Zephyr API Documentation  3.0.0
A Scalable Open Source RTOS
3.0.0
All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
kernel.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
15
16#if !defined(_ASMLANGUAGE)
17#include <kernel_includes.h>
18#include <errno.h>
19#include <limits.h>
20#include <stdbool.h>
21#include <toolchain.h>
23
24#ifdef __cplusplus
25extern "C" {
26#endif
27
35#define K_ANY NULL
36#define K_END NULL
37
38#if CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES == 0
39#error Zero available thread priorities defined!
40#endif
41
42#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
43#define K_PRIO_PREEMPT(x) (x)
44
45#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
46#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
47#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
48#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
49#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
50
51#ifdef CONFIG_POLL
52#define _POLL_EVENT_OBJ_INIT(obj) \
53 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
54#define _POLL_EVENT sys_dlist_t poll_events
55#else
56#define _POLL_EVENT_OBJ_INIT(obj)
57#define _POLL_EVENT
58#endif
59
60struct k_thread;
61struct k_mutex;
62struct k_sem;
63struct k_msgq;
64struct k_mbox;
65struct k_pipe;
66struct k_queue;
67struct k_fifo;
68struct k_lifo;
69struct k_stack;
70struct k_mem_slab;
71struct k_mem_pool;
72struct k_timer;
73struct k_poll_event;
74struct k_poll_signal;
75struct k_mem_domain;
76struct k_mem_partition;
77struct k_futex;
78struct k_event;
79
81 K_ISR = 0,
84};
85
86/* private, used by k_poll and k_work_poll */
87struct k_work_poll;
88typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
89
95typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
96 void *user_data);
97
114
143 k_thread_user_cb_t user_cb, void *user_data);
144
153#endif /* !_ASMLANGUAGE */
154
155
156/*
157 * Thread user options. May be needed by assembly code. Common part uses low
158 * bits, arch-specific use high bits.
159 */
160
164#define K_ESSENTIAL (BIT(0))
165
166#if defined(CONFIG_FPU_SHARING)
176#define K_FP_REGS (BIT(1))
177#endif
178
185#define K_USER (BIT(2))
186
195#define K_INHERIT_PERMS (BIT(3))
196
206#define K_CALLBACK_STATE (BIT(4))
207
208#ifdef CONFIG_X86
209/* x86 Bitmask definitions for threads user options */
210
211#if defined(CONFIG_FPU_SHARING) && defined(CONFIG_X86_SSE)
221#define K_SSE_REGS (BIT(7))
222#endif
223#endif
224
225/* end - thread options */
226
227#if !defined(_ASMLANGUAGE)
276__syscall k_tid_t k_thread_create(struct k_thread *new_thread,
278 size_t stack_size,
280 void *p1, void *p2, void *p3,
281 int prio, uint32_t options, k_timeout_t delay);
282
305 void *p1, void *p2,
306 void *p3);
307
321#define k_thread_access_grant(thread, ...) \
322 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), thread, __VA_ARGS__)
323
338static inline void k_thread_heap_assign(struct k_thread *thread,
339 struct k_heap *heap)
340{
341 thread->resource_pool = heap;
342}
343
344#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
365__syscall int k_thread_stack_space_get(const struct k_thread *thread,
366 size_t *unused_ptr);
367#endif
368
369#if (CONFIG_HEAP_MEM_POOL_SIZE > 0)
383#endif /* (CONFIG_HEAP_MEM_POOL_SIZE > 0) */
384
405
420
432{
433 return k_sleep(Z_TIMEOUT_MS(ms));
434}
435
452
465__syscall void k_busy_wait(uint32_t usec_to_wait);
466
474__syscall void k_yield(void);
475
485__syscall void k_wakeup(k_tid_t thread);
486
494__attribute_const__
495__syscall k_tid_t z_current_get(void);
496
497#ifdef CONFIG_THREAD_LOCAL_STORAGE
498/* Thread-local cache of current thread ID, set in z_thread_entry() */
499extern __thread k_tid_t z_tls_current;
500#endif
501
508__attribute_const__
509static inline k_tid_t k_current_get(void)
510{
511#ifdef CONFIG_THREAD_LOCAL_STORAGE
512 return z_tls_current;
513#else
514 return z_current_get();
515#endif
516}
517
542
543
554
555extern k_ticks_t z_timeout_expires(const struct _timeout *timeout);
556extern k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
557
558#ifdef CONFIG_SYS_CLOCK_EXISTS
559
568
569static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
570 const struct k_thread *t)
571{
572 return z_timeout_expires(&t->base.timeout);
573}
574
583
584static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
585 const struct k_thread *t)
586{
587 return z_timeout_remaining(&t->base.timeout);
588}
589
590#endif /* CONFIG_SYS_CLOCK_EXISTS */
591
596/* timeout has timed out and is not on _timeout_q anymore */
597#define _EXPIRED (-2)
598
599struct _static_thread_data {
600 struct k_thread *init_thread;
601 k_thread_stack_t *init_stack;
602 unsigned int init_stack_size;
604 void *init_p1;
605 void *init_p2;
606 void *init_p3;
607 int init_prio;
608 uint32_t init_options;
609 int32_t init_delay;
610 void (*init_abort)(void);
611 const char *init_name;
612};
613
614#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
615 entry, p1, p2, p3, \
616 prio, options, delay, abort, tname) \
617 { \
618 .init_thread = (thread), \
619 .init_stack = (stack), \
620 .init_stack_size = (stack_size), \
621 .init_entry = (k_thread_entry_t)entry, \
622 .init_p1 = (void *)p1, \
623 .init_p2 = (void *)p2, \
624 .init_p3 = (void *)p3, \
625 .init_prio = (prio), \
626 .init_options = (options), \
627 .init_delay = (delay), \
628 .init_abort = (abort), \
629 .init_name = STRINGIFY(tname), \
630 }
631
665#define K_THREAD_DEFINE(name, stack_size, \
666 entry, p1, p2, p3, \
667 prio, options, delay) \
668 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
669 struct k_thread _k_thread_obj_##name; \
670 STRUCT_SECTION_ITERABLE(_static_thread_data, _k_thread_data_##name) = \
671 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
672 _k_thread_stack_##name, stack_size, \
673 entry, p1, p2, p3, prio, options, delay, \
674 NULL, name); \
675 const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
676
687
713__syscall void k_thread_priority_set(k_tid_t thread, int prio);
714
715
716#ifdef CONFIG_SCHED_DEADLINE
749__syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
750#endif
751
752#ifdef CONFIG_SCHED_CPU_MASK
766
780
794
808#endif
809
826
838
865extern void k_sched_time_slice_set(int32_t slice, int prio);
866
885extern bool k_is_in_isr(void);
886
903__syscall int k_is_preempt_thread(void);
904
916static inline bool k_is_pre_kernel(void)
917{
918 extern bool z_sys_post_kernel; /* in init.c */
919
920 return !z_sys_post_kernel;
921}
922
948extern void k_sched_lock(void);
949
957extern void k_sched_unlock(void);
958
971__syscall void k_thread_custom_data_set(void *value);
972
