.

When used together with BT LE ADV OPT EXT ADV then this option cannot be used
together with the BT LE ADV_OPT CONNECTABLE option. When used together with
BT LE ADV OPT EXT ADV then scan response data must be set.

enumerator BT_LE_ADV_OPT_EXT_ADV = BIT(10)

Advertise with extended advertising.

7.4. Bluetooth 199

Zephyr Project Documentation, Release 2.7.5

This options enables extended advertising in the advertising set. In extended advertising
the advertising set will send a small header packet on the three primary advertising chan-
nels. This small header points to the advertising data packet that will be sent on one of
the 37 secondary advertising channels. The advertiser will send primary advertising on
LE 1M PHY, and secondary advertising on LE 2M PHY. Connections will be established on
LE 2M PHY.

Without this option the advertiser will send advertising data on the three primary adver-
tising channels.

Note: Enabling this option requires extended advertising support in the peer devices
scanning for advertisement packets.

enumerator BT_LE_ADV_OPT_NO_2M = BIT(11)

Disable use of LE 2M PHY on the secondary advertising channel.

Disabling the use of LE 2M PHY could be necessary if scanners don’t support the LE
2M PHY. The advertiser will send primary advertising on LE 1M PHY, and secondary
advertising on LE 1M PHY. Connections will be established on LE 1M PHY.

Note: Cannot be set if BT LE_ADV_OPT_CODED is set.

Note: Requires BT LE ADV OPT EXT ADV.

enumerator BT_LE_ADV_OPT_CODED = BIT(12)

Advertise on the LE Coded PHY (Long Range).

The advertiser will send both primary and secondary advertising on the LE Coded PHY.
This gives the advertiser increased range with the trade-off of lower data rate and higher
power consumption. Connections will be established on LE Coded PHY.

Note: Requires BT LE ADV OPT EXT ADV

enumerator BT_LE_ADV_0OPT_ANONYMOUS = BIT(13)

Advertise without a device address (identity or RPA).

Note: Requires BT LE ADV OPT EXT ADV

enumerator BT_LE_ADV_OPT_USE_TX_POWER = BIT(14)

Advertise with transmit power.

Note: Requires BT LE ADV OPT EXT ADV

enumerator BT_LE_ADV_OPT_DISABLE_CHAN_37 = BIT(15)

Disable advertising on channel index 37.

enumerator BT_LE_ADV_OPT_DISABLE_CHAN_38 = BIT(16)

Disable advertising on channel index 38.

200

Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

enumerator BT_LE_ADV_OPT_DISABLE_CHAN_39 = BIT(17)

Disable advertising on channel index 39.

enumerator BT_LE_ADV_OPT_FORCE_NAME_IN_AD = BIT(18)
Put GAP device name into advert data.

Will place the GAP device name into the advertising data rather than the scan response
data.

Note: Requires BT LE ADV OPT USE NAME

enum [anonymous]

Periodic Advertising options

Values:

enumerator BT_LE_PER_ADV_OPT_NONE = 0

Convenience value when no options are specified.

enumerator BT_LE_PER_ADV_OPT_USE_TX_POWER = BIT (1)

Advertise with transmit power.

Note: Requires BT LE ADV OPT EXT ADV

enum [anonymous]

Periodic advertising sync options

Values:

enumerator BT_LE_PER_ADV_SYNC_OPT_NONE = 0

Convenience value when no options are specified.

enumerator BT_LE_PER_ADV_SYNC_OPT_USE_PER_ADV_LIST = BIT(0)

Use the periodic advertising list to sync with advertiser.

When this option is set, the address and SID of the parameters are ignored.

enumerator BT_LE_PER_ADV_SYNC_OPT_REPORTING_INITIALLY_DISABLED = BIT(1)
Disables periodic advertising reports.

No advertisement reports will be handled until enabled.

enumerator BT_LE_PER_ADV_SYNC_OPT_DONT_SYNC_AOA = BIT(2)

Sync with Angle of Arrival (AoA) constant tone extension

enumerator BT_LE_PER_ADV_SYNC_OPT_DONT_SYNC_AOD_1US = BIT(3)

Sync with Angle of Departure (AoD) 1 us constant tone extension

enumerator BT_LE_PER_ADV_SYNC_OPT_DONT_SYNC_AOD_2US = BIT(4)

Sync with Angle of Departure (AoD) 2 us constant tone extension

7.4. Bluetooth 201

Zephyr Project Documentation, Release 2.7.5

enumerator BT_LE_PER_ADV_SYNC_OPT_SYNC_ONLY_CONST_TONE_EXT = BIT(5)
Do not sync to packets without a constant tone extension

enum [anonymous]
Periodic Advertising Sync Transfer options

Values:

enumerator BT_LE_PER_ADV_SYNC_TRANSFER_OPT_NONE = 0O

Convenience value when no options are specified.

enumerator BT_LE_PER_ADV_SYNC_TRANSFER_OPT_SYNC_NO_AQOA = BIT(0)
No Angle of Arrival (AoA)

Do not sync with Angle of Arrival (AoA) constant tone extension

enumerator BT_LE_PER_ADV_SYNC_TRANSFER_OPT_SYNC_NO_AOD_1US = BIT(1)
No Angle of Departure (AoD) 1 us.

Do not sync with Angle of Departure (AoD) 1 us constant tone extension

enumerator BT_LE_PER_ADV_SYNC_TRANSFER_OPT_SYNC_NO_AOD_2US = BIT(2)
No Angle of Departure (AoD) 2.

Do not sync with Angle of Departure (AoD) 2 us constant tone extension

enumerator BT_LE_PER_ADV_SYNC_TRANSFER_OPT_SYNC_ONLY_CTE = BIT(3)

Only sync to packets with constant tone extension

enum [anonymous]

Values:

enumerator BT_LE_SCAN_OPT_NONE = O
Convenience value when no options are specified.

enumerator BT_LE_SCAN_OPT_FILTER_DUPLICATE = BIT(0)
Filter duplicates.

enumerator BT_LE_SCAN_OPT_FILTER_ACCEPT_LIST = BIT(1)
Filter using filter accept list.

enumerator BT_LE_SCAN_OPT_CODED = BIT(2)
Enable scan on coded PHY (Long Range).

enumerator BT_LE_SCAN_OPT_NO_1M = BIT(3)
Disable scan on 1M phy.

Note: Requires BT LE SCAN OPT CODED.

enum [anonymous]

Values:

202 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

enumerator BT_LE_SCAN_TYPE_PASSIVE = 0x00

Scan without requesting additional information from advertisers.

enumerator BT_LE_SCAN_TYPE_ACTIVE = 0x01

Scan and request additional information from advertisers.

Functions

int bt_enable (bt ready cb t cb)
Enable Bluetooth.

Enable Bluetooth. Must be the called before any calls that require communication with the
local Bluetooth hardware.

When CONFIG_BT_SETTINGS has been enabled and the application is not managing identi-
ties of the stack itself then the application must call settings load() before the stack is fully
enabled. See bt id create() for more information.

Parameters

* cb — Callback to notify completion or NULL to perform the enabling syn-
chronously.

Returns Zero on success or (negative) error code otherwise.

int bt_set_name (const char *name)
Set Bluetooth Device Name.

Set Bluetooth GAP Device Name.

When advertising with device name in the advertising data the name should be updated by
calling bt le _adv update data or bt le_ext adv set data.

Parameters
* name — New name
Returns Zero on success or (negative) error code otherwise.

const char *bt_get_name (void)
Get Bluetooth Device Name.

Get Bluetooth GAP Device Name.
Returns Bluetooth Device Name
void bt_id_get (bt addr le t *addrs, size_t *count)
Get the currently configured identities.

Returns an array of the currently configured identity addresses. To make sure all avail-
able identities can be retrieved, the number of elements in the addrs array should be CON-
FIG BT ID MAX. The identity identifier that some APIs expect (such as advertising parame-
ters) is simply the index of the identity in the addrs array.

If addrs is passed as NULL, then returned count contains the count of all available identities
that can be retrieved with a subsequent call to this function with non-NULL addrs parameter.

Note: Deleted identities may show up as BT LE ADDR_ANY in the returned array.

Parameters

* addrs - Array where to store the configured identities.

7.4.

Bluetooth 203

Zephyr Project Documentation, Release 2.7.5

* count — Should be initialized to the array size. Once the function returns it will
contain the number of returned identities.

int bt_id_create (bt addr le t *addr, uint8_t *irk)
Create a new identity.

Create a new identity using the given address and IRK. This function can be called before
calling bt enable(), in which case it can be used to override the controller’s public address
(in case it has one). However, the new identity will only be stored persistently in flash when
this API is used after bt _enable(). The reason is that the persistent settings are loaded after
bt enable() and would therefore cause potential conflicts with the stack blindly overwriting
what’s stored in flash. The identity will also not be written to flash in case a pre-defined
address is provided, since in such a situation the app clearly has some place it got the address
from and will be able to repeat the procedure on every power cycle, i.e. it would be redundant

to also store the information in flash.

Generating random static address or random IRK is not supported when calling this function

before bt _enable().

If the application wants to have the stack randomly generate identities and store them in flash
for later recovery, the way to do it would be to first initialize the stack (using bt_enable), then
call settings load(), and after that check with bt id get() how many identities were recovered.
If an insufficient amount of identities were recovered the app may then call bt id create() to

create new ones.
Parameters

* addr — Address to use for the new identity. If NULL or initialized to
BT ADDR _LE ANY the stack will generate a new random static address for
the identity and copy it to the given parameter upon return from this function
(in case the parameter was non-NULL).

* irk - Identity Resolving Key (16 bytes) to be used with this identity. If set to all
zeroes or NULL, the stack will generate a random IRK for the identity and copy
it back to the parameter upon return from this function (in case the parameter
was non-NULL). If privacy CONFIG_BT_PRIVACY is not enabled this parameter
must be NULL.

Returns Identity identifier (>= 0) in case of success, or a negative error code on
failure.

int bt_id_reset (uint8_tid, bt addr le_t *addr, uint8 t *irk)
Reset/reclaim an identity for reuse.

The semantics of the addr and irk parameters of this function are the same as with
bt id create(). The difference is the first id parameter that needs to be an existing identity
(if it doesn’t exist this function will return an error). When given an existing identity this
function will disconnect any connections created using it, remove any pairing keys or other
data associated with it, and then create a new identity in the same slot, based on the addr and

irk parameters.

Note: the default identity (BT ID DEFAULT) cannot be reset, i.e. this API will return an

error if asked to do that.

Parameters
* id - Existing identity identifier.

* addr - Address to use for the new identity. If NULL or initialized to
BT ADDR_LE_ANY the stack will generate a new static random address for
the identity and copy it to the given parameter upon return from this function
(in case the parameter was non-NULL).

204

Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

* irk — Identity Resolving Key (16 bytes) to be used with this identity. If set to all
zeroes or NULL, the stack will generate a random IRK for the identity and copy
it back to the parameter upon return from this function (in case the parameter
was non-NULL). If privacy CONFIG_BT_PRIVACY is not enabled this parameter
must be NULL.

Returns Identity identifier (>= 0) in case of success, or a negative error code on
failure.

int bt_id_delete(uint8_tid)
Delete an identity.
When given a valid identity this function will disconnect any connections created using it,
remove any pairing keys or other data associated with it, and then flag is as deleted, so that it

can not be used for any operations. To take back into use the slot the identity was occupying
the bt id reset() API needs to be used.

Note: the default identity (BT ID_DEFAULT) cannot be deleted, i.e. this API will return an
error if asked to do that.

Parameters
* id - Existing identity identifier.
Returns 0 in case of success, or a negative error code on failure.
int bt_le_adv_start (const struct bt le adv_param *param, const struct bt data *ad, size t
ad_len, const struct bt data *sd, size_t sd_len)
Start advertising.
Set advertisement data, scan response data, advertisement parameters and start advertising.

When the advertisement parameter peer address has been set the advertising will
be directed to the peer. In this case advertisement data and scan response data
parameters are ignored. If the mode is high duty cycle the timeout will be
BT _GAP_ADV_HIGH DUTY CYCLE_MAX_TIMEOUT.

Parameters
* param - Advertising parameters.
* ad — Data to be used in advertisement packets.
* ad_len — Number of elements in ad
* sd — Data to be used in scan response packets.
* sd_len — Number of elements in sd
Returns Zero on success or (negative) error code otherwise.
Returns -ENOMEM No free connection objects available for connectable advertiser.

Returns -ECONNREFUSED When connectable advertising is requested and there is
already maximum number of connections established in the controller. This error
code is only guaranteed when using Zephyr controller, for other controllers code
returned in this case may be -EIO.

int bt_le_adv_update_data(const struct bt data *ad, size_t ad_len, const struct bt _data *sd,
size tsd len)

Update advertising.
Update advertisement and scan response data.

Parameters

. Bluetooth 205

Zephyr Project Documentation, Release 2.7.5

* ad — Data to be used in advertisement packets.
* ad_len — Number of elements in ad
* sd — Data to be used in scan response packets.
* sd_len — Number of elements in sd
Returns Zero on success or (negative) error code otherwise.

int bt_le_adv_stop (void)
Stop advertising.

Stops ongoing advertising.
Returns Zero on success or (negative) error code otherwise.

int bt_le_ext_adv_create(const struct bt le adv_param *param, const struct bt _le ext adv cb
*cb, struct bt_le_ext adv **adv)

Create advertising set.

Create a new advertising set and set advertising parameters. Advertising parameters can be
updated with bt le ext adv update param.

Parameters
* param - [in] Advertising parameters.

* cb - [in] Callback struct to notify about advertiser activity. Can be NULL. Must
point to valid memory during the lifetime of the advertising set.

* adv - [out] Valid advertising set object on success.
Returns Zero on success or (negative) error code otherwise.

int bt_le_ext_adv_start(struct bt_le ext adv *adv, struct bt le ext adv start param *param)
Start advertising with the given advertising set.

If the advertiser is limited by either the timeout or number of advertising events the applica-
tion will be notified by the advertiser sent callback once the limit is reached. If the advertiser
is limited by both the timeout and the number of advertising events then the limit that is
reached first will stop the advertiser.

Parameters
* adv — Advertising set object.
* param — Advertise start parameters.

int bt_le_ext_adv_stop(struct bt_le ext adv *adv)
Stop advertising with the given advertising set.

Stop advertising with a specific advertising set. When using this function the advertising sent
callback will not be called.

Parameters
* adv — Advertising set object.
Returns Zero on success or (negative) error code otherwise.

int bt_le_ext_adv_set_data(struct bt le ext adv *adv, const struct bt _data *ad, size t ad len,
const struct bt _data *sd, size_t sd_len)

Set an advertising set’s advertising or scan response data.

Set advertisement data or scan response data. If the advertising set is currently advertising
then the advertising data will be updated in subsequent advertising events.

206 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

When both BT LE ADV_OPT EXT ADV and BT LE ADV_OPT SCANNABLE are enabled then
advertising data is ignored. When BT LE ADV OPT SCANNABLE is not enabled then scan
response data is ignored.

If the advertising set has been configured to send advertising data on the primary ad-
vertising channels then the maximum data length is BT GAP ADV MAX ADV DATA LEN
bytes. If the advertising set has been configured for extended advertising, then the
maximum data length is defined by the controller with the maximum possible of
BT _GAP_ADV_MAX_EXT ADV_DATA_LEN bytes.

Note: Not all scanners support extended data length advertising data.

Note: When updating the advertising data while advertising the advertising data and scan
response data length must be smaller or equal to what can be fit in a single advertising packet.
Otherwise the advertiser must be stopped.

Parameters
* adv — Advertising set object.
* ad — Data to be used in advertisement packets.
* ad_len — Number of elements in ad
* sd — Data to be used in scan response packets.
* sd_len — Number of elements in sd
Returns Zero on success or (negative) error code otherwise.

int bt_le_ext_adv_update_param(struct bt le ext adv *adv, const struct bt le_adv_param
*param)

Update advertising parameters.

Update the advertising parameters. The function will return an error if the advertiser set is
currently advertising. Stop the advertising set before calling this function.

Note: When changing the option BT LE ADV OPT USE NAME then bt le ext adv set data
needs to be called in order to update the advertising data and scan response data.

Parameters
* adv — Advertising set object.
* param — Advertising parameters.

Returns Zero on success or (negative) error code otherwise.

int bt_le_ext_adv_delete(struct bt le ext adv *adv)
Delete advertising set.

Delete advertising set. This will free up the advertising set and make it possible to create a
new advertising set.

Returns Zero on success or (negative) error code otherwise.

7.4. Bluetooth 207

Zephyr Project Documentation, Release 2.7.5

uint8 tbt_le_ext_adv_get_index(struct bt le ext adv *adv)
Get array index of an advertising set.

This function is used to map bt_adv to index of an array of advertising sets. The array has
CONFIG BT EXT ADV_MAX ADV_SET elements.

Parameters
* adv - Advertising set.