980__syscall void *k_thread_custom_data_get(void);
981
995__syscall int k_thread_name_set(k_tid_t thread, const char *str);
996
1006
1018__syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1019 size_t size);
1020
1029const char *k_thread_state_str(k_tid_t thread_id);
1030
1048#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1049
1062#define K_NSEC(t) Z_TIMEOUT_NS(t)
1063
1076#define K_USEC(t) Z_TIMEOUT_US(t)
1077
1088#define K_CYC(t) Z_TIMEOUT_CYC(t)
1089
1100#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1101
1112#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1113
1124#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1125
1136#define K_MINUTES(m) K_SECONDS((m) * 60)
1137
1148#define K_HOURS(h) K_MINUTES((h) * 60)
1149
1158#define K_FOREVER Z_FOREVER
1159
1160#ifdef CONFIG_TIMEOUT_64BIT
1161
1173#define K_TIMEOUT_ABS_TICKS(t) \
1174 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)MAX(t, 0)))
1175
1187#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1188
1201#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1202
1215#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1216
1229#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1230
1231#endif
1232
1241struct k_timer {
1242 /*
1243 * _timeout structure must be first here if we want to use
1244 * dynamic timer allocation. timeout.node is used in the double-linked
1245 * list of free timers
1246 */
1247 struct _timeout timeout;
1248
1249 /* wait queue for the (single) thread waiting on this timer */
1250 _wait_q_t wait_q;
1251
1252 /* runs in ISR context */
1253 void (*expiry_fn)(struct k_timer *timer);
1254
1255 /* runs in the context of the thread that calls k_timer_stop() */
1256 void (*stop_fn)(struct k_timer *timer);
1257
1258 /* timer period */
1259 k_timeout_t period;
1260
1261 /* timer status */
1262 uint32_t status;
1263
1264 /* user-specific data, also used to support legacy features */
1265 void *user_data;
1266
1268};
1269
1270#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1271 { \
1272 .timeout = { \
1273 .node = {},\
1274 .fn = z_timer_expiration_handler, \
1275 .dticks = 0, \
1276 }, \
1277 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1278 .expiry_fn = expiry, \
1279 .stop_fn = stop, \
1280 .status = 0, \
1281 .user_data = 0, \
1282 }
1283
1304typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1305
1320typedef void (*k_timer_stop_t)(struct k_timer *timer);
1321
1333#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1334 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1335 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1336
1346extern void k_timer_init(struct k_timer *timer,
1347 k_timer_expiry_t expiry_fn,
1348 k_timer_stop_t stop_fn);
1349
1364__syscall void k_timer_start(struct k_timer *timer,
1365 k_timeout_t duration, k_timeout_t period);
1366
1383__syscall void k_timer_stop(struct k_timer *timer);
1384
1397__syscall uint32_t k_timer_status_get(struct k_timer *timer);
1398
1416__syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1417
1418#ifdef CONFIG_SYS_CLOCK_EXISTS
1419
1430__syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1431
1432static inline k_ticks_t z_impl_k_timer_expires_ticks(
1433 const struct k_timer *timer)
1434{
1435 return z_timeout_expires(&timer->timeout);
1436}
1437
1445__syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1446
1447static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1448 const struct k_timer *timer)
1449{
1450 return z_timeout_remaining(&timer->timeout);
1451}
1452
1463static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
1464{
1466}
1467
1468#endif /* CONFIG_SYS_CLOCK_EXISTS */
1469
1482__syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
1483
1487static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
1488 void *user_data)
1489{
1490 timer->user_data = user_data;
1491}
1492
1500__syscall void *k_timer_user_data_get(const struct k_timer *timer);
1501
1502static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
1503{
1504 return timer->user_data;
1505}
1506
1524__syscall int64_t k_uptime_ticks(void);
1525
1539static inline int64_t k_uptime_get(void)
1540{
1542}
1543
1563static inline uint32_t k_uptime_get_32(void)
1564{
1565 return (uint32_t)k_uptime_get();
1566}
1567
1579static inline int64_t k_uptime_delta(int64_t *reftime)
1580{
1581 int64_t uptime, delta;
1582
1583 uptime = k_uptime_get();
1584 delta = uptime - *reftime;
1585 *reftime = uptime;
1586
1587 return delta;
1588}
1589
1598static inline uint32_t k_cycle_get_32(void)
1599{
1600 return arch_k_cycle_get_32();
1601}
1602
1613static inline uint64_t k_cycle_get_64(void)
1614{
1615 if (!IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
1616 __ASSERT(0, "64-bit cycle counter not enabled on this platform. "
1617 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
1618 return 0;
1619 }
1620
1621 return arch_k_cycle_get_64();
1622}
1623
1632struct k_queue {
1633 sys_sflist_t data_q;
1634 struct k_spinlock lock;
1635 _wait_q_t wait_q;
1636
1637 _POLL_EVENT;
1638
1640};
1641
1642#define Z_QUEUE_INITIALIZER(obj) \
1643 { \
1644 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
1645 .lock = { }, \
1646 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1647 _POLL_EVENT_OBJ_INIT(obj) \
1648 }
1649
1650extern void *z_queue_node_peek(sys_sfnode_t *node, bool needs_free);
1651
1669__syscall void k_queue_init(struct k_queue *queue);
1670
1684__syscall void k_queue_cancel_wait(struct k_queue *queue);
1685
1698extern void k_queue_append(struct k_queue *queue, void *data);
1699
1716__syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
1717
1730extern void k_queue_prepend(struct k_queue *queue, void *data);
1731
1748__syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
1749
1763extern void k_queue_insert(struct k_queue *queue, void *prev, void *data);
1764
1783extern int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
1784
1800extern int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
1801
1820__syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
1821
1838bool k_queue_remove(struct k_queue *queue, void *data);
1839
1854bool k_queue_unique_append(struct k_queue *queue, void *data);
1855
1869__syscall int k_queue_is_empty(struct k_queue *queue);
1870
1871static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
1872{
1873 return (int)sys_sflist_is_empty(&queue->data_q);
1874}
1875
1885__syscall void *k_queue_peek_head(struct k_queue *queue);
1886
1896__syscall void *k_queue_peek_tail(struct k_queue *queue);
1897
1907#define K_QUEUE_DEFINE(name) \
1908 STRUCT_SECTION_ITERABLE(k_queue, name) = \
1909 Z_QUEUE_INITIALIZER(name)
1910
1913#ifdef CONFIG_USERSPACE
1923struct k_futex {
1925};
1926
1934struct z_futex_data {
1935 _wait_q_t wait_q;
1936 struct k_spinlock lock;
1937};
1938
1939#define Z_FUTEX_DATA_INITIALIZER(obj) \
1940 { \
1941 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
1942 }
1943
1969__syscall int k_futex_wait(struct k_futex *futex, int expected,
1971
1986__syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
1987
1989#endif
1990
2002struct k_event {
2003 _wait_q_t wait_q;
2006};
2007
2008#define Z_EVENT_INITIALIZER(obj) \
2009 { \
2010 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2011 .events = 0 \
2012 }
2013
2021__syscall void k_event_init(struct k_event *event);
2022
2036__syscall void k_event_post(struct k_event *event, uint32_t events);
2037
2051__syscall void k_event_set(struct k_event *event, uint32_t events);
2052
2074__syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2075 bool reset, k_timeout_t timeout);
2076
2098__syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2099 bool reset, k_timeout_t timeout);
2100
2110#define K_EVENT_DEFINE(name) \
2111 STRUCT_SECTION_ITERABLE(k_event, name) = \
2112 Z_EVENT_INITIALIZER(name);
2113
2116struct k_fifo {
2117 struct k_queue _queue;
2118};
2119
2123#define Z_FIFO_INITIALIZER(obj) \
2124 { \
2125 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2126 }
2127
2145#define k_fifo_init(fifo) \
2146 ({ \
2147 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2148 k_queue_init(&(fifo)->_queue); \
2149 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2150 })
2151
2163#define k_fifo_cancel_wait(fifo) \
2164 ({ \
2165 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2166 k_queue_cancel_wait(&(fifo)->_queue); \
2167 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2168 })
2169
2182#define k_fifo_put(fifo, data) \
2183 ({ \
2184 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, data); \
2185 k_queue_append(&(fifo)->_queue, data); \
2186 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, data); \
2187 })
2188
2205#define k_fifo_alloc_put(fifo, data) \
2206 ({ \
2207 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, data); \
2208 int ret = k_queue_alloc_append(&(fifo)->_queue, data); \
2209 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, data, ret); \
2210 ret; \
2211 })
2212
2227#define k_fifo_put_list(fifo, head, tail) \
2228 ({ \
2229 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2230 k_queue_append_list(&(fifo)->_queue, head, tail); \
2231 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2232 })
2233
2247#define k_fifo_put_slist(fifo, list) \
2248 ({ \
2249 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2250 k_queue_merge_slist(&(fifo)->_queue, list); \
2251 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2252 })
2253
2271#define k_fifo_get(fifo, timeout) \
2272 ({ \
2273 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2274 void *ret = k_queue_get(&(fifo)->_queue, timeout); \
2275 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, ret); \
2276 ret; \
2277 })
2278
2292#define k_fifo_is_empty(fifo) \
2293 k_queue_is_empty(&(fifo)->_queue)
2294
2308#define k_fifo_peek_head(fifo) \
2309 ({ \
2310 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2311 void *ret = k_queue_peek_head(&(fifo)->_queue); \
2312 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, ret); \
2313 ret; \
2314 })
2315
2327#define k_fifo_peek_tail(fifo) \
2328 ({ \
2329 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2330 void *ret = k_queue_peek_tail(&(fifo)->_queue); \
2331 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, ret); \
2332 ret; \
2333 })
2334
2344#define K_FIFO_DEFINE(name) \
2345 STRUCT_SECTION_ITERABLE_ALTERNATE(k_queue, k_fifo, name) = \
2346 Z_FIFO_INITIALIZER(name)
2347
2350struct k_lifo {
2351 struct k_queue _queue;
2352};
2353
2358#define Z_LIFO_INITIALIZER(obj) \
2359 { \
2360 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2361 }
2362
2380#define k_lifo_init(lifo) \
2381 ({ \
2382 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2383 k_queue_init(&(lifo)->_queue); \
2384 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2385 })
2386
2399#define k_lifo_put(lifo, data) \
2400 ({ \
2401 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, data); \
2402 k_queue_prepend(&(lifo)->_queue, data); \
2403 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, data); \
2404 })
2405
2422#define k_lifo_alloc_put(lifo, data) \
2423 ({ \
2424 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, data); \
2425 int ret = k_queue_alloc_prepend(&(lifo)->_queue, data); \
2426 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, data, ret); \
2427 ret; \
2428 })
2429
2447#define k_lifo_get(lifo, timeout) \
2448 ({ \
2449 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2450 void *ret = k_queue_get(&(lifo)->_queue, timeout); \
2451 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, ret); \
2452 ret; \
2453 })
2454
2464#define K_LIFO_DEFINE(name) \
2465 STRUCT_SECTION_ITERABLE_ALTERNATE(k_queue, k_lifo, name) = \
2466 Z_LIFO_INITIALIZER(name)
2467
2473#define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
2474
2475typedef uintptr_t stack_data_t;
2476
2477struct k_stack {
2478 _wait_q_t wait_q;
2479 struct k_spinlock lock;
2480 stack_data_t *base, *next, *top;
2481
2482 uint8_t flags;
2483
2485};
2486
2487#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
2488 { \
2489 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2490 .base = stack_buffer, \
2491 .next = stack_buffer, \
2492 .top = stack_buffer + stack_num_entries, \
2493 }
2494
2514void k_stack_init(struct k_stack *stack,
2515 stack_data_t *buffer, uint32_t num_entries);
2516
2517
2532__syscall int32_t k_stack_alloc_init(struct k_stack *stack,
2533 uint32_t num_entries);
2534
2546int k_stack_cleanup(struct k_stack *stack);
2547
2561__syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
2562
2583__syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
2585
2596#define K_STACK_DEFINE(name, stack_num_entries) \
2597 stack_data_t __noinit \
2598 _k_stack_buf_##name[stack_num_entries]; \
2599 STRUCT_SECTION_ITERABLE(k_stack, name) = \
2600 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
2601 stack_num_entries)
2602
2609struct k_work;
2610struct k_work_q;
2611struct k_work_queue_config;
2612struct k_delayed_work;
2613extern struct k_work_q k_sys_work_q;
2614
2629struct k_mutex {
2631 _wait_q_t wait_q;
2634
2637
2640
2642};
2643
2647#define Z_MUTEX_INITIALIZER(obj) \
2648 { \
2649 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2650 .owner = NULL, \
2651 .lock_count = 0, \