Returns Index of the advertising set object. The range of the returned value is
0..CONFIG_BT EXT ADV_MAX ADV_SET-1

int bt_le_ext_adv_get_info(const struct bt _le ext adv *adv, struct bt le ext adv info *info)

Get advertising set info.
Parameters
* adv — Advertising set object
* info — Advertising set info object
Returns Zero on success or (negative) error code on failure.

int bt_le_per_adv_set_param(struct bt le ext adv *adyv, const struct bt le per adv_param
*param)

Set or update the periodic advertising parameters.

The periodic advertising parameters can only be set or updated on an extended advertisement
set which is neither scannable, connectable nor anonymous.

Parameters
* adv - Advertising set object.
* param — Advertising parameters.
Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_set_data(const struct bt_le_ext adv *adv, const struct bt data *ad, size_t
ad_len)

Set or update the periodic advertising data.

The periodic advertisement data can only be set or updated on an extended advertisement set
which is neither scannable, connectable nor anonymous.

Parameters
* adv — Advertising set object.
* ad — Advertising data.
* ad_len — Advertising data length.
Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_start (struct bt le ext adv *adv)
Starts periodic advertising.

Enabling the periodic advertising can be done independently of extended advertising, but both
periodic advertising and extended advertising shall be enabled before any periodic advertising
data is sent. The periodic advertising and extended advertising can be enabled in any order.

Once periodic advertising has been enabled, it will continue advertising un-
til bt le per adv stop() has been called, or if the advertising set is deleted by
bt le ext adv delete(). Calling bt le ext adv stop() will not stop the periodic advertis-
ing.

Parameters

208 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

* adv — Advertising set object.
Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_stop(struct bt_le ext adv *adv)
Stops periodic advertising.

Disabling the periodic advertising can be done independently of extended advertising. Dis-
abling periodic advertising will not disable extended advertising.

Parameters
* adv — Advertising set object.
Returns Zero on success or (negative) error code otherwise.

uint8 t bt_le_per_adv_sync_get_index(struct bt _le per adv_sync *per_adv_sync)
Get array index of an periodic advertising sync object.

This function is get the index of an array of periodic advertising sync objects. The array has
CONFIG BT PER_ADV SYNC MAX elements.

Parameters
* per_adv_sync — The periodic advertising sync object.

Returns Index of the periodic advertising sync object. The range of the returned
value is 0..CONFIG_BT PER_ADV_SYNC_MAX-1

int bt_le_per_adv_sync_get_info(struct bt le per adv_sync *per_adv_sync, struct
bt le per adv sync info *info)

Get periodic adv sync information.
Parameters
* per_adv_sync — Periodic advertising sync object.
* info — Periodic advertising sync info object
Returns Zero on success or (negative) error code on failure.

struct bt_le per_adv_sync *bt_le_per_adv_sync_lookup_addr (const bt addr le t *adv_addr,
uint8_t sid)

Look up an existing periodic advertising sync object by advertiser address.
Parameters
* adv_addr — Advertiser address.
* sid - The advertising set ID.
Returns Periodic advertising sync object or NULL if not found.

int bt_le_per_adv_sync_create (const struct bt le per adv sync param *param, struct
bt le per adv_sync **out_sync)

Create a periodic advertising sync object.

Create a periodic advertising sync object that can try to synchronize to periodic advertising
reports from an advertiser. Scan shall either be disabled or extended scan shall be enabled.

Parameters
* param - [in] Periodic advertising sync parameters.
* out_sync — [out] Periodic advertising sync object on.

Returns Zero on success or (negative) error code otherwise.

7.4.

Bluetooth 209

Zephyr Project Documentation, Release 2.7.5

int bt_le_per_adv_sync_delete(struct bt le per adv sync *per adv_sync)
Delete periodic advertising sync.

Delete the periodic advertising sync object. Can be called regardless of the state of the sync.
If the syncing is currently syncing, the syncing is cancelled. If the sync has been established,
it is terminated. The periodic advertising sync object will be invalidated afterwards.

If the state of the sync object is syncing, then a new periodic advertising sync object may not
be created until the controller has finished canceling this object.

Parameters
* per_adv_sync — The periodic advertising sync object.
Returns Zero on success or (negative) error code otherwise.

void bt_le_per_adv_sync_cb_register (struct bt le per adv sync cb *cb)
Register periodic advertising sync callbacks.

Adds the callback structure to the list of callback structures for periodic adverising syncs.

This callback will be called for all periodic advertising sync activity, such as synced, terminated
and when data is received.

Parameters
* cb - Callback struct. Must point to memory that remains valid.

int bt_le_per_adv_sync_recv_enable(struct bt le per adv sync *per adv_sync)
Enables receiving periodic advertising reports for a sync.

If the sync is already receiving the reports, -EALREADY is returned.
Parameters
* per_adv_sync — The periodic advertising sync object.
Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_sync_recv_disable(struct bt le per adv_sync *per_adv_sync)
Disables receiving periodic advertising reports for a sync.

If the sync report receiving is already disabled, -EALREADY is returned.
Parameters
* per_adv_sync — The periodic advertising sync object.
Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_sync_transfer (const struct bt le per adv_sync *per_adv_sync, const struct
bt _conn *conn, uintl6 t service data)

Transfer the periodic advertising sync information to a peer device.

This will allow another device to quickly synchronize to the same periodic advertising train
that this device is currently synced to.

Parameters
* per_adv_sync — The periodic advertising sync to transfer.
* conn — The peer device that will receive the sync information.
* service_data — Application service data provided to the remote host.

Returns Zero on success or (negative) error code otherwise.

210 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

int bt_le_per_adv_set_info_transfer(const struct bt le ext adv *adv, const struct bt_conn
*conn, uintl6 _t service data)

Transfer the information about a periodic advertising set.

This will allow another device to quickly synchronize to periodic advertising set from this
device.

Parameters

* adv - The periodic advertising set to transfer info of.

* conn — The peer device that will receive the information.

* service_data — Application service data provided to the remote host.
Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_sync_transfer_subscribe (const struct bt _conn *conn, const struct
bt le per adv sync transfer param *param)

Subscribe to periodic advertising sync transfers (PASTS).
Sets the parameters and allow other devices to transfer periodic advertising syncs.
Parameters

* conn - The connection to set the parameters for. If NULL default parameters for
all connections will be set. Parameters set for specific connection will always
have precedence.

* param - The periodic advertising sync transfer parameters.
Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_sync_transfer_unsubscribe (const struct bt_conn *conn)
Unsubscribe from periodic advertising sync transfers (PASTs).

Remove the parameters that allow other devices to transfer periodic advertising syncs.
Parameters

* conn — The connection to remove the parameters for. If NULL default param-
eters for all connections will be removed. Unsubscribing for a specific device,
will still allow other devices to transfer periodic advertising syncs.

Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_list_add(const bt _addr le t *addr, uint8_t sid)
Add a device to the periodic advertising list.

Add peer device LE address to the periodic advertising list. This will make it possibly to
automatically create a periodic advertising sync to this device.

Parameters
* addr - Bluetooth LE identity address.

* sid - The advertising set ID. This value is obtained from the
bt le scan_recv_info in the scan callback.

Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_list_remove(const bt _addr le t *addr, uint8 t sid)
Remove a device from the periodic advertising list.

Removes peer device LE address from the periodic advertising list.
Parameters

* addr - Bluetooth LE identity address.

. Bluetooth 211

Zephyr Project Documentation, Release 2.7.5

* sid - The advertising set ID. This value is obtained from the
bt le scan_recv_info in the scan callback.

Returns Zero on success or (negative) error code otherwise.

int bt_le_per_adv_list_clear(void)
Clear the periodic advertising list.

Clears the entire periodic advertising list.
Returns Zero on success or (negative) error code otherwise.

int bt_le_scan_start(const struct bt le scan param *param, bt le scan cb_t cb)

Start (LE) scanning.

Start LE scanning with given parameters and provide results through the specified callback.

Note: The LE scanner by default does not use the Identity Address of the local device when
CONFIG_BT_PRIVACY is disabled. This is to prevent the active scanner from disclosing the
identity information when requesting additional information from advertisers. In order to
enable directed advertiser reports then CONFIG_BT_SCAN_WITH_IDENTITY must be enabled.

Parameters
* param — Scan parameters.

* cb — Callback to notify scan results. May be NULL if callback registration
through bt le scan cb register is preferred.

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_le_scan_stop(void)
Stop (LE) scanning.

Stops ongoing LE scanning.

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

void bt_le_scan_cb_register(struct bt le scan_cb *cb)

Register scanner packet callbacks.
Adds the callback structure to the list of callback structures that monitors scanner activity.

This callback will be called for all scanner activity, regardless of what API was used to start
the scanner.

Parameters
* cb — Callback struct. Must point to memory that remains valid.

void bt_le_scan_cb_unregister (struct bt le scan cb *cb)

Unregister scanner packet callbacks.
Remove the callback structure from the list of scanner callbacks.
Parameters
* cb - Callback struct. Must point to memory that remains valid.

int bt_le_filter_accept_list_add(const bt addr le t *addr)
Add device (LE) to filter accept list.