2652 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
2653 }
2654
2668#define K_MUTEX_DEFINE(name) \
2669 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
2670 Z_MUTEX_INITIALIZER(name)
2671
2684__syscall int k_mutex_init(struct k_mutex *mutex);
2685
2686
2709
2730__syscall int k_mutex_unlock(struct k_mutex *mutex);
2731
2738 _wait_q_t wait_q;
2739};
2740
2741#define Z_CONDVAR_INITIALIZER(obj) \
2742 { \
2743 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2744 }
2745
2758__syscall int k_condvar_init(struct k_condvar *condvar);
2759
2766__syscall int k_condvar_signal(struct k_condvar *condvar);
2767
2775__syscall int k_condvar_broadcast(struct k_condvar *condvar);
2776
2794__syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
2796
2807#define K_CONDVAR_DEFINE(name) \
2808 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
2809 Z_CONDVAR_INITIALIZER(name)
2818struct k_sem {
2819 _wait_q_t wait_q;
2820 unsigned int count;
2821 unsigned int limit;
2822
2823 _POLL_EVENT;
2824
2826
2827};
2828
2829#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
2830 { \
2831 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2832 .count = initial_count, \
2833 .limit = count_limit, \
2834 _POLL_EVENT_OBJ_INIT(obj) \
2835 }
2836
2855#define K_SEM_MAX_LIMIT UINT_MAX
2856
2872__syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
2873 unsigned int limit);
2874
2893__syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
2894
2905__syscall void k_sem_give(struct k_sem *sem);
2906
2916__syscall void k_sem_reset(struct k_sem *sem);
2917
2927__syscall unsigned int k_sem_count_get(struct k_sem *sem);
2928
2932static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
2933{
2934 return sem->count;
2935}
2936
2948#define K_SEM_DEFINE(name, initial_count, count_limit) \
2949 STRUCT_SECTION_ITERABLE(k_sem, name) = \
2950 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
2951 BUILD_ASSERT(((count_limit) != 0) && \
2952 ((initial_count) <= (count_limit)) && \
2953 ((count_limit) <= K_SEM_MAX_LIMIT));
2954
2961struct k_work_delayable;
2962struct k_work_sync;
2963
2980typedef void (*k_work_handler_t)(struct k_work *work);
2981
2997
3012int k_work_busy_get(const struct k_work *work);
3013
3027static inline bool k_work_is_pending(const struct k_work *work);
3028
3050 struct k_work *work);
3051
3060extern int k_work_submit(struct k_work *work);
3061
3087 struct k_work_sync *sync);
3088
3109
3140bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3141
3152
3173 k_thread_stack_t *stack, size_t stack_size,
3174 int prio, const struct k_work_queue_config *cfg);
3175
3185static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
3186
3210int k_work_queue_drain(struct k_work_q *queue, bool plug);
3211
3226
3242
3254static inline struct k_work_delayable *
3256
3271
3286static inline bool k_work_delayable_is_pending(
3287 const struct k_work_delayable *dwork);
3288
3303 const struct k_work_delayable *dwork);
3304
3319 const struct k_work_delayable *dwork);
3320
3347 struct k_work_delayable *dwork,
3348 k_timeout_t delay);
3349
3364 k_timeout_t delay);
3365
3402 struct k_work_delayable *dwork,
3403 k_timeout_t delay);
3404
3418 k_timeout_t delay);
3419
3445 struct k_work_sync *sync);
3446
3468
3498 struct k_work_sync *sync);
3499
3500enum {
3505 /* The atomic API is used for all work and queue flags fields to
3506 * enforce sequential consistency in SMP environments.
3507 */
3508
3509 /* Bits that represent the work item states. At least nine of the
3510 * combinations are distinct valid stable states.
3511 */
3512 K_WORK_RUNNING_BIT = 0,
3513 K_WORK_CANCELING_BIT = 1,
3514 K_WORK_QUEUED_BIT = 2,
3515 K_WORK_DELAYED_BIT = 3,
3516
3517 K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
3518 | BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT),
3519
3520 /* Static work flags */
3521 K_WORK_DELAYABLE_BIT = 8,
3522 K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
3523
3524 /* Dynamic work queue flags */
3525 K_WORK_QUEUE_STARTED_BIT = 0,
3526 K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
3527 K_WORK_QUEUE_BUSY_BIT = 1,
3528 K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
3529 K_WORK_QUEUE_DRAIN_BIT = 2,
3530 K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
3531 K_WORK_QUEUE_PLUGGED_BIT = 3,
3532 K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
3533
3534 /* Static work queue flags */
3535 K_WORK_QUEUE_NO_YIELD_BIT = 8,
3536 K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
3537
3541 /* Transient work flags */
3542
3548 K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
3549
3554 K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
3555
3561 K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
3562
3568 K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
3569};
3570
3572struct k_work {
3573 /* All fields are protected by the work module spinlock. No fields
3574 * are to be accessed except through kernel API.
3575 */
3576
3577 /* Node to link into k_work_q pending list. */
3579
3580 /* The function to be invoked by the work queue thread. */
3582
3583 /* The queue on which the work item was last submitted. */
3585
3586 /* State of the work item.
3587 *
3588 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
3589 *
3590 * It can be RUNNING and CANCELING simultaneously.
3591 */
3593};
3594
3595#define Z_WORK_INITIALIZER(work_handler) { \
3596 .handler = work_handler, \
3597}
3598
3601 /* The work item. */
3602 struct k_work work;
3603
3604 /* Timeout used to submit work after a delay. */
3605 struct _timeout timeout;
3606
3607 /* The queue to which the work should be submitted. */
3609};
3610
3611#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
3612 .work = { \
3613 .handler = work_handler, \
3614 .flags = K_WORK_DELAYABLE, \
3615 }, \
3616}
3617
3634#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
3635 struct k_work_delayable work \
3636 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
3637
3642/* Record used to wait for work to flush.
3643 *
3644 * The work item is inserted into the queue that will process (or is
3645 * processing) the item, and will be processed as soon as the item
3646 * completes. When the flusher is processed the semaphore will be
3647 * signaled, releasing the thread waiting for the flush.
3648 */
3649struct z_work_flusher {
3650 struct k_work work;
3651 struct k_sem sem;
3652};
3653
3654/* Record used to wait for work to complete a cancellation.
3655 *
3656 * The work item is inserted into a global queue of pending cancels.
3657 * When a cancelling work item goes idle any matching waiters are
3658 * removed from pending_cancels and are woken.