Add peer device LE address to the filter accept list.

212 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

Note: The filter accept list cannot be modified when an LE role is using the filter accept
list, i.e advertiser or scanner using a filter accept list or automatic connecting to devices using
filter accept list.

Parameters
* addr - Bluetooth LE identity address.
Returns Zero on success or error code otherwise, positive in case of protocol error

or negative (POSIX) in case of stack internal error.

static inline int bt_le_whitelist_add(const bt addr le t *addr)

intbt_le_filter_accept_list_remove(const bt addr le t *addr)
Remove device (LE) from filter accept list.

Remove peer device LE address from the filter accept list.

Note: The filter accept list cannot be modified when an LE role is using the filter accept
list, i.e advertiser or scanner using a filter accept list or automatic connecting to devices using
filter accept list.

Parameters
* addr - Bluetooth LE identity address.
Returns Zero on success or error code otherwise, positive in case of protocol error

or negative (POSIX) in case of stack internal error.

static inline int bt _le_whitelist_rem(const bt addr le t *addr)

intbt_le_filter_accept_list_clear (void)
Clear filter accept list.

Clear all devices from the filter accept list.

Note: The filter accept list cannot be modified when an LE role is using the filter accept
list, i.e advertiser or scanner using a filter accept list or automatic connecting to devices using
filter accept list.

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

static inline int bt_le_whitelist_clear (void)
int bt_le_set_chan_map (uint8 t chan map[5])
Set (LE) channel map.
Parameters
* chan_map — Channel map.

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

7.4.

Bluetooth 213

Zephyr Project Documentation, Release 2.7.5

void bt_data_parse (struct net_buf simple *ad, bool (*func)(struct bt data *data, void

*user_data), void *user_data)

Helper for parsing advertising (or EIR or OOB) data.

A helper for parsing the basic data types used for Extended Inquiry Response (EIR), Advertis-
ing Data (AD), and OOB data blocks. The most common scenario is to call this helper on the
advertising data received in the callback that was given to bt le scan_start().

Parameters
* ad — Advertising data as given to the bt le_scan_cb _t callback.

* func - Callback function which will be called for each element that’s found in
the data. The callback should return true to continue parsing, or false to stop
parsing.

* user_data — User data to be passed to the callback.

int bt_le_oob_get_local (uint8 tid, struct bt le oob *oob)

Get local LE Out of Band (OOB) information.

This function allows to get local information that are useful for Out of Band pairing or con-
nection creation.

If privacy CONFIG_BT_PRIVACY is enabled this will result in generating new Resolvable Private
Address (RPA) that is valid for CONFIG_BT_RPA_TIMEQUT seconds. This address will be used
for advertising started by bt le adv start, active scanning and connection creation.

Note: If privacy is enabled the RPA cannot be refreshed in the following cases:

* Creating a connection in progress, wait for the connected callback. In addition when ex-
tended advertising CONFIG_BT_EXT_ADV is not enabled or not supported by the controller:

* Advertiser is enabled using a Random Static Identity Address for a different local identity.

* The local identity conflicts with the local identity used by other roles.

Parameters
* id - [in] Local identity, in most cases BT _ID DEFAULT.
¢ oob — [out] LE OOB information

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_le_ext_adv_oob_get_local (struct bt_le ext adv *adv, struct bt _le oob *oob)

Get local LE Out of Band (OOB) information.

This function allows to get local information that are useful for Out of Band pairing or con-
nection creation.

If privacy CONFIG_BT_PRIVACY is enabled this will result in generating new Resolvable Private
Address (RPA) that is valid for CONFIG_BT_RPA_TIMEOUT seconds. This address will be used
by the advertising set.

Note: When generating OOB information for multiple advertising set all OOB information
needs to be generated at the same time.

Note: If privacy is enabled the RPA cannot be refreshed in the following cases:

* Creating a connection in progress, wait for the connected callback.

214

Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

Parameters
* adv - [in] The advertising set object
* oob — [out] LE OOB information
Returns Zero on success or error code otherwise, positive in case of protocol error

or negative (POSIX) in case of stack internal error.

int bt_br_discovery_start (const struct bt br discovery param *param, struct
bt br discovery result *results, size_t count, bt br discovery cb t
cb)

Start BR/EDR discovery.

Start BR/EDR discovery (inquiry) and provide results through the specified callback. When
bt br discovery cb_tis called it indicates that discovery has completed. If more inquiry results
were received during session than fits in provided result storage, only ones with highest RSSI
will be reported.

Parameters
* param — Discovery parameters.
* results — Storage for discovery results.
* count — Number of results in storage. Valid range: 1-255.
* cb — Callback to notify discovery results.

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error

int bt_br_discovery_stop(void)
Stop BR/EDR discovery.

Stops ongoing BR/EDR discovery. If discovery was stopped by this call results won’t be re-
ported

Returns Zero on success or error code otherwise, positive in case of protocol error
or negative (POSIX) in case of stack internal error.

int bt_br_oob_get_local(struct bt br oob *oob)
Get BR/EDR local Out Of Band information.

This function allows to get local controller information that are useful for Out Of Band pairing
or connection creation process.

Parameters
* oob — Out Of Band information

int bt_br_set_discoverable (bool enable)
Enable/disable set controller in discoverable state.

Allows make local controller to listen on INQUIRY SCAN channel and responds to devices
making general inquiry. To enable this state it’s mandatory to first be in connectable state.

Parameters
* enable - Value allowing/disallowing controller to become discoverable.

Returns Negative if fail set to requested state or requested state has been already
set. Zero if done successfully.

7.4.

Bluetooth 215

Zephyr Project Documentation, Release 2.7.5

int bt_br_set_connectable (bool enable)
Enable/disable set controller in connectable state.

Allows make local controller to be connectable. It means the controller start listen to devices
requests on PAGE SCAN channel. If disabled also resets discoverability if was set.

Parameters
* enable - Value allowing/disallowing controller to be connectable.

Returns Negative if fail set to requested state or requested state has been already
set. Zero if done successfully.

int bt_unpair (uint8 t id, const bt addr le t *addr)
Clear pairing information.

Parameters
* id - Local identity (mostly just BT ID DEFAULT).

* addr — Remote address, NULL or BT ADDR LE ANY to clear all remote de-
vices.

Returns 0 on success or negative error value on failure.

void bt_foreach_bond (uint8 t id, void (*func)(const struct bt bond_info *info, void *user data),
void *user_data)

Iterate through all existing bonds.
Parameters
* id — Local identity (mostly just BT _ID DEFAULT).
* func — Function to call for each bond.

* user_data — Data to pass to the callback function.

struct bt_le_ext_adv_sent_info

#include <bluetooth.h>

Public Members

uint8 t num_sent

The number of advertising events completed.

struct bt_le_ext_adv_connected_info

#include <bluetooth.h>

Public Members

struct bt_conn *conn

Connection object of the new connection

struct bt_le_ext_adv_scanned_info

#include <bluetooth.h>

216 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

Public Members

bt addr le t *addr
Active scanner LE address and type

struct bt_le_ext_adv_cb
#include <bluetooth.h>

Public Members

void (*sent)(struct bt _le ext adv *ady, struct bt _le ext adv_sent info *info)
The advertising set has finished sending adv data.
This callback notifies the application that the advertising set has finished sending adver-
tising data. The advertising set can either have been stopped by a timeout or because the
specified number of advertising events has been reached.

Param adv The advertising set object.
Param info Information about the sent event.

void (*connected)(struct bt_le ext adv *adyv, struct bt le ext adv_connected_info *info)
The advertising set has accepted a new connection.
This callback notifies the application that the advertising set has accepted a new connec-
tion.

Param adv The advertising set object.
Param info Information about the connected event.

void (*scanned)(struct bt_le ext adv *adv, struct bt le_ext adv_scanned_info *info)
The advertising set has sent scan response data.
This callback notifies the application that the advertising set has has received a Scan
Request packet, and has sent a Scan Response packet.

Param adv The advertising set object.
Param addr Information about the scanned event.

struct bt_data
#include <bluetooth.h> Bluetooth data.

Description of different data types that can be encoded into advertising data. Used to form
arrays that are passed to the bt le _adv start() function.

struct bt_le_adv_param

#include <bluetooth.h> LE Advertising Parameters.

Public Members

uint8 t id
Local identity.

Note: When extended advertising CONFIG_BT_EXT_ADV is not enabled or not supported
by the controller it is not possible to scan and advertise simultaneously using two different
random addresses.

7.4. Bluetooth 217

Zephyr Project Documentation, Release 2.7.5

uint8 t sid
Advertising Set Identifier, valid range 0x00 - 0xOf.

Note: Requires BT LE ADV OPT EXT ADV

uint8_t secondary_max_skip

Secondary channel maximum skip count.

Maximum advertising events the advertiser can skip before it must send advertising data
on the secondary advertising channel.

Note: Requires BT LE ADV OPT EXT ADV

uint32_t options
Bit-field of advertising options

uint32_t interval_min

Minimum Advertising Interval (N * 0.625 milliseconds) Minimum Advertising Interval
shall be less than or equal to the Maximum Advertising Interval. The Minimum Advertis-
ing Interval and Maximum Advertising Interval should not be the same value (as stated
in Bluetooth Core Spec 5.2, section 7.8.5) Range: 0x0020 to 0x4000

uint32_t interval_max

Maximum Advertising Interval (N * 0.625 milliseconds) Minimum Advertising Interval
shall be less than or equal to the Maximum Advertising Interval. The Minimum Advertis-
ing Interval and Maximum Advertising Interval should not be the same value (as stated
in Bluetooth Core Spec 5.2, section 7.8.5) Range: 0x0020 to 0x4000

const bt addr le t *peer

Directed advertising to peer.

When this parameter is set the advertiser will send directed advertising to the remote
device.

The advertising type will either be high duty cycle, or low duty cycle if
the BT LE _ADV_OPT DIR MODE LOW DUTY option is enabled. When using
BT LE ADV _OPT EXT ADV then only low duty cycle is allowed.

In case of connectable high duty cycle if the connection could not be established
within the timeout the connected() callback will be called with the status set to
BT _HCI_ERR_ADV_TIMEOUT.

struct bt_le_per_adv_param
#include <bluetooth.h>

Public Members

uintl6 t interval_min
Minimum Periodic Advertising Interval (N * 1.25 ms)

Shall be greater or equal to BT_GAP_PER_ADV_MIN INTERVAL and less or equal to in-
terval _max.

218

Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

uintl6 t interval_max

Maximum Periodic Advertising Interval (N * 1.25 ms)
Shall be less or equal to BT GAP_PER_ADV_MAX INTERVAL and greater or equal to in-
terval_min.

uint32_t options

Bit-field of periodic advertising options

struct bt_le_ext_adv_start_param

#include <bluetooth.h>
Public Members

uintl6 t timeout

Advertiser timeout (N * 10 ms).
Application will be notified by the advertiser sent callback. Set to zero for no timeout.

When using high duty cycle directed connectable advertising then this parame-
ters must be set to a non-zero value less than or equal to the maximum of
BT _GAP_ADV_HIGH DUTY CYCLE_MAX_TIMEOUT.

If privacy CONFIG_BT_PRIVACY is enabled then the timeout must be less than
CONFIG_BT_RPA_TIMEOUT .

uint8 t num_events

Number of advertising events.

Application will be notified by the advertiser sent callback. Set to zero for no limit.

struct bt_le_ext_adv_info

#include <bluetooth.h> Advertising set info structure.
Public Members

int8 t tx_power
Currently selected Transmit Power (dBM).

struct bt_le_per_adv_sync_synced_info
#include <bluetooth.h>

Public Members

const bt_addr le t *addr
Advertiser LE address and type.

uint8 t sid
Advertiser SID

7.4. Bluetooth 219

Zephyr Project Documentation, Release 2.7.5

uintl6 t interval

Periodic advertising interval (N * 1.25 ms)

uint8_t phy
Advertiser PHY

bool recv_enabled

True if receiving periodic advertisements, false otherwise.

uintl6_t service_data

Service Data provided by the peer when sync is transferred.

Will always be 0 when the sync is locally created.

struct bt_conn *conn

Peer that transferred the periodic advertising sync.

Will always be 0 when the sync is locally created.

struct bt_le_per_adv_sync_term_info
#include <bluetooth.h>

Public Members

const bt_addr le_t *addr
Advertiser LE address and type.

uint8 t sid
Advertiser SID

uint8 t reason

Cause of periodic advertising termination

struct bt_le_per_adv_sync_recv_info

#include <bluetooth.h>

Public Members

const bt addr le t *addr
Advertiser LE address and type.

uint8 t sid
Advertiser SID

int8 t tx_power

The TX power of the advertisement.

220

Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

int8 trssi

The RSSI of the advertisement excluding any CTE.

uint8 t cte_type
The Constant Tone Extension (CTE) of the advertisement (bt_df cte_type)

struct bt_le_per_adv_sync_state_info
#include <bluetooth.h>

Public Members

bool recv_enabled

True if receiving periodic advertisements, false otherwise.

struct bt_le_per_adv_sync_cb
#include <bluetooth.h>

Public Members

void (*synced)(struct bt_le per adv_sync *sync, struct bt le _per adv_sync synced info
*info)

The periodic advertising has been successfully synced.

This callback notifies the application that the periodic advertising set has been successfully
synced, and will now start to receive periodic advertising reports.

Param sync The periodic advertising sync object.

Param info Information about the sync event.

void (*term)(struct bt_le per adv_sync *sync, const struct bt le per adv sync term_info
*info)

The periodic advertising sync has been terminated.

This callback notifies the application that the periodic advertising sync has been termi-
nated, either by local request, remote request or because due to missing data, e.g. by
being out of range or sync.

Param sync The periodic advertising sync object.

void (*recv)(struct bt _le per adv_sync *sync, const struct bt le per adv sync recv_info
*info, struct net_buf simple *buf)

Periodic advertising data received.

This callback notifies the application of an periodic advertising report.
Param sync The advertising set object.
Param info Information about the periodic advertising event.
Param buf Buffer containing the periodic advertising data.

void (*state_changed)(struct bt le per adv_sync *sync, const struct
bt le per adv sync_state info *info)

The periodic advertising sync state has changed.

This callback notifies the application about changes to the sync state. Initialize sync and
termination is handled by their individual callbacks, and won’t be notified here.

7.4.

Bluetooth 221

Zephyr Project Documentation, Release 2.7.5

Param sync The periodic advertising sync object.
Param info Information about the state change.

void (*biginfo)(struct bt _le per adv_sync *sync, const struct bt_iso_biginfo *biginfo)
BIGInfo advertising report received.

This callback notifies the application of a BIGInfo advertising report. This is received if the
advertiser is broadcasting isochronous streams in a BIG. See iso.h for more information.
Param sync The advertising set object.
Param biginfo The BIGInfo report.

void (*cte_report_cb)(struct bt _le per adv sync *sync, struct
bt _df per adv sync iq samples report const *info)

Callback for IQ samples report collected when sampling CTE received with periodic ad-
vertising PDU.

Param sync The periodic advertising sync object.

Param info Information about the sync event.

struct bt_le_per_adv_sync_param
#include <bluetooth.h>

Public Members

bt addr le t addr

Periodic Advertiser Address.

Only valid if not using the periodic advertising list

uint8 t sid
Advertiser SID.

Only valid if not using the periodic advertising list

uint32_t options
Bit-field of periodic advertising sync options.

uintl6 t skip

Maximum event skip.

Maximum number of periodic advertising events that can be skipped after a successful
receive

uintl6_t timeout

Synchronization timeout (N * 10 ms)

Synchronization timeout for the periodic advertising sync. Range 0x000A to 0x4000 (100
ms to 163840 ms)

struct bt_le_per_adv_sync_info

#include <bluetooth.h> Advertising set info structure.

Public Members

222 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

bt addr le t addr

Periodic Advertiser Address

uint8 t sid
Advertiser SID

uintl6 _t interval

Periodic advertising interval (N * 1.25 ms)

uint8_t phy
Advertiser PHY

struct bt_le_per_adv_sync_transfer_param

#include <bluetooth.h>

Public Members

uintl6_t skip

Maximum event skip.