3659 */
3660struct z_work_canceller {
3661 sys_snode_t node;
3662 struct k_work *work;
3663 struct k_sem sem;
3664};
3665
3684 union {
3685 struct z_work_flusher flusher;
3686 struct z_work_canceller canceller;
3687 };
3688};
3689
3701 const char *name;
3702
3716};
3717
3719struct k_work_q {
3720 /* The thread that animates the work. */
3722
3723 /* All the following fields must be accessed only while the
3724 * work module spinlock is held.
3725 */
3726
3727 /* List of k_work items to be worked. */
3729
3730 /* Wait queue for idle work thread. */
3731 _wait_q_t notifyq;
3732
3733 /* Wait queue for threads waiting for the queue to drain. */
3734 _wait_q_t drainq;
3735
3736 /* Flags describing queue state. */
3738};
3739
3740/* Provide the implementation for inline functions declared above */
3741
3742static inline bool k_work_is_pending(const struct k_work *work)
3743{
3744 return k_work_busy_get(work) != 0;
3745}
3746
3747static inline struct k_work_delayable *
3749{
3750 return CONTAINER_OF(work, struct k_work_delayable, work);
3751}
3752
3754 const struct k_work_delayable *dwork)
3755{
3756 return k_work_delayable_busy_get(dwork) != 0;
3757}
3758
3760 const struct k_work_delayable *dwork)
3761{
3762 return z_timeout_expires(&dwork->timeout);
3763}
3764
3766 const struct k_work_delayable *dwork)
3767{
3768 return z_timeout_remaining(&dwork->timeout);
3769}
3770
3772{
3773 return &queue->thread;
3774}
3775
3776/* Legacy wrappers */
3777
3778__deprecated
3779static inline bool k_work_pending(const struct k_work *work)
3780{
3781 return k_work_is_pending(work);
3782}
3783
3784__deprecated
3785static inline void k_work_q_start(struct k_work_q *work_q,
3787 size_t stack_size, int prio)
3788{
3789 k_work_queue_start(work_q, stack, stack_size, prio, NULL);
3790}
3791
3792/* deprecated, remove when corresponding deprecated API is removed. */
3795};
3796
3797#define Z_DELAYED_WORK_INITIALIZER(work_handler) __DEPRECATED_MACRO { \
3798 .work = Z_WORK_DELAYABLE_INITIALIZER(work_handler), \
3799}
3800
3801__deprecated
3802static inline void k_delayed_work_init(struct k_delayed_work *work,
3804{
3806}
3807
3808__deprecated
3809static inline int k_delayed_work_submit_to_queue(struct k_work_q *work_q,
3810 struct k_delayed_work *work,
3811 k_timeout_t delay)
3812{
3813 int rc = k_work_reschedule_for_queue(work_q, &work->work, delay);
3814
3815 /* Legacy API doesn't distinguish success cases. */
3816 return (rc >= 0) ? 0 : rc;
3817}
3818
3819__deprecated
3821 k_timeout_t delay)
3822{
3823 int rc = k_work_reschedule(&work->work, delay);
3824
3825 /* Legacy API doesn't distinguish success cases. */
3826 return (rc >= 0) ? 0 : rc;
3827}
3828
3829__deprecated
3831{
3832 bool pending = k_work_delayable_is_pending(&work->work);
3833 int rc = k_work_cancel_delayable(&work->work);
3834
3835 /* Old return value rules:
3836 *
3837 * 0 if:
3838 * * Work item countdown cancelled before the item was submitted to
3839 * its queue; or
3840 * * Work item was removed from its queue before it was processed.
3841 *
3842 * -EINVAL if:
3843 * * Work item has never been submitted; or
3844 * * Work item has been successfully cancelled; or
3845 * * Timeout handler is in the process of submitting the work item to
3846 * its queue; or
3847 * * Work queue thread has removed the work item from the queue but
3848 * has not called its handler.
3849 *
3850 * -EALREADY if:
3851 * * Work queue thread has removed the work item from the queue and
3852 * cleared its pending flag; or
3853 * * Work queue thread is invoking the item handler; or
3854 * * Work item handler has completed.
3855 *
3856
3857 * We can't reconstruct those states, so call it successful only when
3858 * a pending item is no longer pending, -EINVAL if it was pending and
3859 * still is, and cancel, and -EALREADY if it wasn't pending (so
3860 * presumably cancellation should have had no effect, assuming we
3861 * didn't hit a race condition).
3862 */
3863 if (pending) {
3864 return (rc == 0) ? 0 : -EINVAL;
3865 }
3866
3867 return -EALREADY;
3868}
3869
3870__deprecated
3871static inline bool k_delayed_work_pending(struct k_delayed_work *work)
3872{
3873 return k_work_delayable_is_pending(&work->work);
3874}
3875
3876__deprecated
3878{
3880
3881 /* Probably should be ceil32, but was floor32 */
3882 return k_ticks_to_ms_floor32(rem);
3883}
3884
3885__deprecated
3887 struct k_delayed_work *work)
3888{
3889 return k_work_delayable_expires_get(&work->work);
3890}
3891
3892__deprecated
3894 struct k_delayed_work *work)
3895{
3896 return k_work_delayable_remaining_get(&work->work);
3897}
3898
3901struct k_work_user;
3902
3917typedef void (*k_work_user_handler_t)(struct k_work_user *work);
3918
3923struct k_work_user_q {
3924 struct k_queue queue;
3925 struct k_thread thread;
3926};
3927
3928enum {
3929 K_WORK_USER_STATE_PENDING, /* Work item pending state */
3930};
3931
3932struct k_work_user {
3933 void *_reserved; /* Used by k_queue implementation. */
3936};
3937
3942#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
3943#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
3944#else
3945#define Z_WORK_USER_INITIALIZER(work_handler) \
3946 { \
3947 ._reserved = NULL, \
3948 .handler = work_handler, \
3949 .flags = 0 \
3950 }
3951#endif
3952
3964#define K_WORK_USER_DEFINE(work, work_handler) \
3965 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
3966
3976static inline void k_work_user_init(struct k_work_user *work,
3978{
3979 *work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
3980}
3981
3998static inline bool k_work_user_is_pending(struct k_work_user *work)
3999{
4000 return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
4001}
4002
4021static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
4022 struct k_work_user *work)
4023{
4024 int ret = -EBUSY;
4025
4027 K_WORK_USER_STATE_PENDING)) {
4028 ret = k_queue_alloc_append(&work_q->queue, work);
4029
4030 /* Couldn't insert into the queue. Clear the pending bit
4031 * so the work item can be submitted again
4032 */
4033 if (ret != 0) {
4035 K_WORK_USER_STATE_PENDING);
4036 }
4037 }
4038
4039 return ret;
4040}
4041
4061extern void k_work_user_queue_start(struct k_work_user_q *work_q,
4063 size_t stack_size, int prio,
4064 const char *name);
4065
4072struct k_work_poll {
4073 struct k_work work;
4074 struct k_work_q *workq;
4075 struct z_poller poller;
4076 struct k_poll_event *events;
4077 int num_events;