The number of periodic advertising packets that can be skipped after a successful receive.

uintl6 _t timeout

Synchronization timeout (N * 10 ms)

Synchronization timeout for the periodic advertising sync. Range 0x000A to 0x4000 (100
ms to 163840 ms)

uint32_t options

Periodic Advertising Sync Transfer options

struct bt_le_scan_param

#include <bluetooth.h> LE scan parameters
Public Members
uint8 t type
Scan type (BT LE_SCAN TYPE ACTIVE or BT LE _SCAN_TYPE_PASSIVE)

uint32_t options

Bit-field of scanning options.

uintl6 t interval

Scan interval (N * 0.625 ms)

uintl6_t window
Scan window (N * 0.625 ms)

7.4. Bluetooth 223

Zephyr Project Documentation, Release 2.7.5

uintl6_t timeout

Scan timeout (N * 10 ms)

Application will be notified by the scan timeout callback. Set zero to disable timeout.

uintl6_t interval_coded
Scan interval LE Coded PHY (N * 0.625 MS)

Set zero to use same as LE 1M PHY scan interval.

uintl6_t window_coded
Scan window LE Coded PHY (N * 0.625 MS)

Set zero to use same as LE 1M PHY scan window.

struct bt_le_scan_recv_info

#include <bluetooth.h> LE advertisement packet information

Public Members

const bt _addr le t *addr
Advertiser LE address and type.
If advertiser is anonymous then this address will be BT ADDR LE ANY.

uint8 t sid
Advertising Set Identifier.

int8 trssi

Strength of advertiser signal.

int8_t tx_power

Transmit power of the advertiser.

uint8 t adv_type
Advertising packet type.

uintl6 _t adv_props

Advertising packet properties.

uintl6 _t interval

Periodic advertising interval.

If O there is no periodic advertising.

uint8 t primary_phy

Primary advertising channel PHY.

uint8 t secondary_phy
Secondary advertising channel PHY.

224 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

struct bt_le_scan_cb

#include <bluetooth.h> Listener context for (LE) scanning.

Public Members

void (*recv)(const struct bt le_scan_recv_info *info, struct net_buf simple

Advertisement packet received callback.
Param info Advertiser packet information.
Param buf Buffer containing advertiser data.

void (*timeout)(void)

The scanner has stopped scanning after scan timeout.

struct bt_le_oob_sc_data

#include <bluetooth.h> LE Secure Connections pairing Out of Band data.

Public Members

uint8 tr[16]

Random Number.

uint8 t c[16]

Confirm Value.

struct bt_le_oob

#include <bluetooth.h> LE Out of Band information.

Public Members

bt addr le taddr

LE address. If privacy is enabled this is a Resolvable Private Address.

struct bt le oob sc data le_sc_data

LE Secure Connections pairing Out of Band data.

struct bt_br_discovery_result

#include <bluetooth.h> BR/EDR discovery result structure.

Public Members

bt addr t addr

Remote device address

int8 trssi

RSSI from inquiry

7‘:buf)

7.4. Bluetooth

225

Zephyr Project Documentation, Release 2.7.5

uint8 t cod[3]
Class of Device

uint8 t eir[240]
Extended Inquiry Response

struct bt_br_discovery_param

#include <bluetooth.h> BR/EDR discovery parameters

Public Members

uint8 t length

Maximum length of the discovery in units of 1.28 seconds. Valid range is 0x01 - 0x30.

bool 1imited

True if limited discovery procedure is to be used.

struct bt_br_oob
#include <bluetooth.h>

Public Members

bt addr t addr
BR/EDR address.

struct bt_bond_info

#include <bluetooth.h> Information about a bond with a remote device.

Public Members

bt addr le t addr

Address of the remote device.

group bt_addr

Bluetooth device address definitions and utilities.

Defines

BT_ADDR_LE_PUBLIC

BT_ADDR_LE_RANDOM

BT_ADDR_LE_PUBLIC_ID

226 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

BT_ADDR_LE_RANDOM_ID

BT_ADDR_ANY

Bluetooth device “any” address, not a valid address

BT_ADDR_NONE

Bluetooth device “none” address, not a valid address

BT_ADDR_LE_ANY

Bluetooth LE device “any” address, not a valid address

BT_ADDR_LE_NONE

Bluetooth LE device “none” address, not a valid address

BT_ADDR_IS_RPA(a)
Check if a Bluetooth LE random address is resolvable private address.

BT_ADDR_IS_NRPA(a)
Check if a Bluetooth LE random address is a non-resolvable private address.

BT_ADDR_IS_STATIC(a)
Check if a Bluetooth LE random address is a static address.

BT_ADDR_SET_RPA(a)
Set a Bluetooth LE random address as a resolvable private address.

BT_ADDR_SET_NRPA(a)
Set a Bluetooth LE random address as a non-resolvable private address.

BT_ADDR_SET_STATIC(a)
Set a Bluetooth LE random address as a static address.

BT_ADDR_STR_LEN

Recommended length of user string buffer for Bluetooth address.

The recommended length guarantee the output of address conversion will not lose valuable
information about address being processed.

BT_ADDR_LE_STR_LEN

Recommended length of user string buffer for Bluetooth LE address.

The recommended length guarantee the output of address conversion will not lose valuable
information about address being processed.

Functions

static inline int bt_addr_cmp (const bt addr t *a, const bt addr t *b)
Compare Bluetooth device addresses.

Parameters
* a - First Bluetooth device address to compare
* b - Second Bluetooth device address to compare

Returns negative value if a < b, 0 if a == b, else positive

7.4.

Bluetooth 227

Zephyr Project Documentation, Release 2.7.5

static inline int bt_addr_le_cmp (const bt addr le t *a, const bt addr le t *b)
Compare Bluetooth LE device addresses.

Parameters

* a - First Bluetooth LE device address to compare

* b - Second Bluetooth LE device address to compare
Returns negative value if a < b, 0 if a == b, else positive

static inline void bt_addr_copy (bt _addr t *dst, const bt_addr t *src)
Copy Bluetooth device address.

Parameters
e dst — Bluetooth device address destination buffer.
¢ src — Bluetooth device address source buffer.

static inline void bt_addr_le_copy (bt addr le t *dst, const bt addr le t *src)
Copy Bluetooth LE device address.

Parameters
¢ dst — Bluetooth LE device address destination buffer.
e src — Bluetooth LE device address source buffer.

int bt _addr_le_create_nrpa(bt addr le t *addr)
Create a Bluetooth LE random non-resolvable private address.

int bt_addr_le_create_static (bt addr le t *addr)
Create a Bluetooth LE random static address.

static inline bool bt_addr_le_is_rpa(const bt addr le t *addr)
Check if a Bluetooth LE address is a random private resolvable address.

Parameters
* addr - Bluetooth LE device address.
Returns true if address is a random private resolvable address.

static inline bool bt _addr_le_is_identity(const bt addr le t *addr)
Check if a Bluetooth LE address is valid identity address.

Valid Bluetooth LE identity addresses are either public address or random static address.
Parameters
* addr - Bluetooth LE device address.
Returns true if address is a valid identity address.

static inline int bt_addr_to_str (const bt addr t *addr, char *sty, size t len)
Converts binary Bluetooth address to string.

Parameters
* addr — Address of buffer containing binary Bluetooth address.

* str — Address of user buffer with enough room to store formatted string con-
taining binary address.

* len — Length of data to be copied to user string buffer. Refer to
BT ADDR STR LEN about recommended value.

Returns Number of successfully formatted bytes from binary address.

228 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

static inline int bt_addr_le_to_str(const bt addr le t *addr, char *str, size_t len)
Converts binary LE Bluetooth address to string.

Parameters

* addr — Address of buffer containing binary LE Bluetooth address.

* str — Address of user buffer with enough room to store formatted string con-

taining binary LE address.

* len — Length of data to be copied to user string buffer. Refer to

BT _ADDR_LE STR_LEN about recommended value.
Returns Number of successfully formatted bytes from binary address.

int bt_addr_from_str (const char *str, bt addr t *addr)
Convert Bluetooth address from string to binary.

Parameters

* str - [in] The string representation of a Bluetooth address.

¢ addr — [out] Address of buffer to store the Bluetooth address
Returns Zero on success or (negative) error code otherwise.

int bt_addr_le_from_str (const char *str, const char *type, bt addr le t *addr)
Convert LE Bluetooth address from string to binary.

Parameters
* str - [in] The string representation of an LE Bluetooth address.
* type — [in] The string representation of the LE Bluetooth address type.
¢ addr — [out] Address of buffer to store the LE Bluetooth address

Returns Zero on success or (negative) error code otherwise.

struct bt_addr_t
#include <addr.h> Bluetooth Device Address

struct bt_addr_le_t
#include <addr.h> Bluetooth LE Device Address

group bt_gap_defines

Bluetooth Generic Access Profile defines and Assigned Numbers.

Defines

BT_COMP_ID_LF

Company Identifiers (see Bluetooth Assigned Numbers)

BT_DATA_FLAGS
EIR/AD data type definitions

BT_DATA_UUID16_SOME

BT_DATA_UUID16_ALL

7.4. Bluetooth

229

Zephyr Project Documentation, Release 2.7.5

BT_DATA_UUID32_SOME

BT_DATA_UUID32_ALL

BT_DATA_UUID128_SOME

BT_DATA_UUID128_ALL

BT_DATA_NAME_SHORTENED

BT_DATA_NAME_COMPLETE

BT_DATA_TX_POWER

BT_DATA_SM_TK_VALUE

BT_DATA_SM_OOB_FLAGS

BT_DATA_SOLICIT16

BT_DATA_SOLICIT128

BT_DATA_SVC_DATA16

BT_DATA_GAP_APPEARANCE

BT_DATA_LE_BT_DEVICE_ADDRESS

BT_DATA_LE_ROLE

BT_DATA_SOLICIT32

BT_DATA_SVC_DATA32

BT_DATA_SVC_DATA128

BT_DATA_LE_SC_CONFIRM_VALUE

BT_DATA_LE_SC_RANDOM_VALUE

BT_DATA_URI

BT_DATA_CHANNEL_MAP_UPDATE_IND

BT_DATA_MESH_PROV

230 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

BT_DATA_MESH_MESSAGE

BT_DATA_MESH_BEACON

BT_DATA_BIG_INFO

BT_DATA_BROADCAST_CODE

BT_DATA_MANUFACTURER_DATA

BT_LE_AD_LIMITED

BT_LE_AD_GENERAL

BT_LE_AD_NO_BREDR

BT_GAP_SCAN_FAST_INTERVAL

BT_GAP_SCAN_FAST_WINDOW

BT_GAP_SCAN_SLOW_INTERVAL_1

BT_GAP_SCAN_SLOW_WINDOW_1

BT_GAP_SCAN_SLOW_INTERVAL_2

BT_GAP_SCAN_SLOW_WINDOW_2

BT_GAP_ADV_FAST_INT_MIN_1

BT_GAP_ADV_FAST_INT_MAX_1

BT_GAP_ADV_FAST_INT_MIN_2

BT_GAP_ADV_FAST_INT_MAX_2

BT_GAP_ADV_SLOW_INT_MIN

BT_GAP_ADV_SLOW_INT_MAX

BT_GAP_PER_ADV_FAST_INT_MIN_1

BT_GAP_PER_ADV_FAST_INT_MAX_1

BT_GAP_PER_ADV_FAST_INT_MIN_2

7.4. Bluetooth 231

Zephyr Project Documentation, Release 2.7.5

BT_GAP_PER_ADV_FAST_INT_MAX_2

BT_GAP_PER_ADV_SLOW_INT_MIN

BT_GAP_PER_ADV_SLOW_INT_MAX

BT_GAP_INIT_CONN_INT_MIN

BT_GAP_INIT_CONN_INT_MAX

BT_GAP_ADV_MAX_ADV_DATA_LEN

Maximum advertising data length.

BT_GAP_ADV_MAX_EXT_ADV_DATA_LEN

Maximum extended advertising data length.

Note: The maximum advertising data length that can be sent by an extended advertiser is
defined by the controller.

BT_GAP_TX_POWER_INVALID

BT_GAP_RSSI_INVALID

BT_GAP_SID_INVALID

BT_GAP_NO_TIMEQUT

BT_GAP_ADV_HIGH_DUTY_CYCLE_MAX_TIMEQUT

BT_GAP_DATA_LEN_DEFAULT

BT_GAP_DATA_LEN_MAX

BT_GAP_DATA_TIME_DEFAULT

BT_GAP_DATA_TIME_MAX

BT_GAP_SID_MAX

BT_GAP_PER_ADV_MAX_SKIP

BT_GAP_PER_ADV_MIN_TIMEQUT

BT_GAP_PER_ADV_MAX_TIMEQUT

232 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

BT_GAP_PER_ADV_MIN_INTERVAL

Minimum Periodic Advertising Interval (N * 1.25 ms)

BT_GAP_PER_ADV_MAX_INTERVAL

Maximum Periodic Advertising Interval (N * 1.25 ms)

Enums

enum [anonymous]
LE PHY types

Values:

enumerator BT_GAP_LE_PHY_NONE = O

Convenience macro for when no PHY is set.

enumerator BT_GAP_LE_PHY_1M = BIT(0)
LE 1M PHY

enumerator BT_GAP_LE_PHY_2M = BIT(1)
LE 2M PHY

enumerator BT_GAP_LE_PHY_CODED = BIT(2)
LE Coded PHY

enum [anonymous]
Advertising PDU types

Values:

enumerator BT_GAP_ADV_TYPE_ADV_IND = 0x00

Scannable and connectable advertising.

enumerator BT_GAP_ADV_TYPE_ADV_DIRECT_IND = 0x01

Directed connectable advertising.

enumerator BT_GAP_ADV_TYPE_ADV_SCAN_IND = 0x02

Non-connectable and scannable advertising.

enumerator BT_GAP_ADV_TYPE_ADV_NONCONN_IND = 0x03

Non-connectable and non-scannable advertising.

enumerator BT_GAP_ADV_TYPE_SCAN_RSP = 0x04

Additional advertising data requested by an active scanner.

enumerator BT_GAP_ADV_TYPE_EXT_ADV = 0x05

Extended advertising, see advertising properties.

7.4.

Bluetooth

233

Zephyr Project Documentation, Release 2.7.5

enum [anonymous]

Advertising PDU properties

Values:

enumerator BT_GAP_ADV_PROP_CONNECTABLE = BIT(0)

Connectable advertising.

enumerator BT_GAP_ADV_PROP_SCANNABLE = BIT(1)

Scannable advertising.

enumerator BT_GAP_ADV_PROP_DIRECTED = BIT(2)

Directed advertising.

enumerator BT_GAP_ADV_PROP_SCAN_RESPONSE = BIT(3)

Additional advertising data requested by an active scanner.

enumerator BT_GAP_ADV_PROP_EXT_ADV = BIT(4)

Extended advertising.

enum [anonymous]
Constant Tone Extension (CTE) types

Values:

enumerator BT_GAP_CTE_AOA = 0x00
Angle of Arrival

enumerator BT_GAP_CTE_AQOD_1US = 0x01
Angle of Departure with 1 us slots

enumerator BT_GAP_CTE_AOD_2US = 0x02
Angle of Departure with 2 us slots

enumerator BT_GAP_CTE_NONE = OxFF

No extensions

enum [anonymous]

Peripheral sleep clock accuracy (SCA) in ppm (parts per million)

Values:

enumerator BT_GAP_SCA_UNKNOWN = O

enumerator BT_GAP_SCA_251_500 = 0

enumerator BT_GAP_SCA_151_250 =1

enumerator BT_GAP_SCA_101_150 = 2

234

Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

enumerator BT_GAP_SCA_76_100 = 3
enumerator BT_GAP_SCA_51_75 = 4
enumerator BT_GAP_SCA_31_50 = 5
enumerator BT_GAP_SCA_21_30 = 6

enumerator BT_GAP_SCA_0_20 =7

7.4.6 Generic Attribute Profile (GATT)

GATT layer manages the service database providing APIs for service registration and attribute declara-
tion.

Services can be registered using bt_gatt_service_register() API which takes the bt_gatt_service
struct that provides the list of attributes the service contains. The helper macro BT_GATT_SERVICE() can
be used to declare a service.

Attributes can be declared using the bt¢_gatt_attr struct or using one of the helper macros:
BT_GATT_PRIMARY_SERVICE Declares a Primary Service.
BT_GATT_SECONDARY_SERVICE Declares a Secondary Service.
BT_GATT_INCLUDE_SERVICE Declares a Include Service.
BT_GATT_CHARACTERISTIC Declares a Characteristic.
BT_GATT_DESCRIPTOR Declares a Descriptor.
BT_GATT_ATTRIBUTE Declares an Attribute.
BT_GATT_CCC Declares a Client Characteristic Configuration.
BT_GATT_CEP Declares a Characteristic Extended Properties.
BT_GATT_CUD Declares a Characteristic User Format.

Each attribute contain a uuid, which describes their type, a read callback, a write callback and a set
of permission. Both read and write callbacks can be set to NULL if the attribute permission don’t allow
their respective operations.

Note: Attribute read and write callbacks are called directly from RX Thread thus it is not recommended
to block for long periods of time in them.

Attribute value changes can be notified using bt_gatt_notify() API, alternatively there is
bt_gatt_notify_cb() where is is possible to pass a callback to be called when it is necessary to
know the exact instant when the data has been transmitted over the air. Indications are supported
by bt_gatt_indicate() APL

Client procedures can be enabled with the configuration option: CONFIG_BT_GATT_CLIENT

Discover procedures can be initiated with the use of bt_gatt_discover() API which takes the
bt_gatt_discover_params struct which describes the type of discovery. The parameters also serves
as a filter when setting the uuid field only attributes which matches will be discovered, in contrast
setting it to NULL allows all attributes to be discovered.

Note: Caching discovered attributes is not supported.