4078 k_work_handler_t real_handler;
4079 struct _timeout timeout;
4080 int poll_result;
4081};
4082
4103#define K_WORK_DEFINE(work, work_handler) \
4104 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4105
4117#define K_DELAYED_WORK_DEFINE(work, work_handler) __DEPRECATED_MACRO \
4118 struct k_delayed_work work = Z_DELAYED_WORK_INITIALIZER(work_handler)
4119
4129extern void k_work_poll_init(struct k_work_poll *work,
4131
4166extern int k_work_poll_submit_to_queue(struct k_work_q *work_q,
4167 struct k_work_poll *work,
4168 struct k_poll_event *events,
4169 int num_events,
4171
4203extern int k_work_poll_submit(struct k_work_poll *work,
4204 struct k_poll_event *events,
4205 int num_events,
4207
4222extern int k_work_poll_cancel(struct k_work_poll *work);
4223
4235struct k_msgq {
4237 _wait_q_t wait_q;
4241 size_t msg_size;
4254
4255 _POLL_EVENT;
4256
4259
4261};
4267#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4268 { \
4269 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4270 .msg_size = q_msg_size, \
4271 .max_msgs = q_max_msgs, \
4272 .buffer_start = q_buffer, \
4273 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4274 .read_ptr = q_buffer, \
4275 .write_ptr = q_buffer, \
4276 .used_msgs = 0, \
4277 _POLL_EVENT_OBJ_INIT(obj) \
4278 }
4279
4285#define K_MSGQ_FLAG_ALLOC BIT(0)
4286
4292 size_t msg_size;
4297};
4298
4299
4320#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4321 static char __noinit __aligned(q_align) \
4322 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4323 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4324 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4325 q_msg_size, q_max_msgs)
4326
4343void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
4344 uint32_t max_msgs);
4345
4365__syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
4366 uint32_t max_msgs);
4367
4379
4401__syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
4402
4423__syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
4424
4439__syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
4440
4450__syscall void k_msgq_purge(struct k_msgq *msgq);
4451
4463
4472__syscall void k_msgq_get_attrs(struct k_msgq *msgq,
4473 struct k_msgq_attrs *attrs);
4474
4475
4476static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
4477{
4478 return msgq->max_msgs - msgq->used_msgs;
4479}
4480
4491
4492static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
4493{
4494 return msgq->used_msgs;
4495}
4496
4511 uint32_t _mailbox;
4513 size_t size;
4517 void *tx_data;
4519 void *_rx_data;
4527 k_tid_t _syncing_thread;
4528#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
4530 struct k_sem *_async_sem;
4531#endif
4532};
4537struct k_mbox {
4539 _wait_q_t tx_msg_queue;
4541 _wait_q_t rx_msg_queue;
4543
4545};
4550#define Z_MBOX_INITIALIZER(obj) \
4551 { \
4552 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
4553 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
4554 }
4555
4569#define K_MBOX_DEFINE(name) \
4570 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
4571 Z_MBOX_INITIALIZER(name) \
4572
4580extern void k_mbox_init(struct k_mbox *mbox);
4581
4601extern int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4603
4617extern void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4618 struct k_sem *sem);
4619
4637extern int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
4638 void *buffer, k_timeout_t timeout);
4639
4653extern void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
4654
4664struct k_pipe {
4665 unsigned char *buffer;
4666 size_t size;
4667 size_t bytes_used;
4668 size_t read_index;
4672 struct {
4673 _wait_q_t readers;
4674 _wait_q_t writers;
4680};
4681
4685#define K_PIPE_FLAG_ALLOC BIT(0)
4687#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
4688 { \
4689 .buffer = pipe_buffer, \
4690 .size = pipe_buffer_size, \
4691 .bytes_used = 0, \
4692 .read_index = 0, \
4693 .write_index = 0, \
4694 .lock = {}, \
4695 .wait_q = { \
4696 .readers = Z_WAIT_Q_INIT(&obj.wait_q.readers), \
4697 .writers = Z_WAIT_Q_INIT(&obj.wait_q.writers) \
4698 }, \
4699 .flags = 0 \
4700 }
4701
4719#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
4720 static unsigned char __noinit __aligned(pipe_align) \
4721 _k_pipe_buf_##name[pipe_buffer_size]; \
4722 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
4723 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
4724
4736void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size);
4737
4750
4766__syscall int k_pipe_alloc_init(struct k_pipe *pipe, size_t size);
4767
4786__syscall int k_pipe_put(struct k_pipe *pipe, void *data,
4787 size_t bytes_to_write, size_t *bytes_written,
4788 size_t min_xfer, k_timeout_t timeout);
4789
4809__syscall int k_pipe_get(struct k_pipe *pipe, void *data,
4810 size_t bytes_to_read, size_t *bytes_read,
4811 size_t min_xfer, k_timeout_t timeout);
4812
4821__syscall size_t k_pipe_read_avail(struct k_pipe *pipe);
4822
4831__syscall size_t k_pipe_write_avail(struct k_pipe *pipe);
4832
4845__syscall void k_pipe_flush(struct k_pipe *pipe);
4846
4860__syscall void k_pipe_buffer_flush(struct k_pipe *pipe);
4861
4868struct k_mem_slab {
4869 _wait_q_t wait_q;
4870 struct k_spinlock lock;
4871 uint32_t num_blocks;
4872 size_t block_size;
4873 char *buffer;
4874 char *free_list;
4875 uint32_t num_used;
4876#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
4877 uint32_t max_used;
4878#endif
4879
4881};
4882
4883#define Z_MEM_SLAB_INITIALIZER(obj, slab_buffer, slab_block_size, \
4884 slab_num_blocks) \
4885 { \
4886 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4887 .lock = {}, \
4888 .num_blocks = slab_num_blocks, \
4889 .block_size = slab_block_size, \
4890 .buffer = slab_buffer, \
4891 .free_list = NULL, \
4892 .num_used = 0, \
4893 }
4894
4895
4929#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
4930 char __noinit_named(k_mem_slab_buf_##name) \
4931 __aligned(WB_UP(slab_align)) \
4932 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
4933 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
4934 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
4935 WB_UP(slab_block_size), slab_num_blocks)
4936
4951#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
4952 static char __noinit_named(k_mem_slab_buf_##name) \
4953 __aligned(WB_UP(slab_align)) \
4954 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