7.4. Bluetooth 235

Zephyr Project Documentation, Release 2.7.5

Read procedures are supported by bt_gatt_read() API which takes the bt_gatt_read_params struct
as parameters. In the parameters one or more attributes can be set, though setting multiple handles
requires the option: CONFIG_BT_GATT_READ_MULTIPLE

Write procedures are supported by bt_gatt_write() API and takes bt_gatt_write_params struct as
parameters. In case the write operation don’t require a response bt_gatt_write_without_response()
or bt_gatt_write_without_response_cb() APIs can be used, with the later working similarly to
bt_gatt_notify_cb().

Subscriptions to notification and indication can be initiated with use of bt_gatt_subscribe() APIwhich
takes bt_gatt_subscribe_params as parameters. Multiple subscriptions to the same attribute are sup-
ported so there could be multiple notify callback being triggered for the same attribute. Subscriptions
can be removed with use of b¢_gatt_unsubscribe() APL

Note: When subscriptions are removed notify callback is called with the data set to NULL.

API Reference

group bt_gatt
Generic Attribute Profile (GATT)

Defines

BT_GATT_ERR(_att_err)
Construct error return value for attribute read and write callbacks.

Parameters
e _att_err — ATT error code

Returns Appropriate error code for the attribute callbacks.

BT_GATT_CHRC_BROADCAST

Characteristic broadcast property.
Characteristic Properties Bit field values

If set, permits broadcasts of the Characteristic Value using Server Characteristic Configuration
Descriptor.

BT_GATT_CHRC_READ

Characteristic read property.

If set, permits reads of the Characteristic Value.

BT_GATT_CHRC_WRITE_WITHOUT_RESP

Characteristic write without response property.

If set, permits write of the Characteristic Value without response.

BT_GATT_CHRC_WRITE

Characteristic write with response property.

If set, permits write of the Characteristic Value with response.

236 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

BT_GATT_CHRC_NOTIFY
Characteristic notify property.

If set, permits notifications of a Characteristic Value without acknowledgment.

BT_GATT_CHRC_INDICATE

Characteristic indicate property.

If set, permits indications of a Characteristic Value with acknowledgment.

BT_GATT_CHRC_AUTH
Characteristic Authenticated Signed Writes property.

If set, permits signed writes to the Characteristic Value.

BT_GATT_CHRC_EXT_PROP

Characteristic Extended Properties property.

If set, additional characteristic properties are defined in the Characteristic Extended Properties

Descriptor.

BT_GATT_CEP_RELIABLE_WRITE

Characteristic Extended Properties Bit field values

BT_GATT_CEP_WRITABLE_AUX

BT_GATT_CCC_NOTIFY

Client Characteristic Configuration Notification.
Client Characteristic Configuration Values

If set, changes to Characteristic Value shall be notified.

BT_GATT_CCC_INDICATE

Client Characteristic Configuration Indication.

If set, changes to Characteristic Value shall be indicated.

BT_GATT_SCC_BROADCAST

Server Characteristic Configuration Broadcast.

Server Characteristic Configuration Values

If set, the characteristic value shall be broadcast in the advertising data when the server is

advertising.

Enums

enum [anonymous]

GATT attribute permission bit field values

Values:

enumerator BT_GATT_PERM_NONE = 0

No operations supported, e.g. for notify-only

7.4.

Bluetooth

237

Zephyr Project Documentation, Release 2.7.5

enumerator BT_GATT_PERM_READ = BIT(0)

Attribute read permission.

enumerator BT_GATT_PERM_WRITE = BIT(1)

Attribute write permission.

enumerator BT_GATT_PERM_READ_ENCRYPT = BIT(2)

Attribute read permission with encryption.

If set, requires encryption for read access.

enumerator BT_GATT_PERM_WRITE_ENCRYPT = BIT(3)

Attribute write permission with encryption.

If set, requires encryption for write access.

enumerator BT_GATT_PERM_READ_AUTHEN = BIT(4)

Attribute read permission with authentication.

If set, requires encryption using authenticated link-key for read
access.

enumerator BT_GATT_PERM_WRITE_AUTHEN = BIT(5)

Attribute write permission with authentication.

If set, requires encryption using authenticated link-key for write
access.

enumerator BT_GATT_PERM_PREPARE_WRITE = BIT(6)

Attribute prepare write permission.

If set, allows prepare writes with use of BT_GATT_WRITE_FLAG_PREPARE
passed to write callback.

enum [anonymous]
GATT attribute write flags

Values:
enumerator BT_GATT_WRITE_FLAG_PREPARE = BIT(0)
Attribute prepare write flag.

If set, write callback should only check if the device is
authorized but no data shall be written.

enumerator BT_GATT_WRITE_FLAG_CMD = BIT(1)

Attribute write command flag.

If set, indicates that write operation is a command (Write without
response) which doesn't generate any response.

238 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

struct bt_gatt_attr

#include <gatt.h> GATT Attribute structure.

Public Members

const struct bt_uuid *uuid
Attribute UUID

ssize_t (*read)(struct bt_conn *conn, const struct bt _gatt attr *attr, void *buf, uint16_t len,

uintl6_t offset)
Attribute read callback.

The callback can also be used locally to read the contents of the attribute in which case

no connection will be set.

Param conn The connection that is requesting to read

Param attr The attribute that’s being read

Param buf Buffer to place the read result in

Param len Length of data to read

Param offset Offset to start reading from

Return Number fo bytes read, or in case of an error BT GATT ERR() with a spe-
cific ATT error code.

ssize_t (*fwrite)(struct bt_conn *conn, const struct bt _gatt attr *attr, const void *buf,
uintl6 _tlen, uintl6é t offset, uint8 t flags)

Attribute write callback.

Param conn The connection that is requesting to write

Param attr The attribute that’s being written

Param buf Buffer with the data to write

Param len Number of bytes in the buffer

Param offset Offset to start writing from

Param flags Flags (BT_GATT WRITE *)

Return Number of bytes written, or in case of an error BT GATT ERR() with a

specific ATT error code.

void *user_data

Attribute user data

uintl6 t handle
Attribute handle

uint8 t perm

Attribute permissions

struct bt_gatt_service_static

#include <gatt.h> GATT Service structure.

Public Members

const struct bt_gatt attr *attrs

Service Attributes

7.4.

Bluetooth

239

Zephyr Project Documentation, Release 2.7.5

size_t attr_count

Service Attribute count

struct bt_gatt_service

#include <gatt.h> GATT Service structure.

Public Members

struct bt_gatt_attr *attrs

Service Attributes

size_t attr_count

Service Attribute count

struct bt_gatt_service_val

#include <gatt.h> Service Attribute Value.

Public Members

const struct bt uuid *uuid
Service UUID.

uintl6 t end_handle

Service end handle.

struct bt_gatt_include
#include <gatt.h> Include Attribute Value.

Public Members

const struct bt uuid *uuid
Service UUID.

uintl6 t start_handle

Service start handle.

uintl6 t end_handle

Service end handle.

struct bt_gatt_cb
#include <gatt.h> GATT callback structure.

Public Members

240 Chapter 7. API Reference

Zephyr Project Documentation, Release 2.7.5

void (*att_mtu_updated)(struct bt conn *conn, uintl6é t tx, uintl6 t rx)

The maximum ATT MTU on a connection has changed.

This callback notifies the application that the maximum TX or RX ATT MTU has increased.
Param conn Connection object.
Param tx Updated TX ATT MTU.
Param rx Updated RX ATT MTU.

struct bt_gatt_chrc
#include <gatt.h> Characteristic Attribute Value.

Public Members

const struct bt uuid *uuid
Characteristic UUID.

uintl6 t value_handle

Characteristic Value handle.

uint8 t properties

Characteristic properties.

struct bt_gatt_cep

#include <gatt.h> Characteristic Extended Properties Attribute Value.

Public Members

uintl6_t properties

Characteristic Extended properties

struct bt_gatt_ccc

#include <gatt.h> Client Characteristic Configuration Attribute Value

Public Members

uintl6 t flags

Client Characteristic Configuration flags

struct bt_gatt_scc

#include <gatt.h> Server Characterestic Configuration Attribute Value

Public Members

uintl6 tflags

Server Characteristic Configuration flags

7.4. Bluetooth 241

Zephyr Project Documentation, Release 2.7.5

struct bt_gatt_cpf

#include <gatt.h> GATT Characteristic Presentation Format Attribute Value.

Public Members

uint8_t format

Format of the value of the characteristic

int8_t exponent

Exponent field to determine how the value of this characteristic is further formatted

uintl6_tunit

Unit of the characteristic

uint8 t name_space

Name space of the description

uintl6_t description

Description of the characteristic as defined in a higher layer profile

GATT Server

group bt_gatt_server

Defines

BT_GATT_SERVICE_DEFINE(name, ...)
Statically define and register a service.

Helper