4955 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
4956 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
4957 WB_UP(slab_block_size), slab_num_blocks)
4958
4980extern int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
4981 size_t block_size, uint32_t num_blocks);
4982
5005extern int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
5007
5017extern void k_mem_slab_free(struct k_mem_slab *slab, void **mem);
5018
5029static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
5030{
5031 return slab->num_used;
5032}
5033
5044static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5045{
5046#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5047 return slab->max_used;
5048#else
5049 ARG_UNUSED(slab);
5050 return 0;
5051#endif
5052}
5053
5064static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5065{
5066 return slab->num_blocks - slab->num_used;
5067}
5068
5076/* kernel synchronized heap struct */
5077
5078struct k_heap {
5080 _wait_q_t wait_q;
5082};
5083
5097void k_heap_init(struct k_heap *h, void *mem, size_t bytes);
5098
5118void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5120
5141void *k_heap_alloc(struct k_heap *h, size_t bytes,
5143
5154void k_heap_free(struct k_heap *h, void *mem);
5155
5156/* Hand-calculated minimum heap sizes needed to return a successful
5157 * 1-byte allocation. See details in lib/os/heap.[ch]
5158 */
5159#define Z_HEAP_MIN_SIZE (sizeof(void *) > 4 ? 56 : 44)
5160
5177#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5178 char in_section \
5179 __aligned(8) /* CHUNK_UNIT */ \
5180 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5181 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5182 .heap = { \
5183 .init_mem = kheap_##name, \
5184 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5185 }, \
5186 }
5187
5202#define K_HEAP_DEFINE(name, bytes) \
5203 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5204 __noinit_named(kheap_buf_##name))
5205
5220#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5221 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5222
5251extern void *k_aligned_alloc(size_t align, size_t size);
5252
5263extern void *k_malloc(size_t size);
5264
5276extern void k_free(void *ptr);
5277
5289extern void *k_calloc(size_t nmemb, size_t size);
5290
5293/* polling API - PRIVATE */
5294
5295#ifdef CONFIG_POLL
5296#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
5297#else
5298#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
5299#endif
5300
5301/* private - types bit positions */
5302enum _poll_types_bits {
5303 /* can be used to ignore an event */
5304 _POLL_TYPE_IGNORE,
5305
5306 /* to be signaled by k_poll_signal_raise() */
5307 _POLL_TYPE_SIGNAL,
5308
5309 /* semaphore availability */
5310 _POLL_TYPE_SEM_AVAILABLE,
5311
5312 /* queue/FIFO/LIFO data availability */
5313 _POLL_TYPE_DATA_AVAILABLE,
5314
5315 /* msgq data availability */
5316 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
5317
5318 _POLL_NUM_TYPES
5319};
5320
5321#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
5322
5323/* private - states bit positions */
5324enum _poll_states_bits {
5325 /* default state when creating event */
5326 _POLL_STATE_NOT_READY,
5327
5328 /* signaled by k_poll_signal_raise() */
5329 _POLL_STATE_SIGNALED,
5330
5331 /* semaphore is available */
5332 _POLL_STATE_SEM_AVAILABLE,
5333
5334 /* data is available to read on queue/FIFO/LIFO */
5335 _POLL_STATE_DATA_AVAILABLE,
5336
5337 /* queue/FIFO/LIFO wait was cancelled */
5338 _POLL_STATE_CANCELLED,
5339
5340 /* data is available to read on a message queue */
5341 _POLL_STATE_MSGQ_DATA_AVAILABLE,
5342
5343 _POLL_NUM_STATES
5344};
5345
5346#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
5347
5348#define _POLL_EVENT_NUM_UNUSED_BITS \
5349 (32 - (0 \
5350 + 8 /* tag */ \
5351 + _POLL_NUM_TYPES \
5352 + _POLL_NUM_STATES \
5353 + 1 /* modes */ \
5354 ))
5355
5356/* end of polling API - PRIVATE */
5357
5358
5365/* Public polling API */
5366
5367/* public - values for k_poll_event.type bitfield */
5368#define K_POLL_TYPE_IGNORE 0
5369#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
5370#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
5371#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
5372#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
5373#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
5374
5375/* public - polling modes */
5377 /* polling thread does not take ownership of objects when available */
5379
5382
5383/* public - values for k_poll_event.state bitfield */
5384#define K_POLL_STATE_NOT_READY 0
5385#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
5386#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
5387#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
5388#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
5389#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
5390#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
5391
5392/* public - poll signal object */
5396
5401 unsigned int signaled;
5402
5405};
5406
5407#define K_POLL_SIGNAL_INITIALIZER(obj) \
5408 { \
5409 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
5410 .signaled = 0, \
5411 .result = 0, \
5412 }
5419 sys_dnode_t _node;
5420
5422 struct z_poller *poller;
5423
5426
5428 uint32_t type:_POLL_NUM_TYPES;
5429
5431 uint32_t state:_POLL_NUM_STATES;
5432
5435
5437 uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
5438
5440 union {
5441 void *obj;
5443 struct k_sem *sem;
5444 struct k_fifo *fifo;
5445 struct k_queue *queue;
5446 struct k_msgq *msgq;
5447 };
5448};
5449
5450#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
5451 { \
5452 .poller = NULL, \
5453 .type = _event_type, \
5454 .state = K_POLL_STATE_NOT_READY, \
5455 .mode = _event_mode, \
5456 .unused = 0, \
5457 { \
5458 .obj = _event_obj, \
5459 }, \
5460 }
5461
5462#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
5463 event_tag) \
5464 { \
5465 .tag = event_tag, \
5466 .type = _event_type, \
5467 .state = K_POLL_STATE_NOT_READY, \
5468 .mode = _event_mode, \
5469 .unused = 0, \
5470 { \
5471 .obj = _event_obj, \
5472 }, \
5473 }
5474
5490extern void k_poll_event_init(struct k_poll_event *event, uint32_t type,
5491 int mode, void *obj);
5492
5536__syscall int k_poll(struct k_poll_event *events, int num_events,
5538
5547__syscall void k_poll_signal_init(struct k_poll_signal *sig);
5548
5549/*
5550 * @brief Reset a poll signal object's state to unsignaled.
5551 *
5552 * @param sig A poll signal object
5553 */
5554__syscall void k_poll_signal_reset(struct k_poll_signal *sig);
5555
5566__syscall void k_poll_signal_check(struct k_poll_signal *sig,
5567 unsigned int *signaled, int *result);
5568
5593__syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
5594
5598extern void z_handle_obj_poll_events(sys_dlist_t *events, uint32_t state);
5599
5620static inline void k_cpu_idle(void)
5621{
5622 arch_cpu_idle();
5623}
5624
5639static inline void k_cpu_atomic_idle(unsigned int key)
5640{
5642}
5643
5651#ifdef ARCH_EXCEPT
5652/* This architecture has direct support for triggering a CPU exception */
5653#define z_except_reason(reason) ARCH_EXCEPT(reason)
5654#else
5655
5656#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
5657#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
5658#else
5659#define __EXCEPT_LOC()
5660#endif
5661
5662/* NOTE: This is the implementation for arches that do not implement
5663 * ARCH_EXCEPT() to generate a real CPU exception.
5664 *
5665 * We won't have a real exception frame to determine the PC value when
5666 * the oops occurred, so print file and line number before we jump into
5667 * the fatal error handler.
5668 */
5669#define z_except_reason(reason) do { \
5670 __EXCEPT_LOC(); \
5671 z_fatal_error(reason, NULL); \
5672 } while (false)
5673
5674#endif /* _ARCH__EXCEPT */
5675
5687#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
5688
5697#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
5698
5699/*
5700 * private APIs that are utilized by one or more public APIs
5701 */
5702
5706extern void z_init_thread_base(struct _thread_base *thread_base,
5707 int priority, uint32_t initial_state,
5708 unsigned int options);
5709
5710#ifdef CONFIG_MULTITHREADING
5714extern void z_init_static_threads(void);
5715#else
5719#define z_init_static_threads() do { } while (false)
5720#endif
5721
5725extern bool z_is_thread_essential(void);
5726
5727#ifdef CONFIG_SMP
5728void z_smp_thread_init(void *arg, struct k_thread *thread);
5729void z_smp_thread_swap(void);
5730#endif
5731
5735extern void z_timer_expiration_handler(struct _timeout *t);
5736
5737#ifdef CONFIG_PRINTK
5745__syscall void k_str_out(char *c, size_t n);
5746#endif
5747
5768__syscall int k_float_disable(struct k_thread *thread);
5769
5808__syscall int k_float_enable(struct k_thread *thread, unsigned int options);
5809
5819
5827
5838
5849
5860
5871
5872#ifdef __cplusplus
5873}
5874#endif
5875
5876#include <tracing/tracing.h>
5877#include <syscalls/kernel.h>
5878
5879#endif /* !_ASMLANGUAGE */
5880
5881#endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
static uint32_t arch_k_cycle_get_32(void)
Definition: misc.h:26
static uint64_t arch_k_cycle_get_64(void)
Definition: misc.h:33
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition: arch_interface.h:44
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition: arch_interface.h:46
static struct k_thread thread[2]
Definition: atomic.c:26
long atomic_t
Definition: atomic.h:22
ZTEST_BMEM int timeout
Definition: main.c:31
ZTEST_BMEM int count
Definition: main.c:33
System error numbers.
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically test a bit.
Definition: atomic.h:128
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition: atomic.h:186
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit.
Definition: atomic.h:167
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition: kernel.h:1598
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition: kernel.h:1563
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition: sys_clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition: kernel.h:1579
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition: kernel.h:1613
static int64_t k_uptime_get(void)
Get system uptime.
Definition: kernel.h:1539
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition: kernel.h:5620
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition: kernel.h:5639
struct _dnode sys_dnode_t
Definition: dlist.h:49
struct _dnode sys_dlist_t
Definition: dlist.h:48
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
void k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
void k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
static bool sys_sflist_is_empty(sys_sflist_t *list)
Test if the given list is empty.
Definition: sflist.h:323
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition: kernel.h:916
static ZTEST_BMEM char buffer[8]
Test mailbox enhance capabilities.
Definition: test_mbox_api.c:566
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void **mem)
Free memory allocated from a memory slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition: kernel.h:5029
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition: kernel.h:5044
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition: kernel.h:5064
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to a message queue.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
size_t k_pipe_read_avail(struct k_pipe *pipe)
Query the number of bytes that may be read from pipe.
int k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
Initialize a pipe and allocate a buffer for it.
void k_pipe_flush(struct k_pipe *pipe)
Flush the pipe of write data.
int k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, k_timeout_t timeout)
Write data to a pipe.
void k_pipe_buffer_flush(struct k_pipe *pipe)
Flush the pipe's internal buffer.
int k_pipe_cleanup(struct k_pipe *pipe)
Release a pipe's allocated buffer.
int k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
Read data from a pipe.
void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)
Initialize a pipe.
size_t k_pipe_write_avail(struct k_pipe *pipe)
Query the number of bytes that may be written to pipe.
void k_poll_signal_reset(struct k_poll_signal *sig)
k_poll_modes
Definition: kernel.h:5376
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition: kernel.h:5378
@ K_POLL_NUM_MODES
Definition: kernel.h:5380
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition: tracing_macros.h:345
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition: util_macro.h:101
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition: util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition: util.h:147
#define EINVAL
Definition: errno.h:61
#define EBUSY
Definition: errno.h:55
#define EALREADY
Definition: errno.h:105
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
void k_thread_system_pool_assign(struct k_thread *thread)
Assign the system heap as a thread's resource pool.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition: kernel.h:338
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *t)
Get time remaining before a thread wakes up, in system ticks.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition: kernel.h:431
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition: kernel.h:509
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *t)
Get time when a thread wakes up, in system ticks.
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
void k_thread_start(k_tid_t thread)
Start an inactive thread.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
const char * k_thread_state_str(k_tid_t thread_id)
Get thread state string.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition: kernel.h:95
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition: kernel.h:1320
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition: kernel.h:1304
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition: kernel.h:1463
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
static int k_delayed_work_cancel(struct k_delayed_work *work)
Definition: kernel.h:3830
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition: kernel.h:3771
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition: kernel.h:3742
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition: kernel.h:3759
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
static k_ticks_t k_delayed_work_remaining_ticks(struct k_delayed_work *work)
Definition: kernel.h:3893
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int32_t k_delayed_work_remaining_get(struct k_delayed_work *work)
Definition: kernel.h:3877
static bool k_delayed_work_pending(struct k_delayed_work *work)
Definition: kernel.h:3871
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition: kernel.h:4021
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition: kernel.h:3998
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition: kernel.h:2980
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition: kernel.h:3753
static bool k_work_pending(const struct k_work *work)
Definition: kernel.h:3779
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static int k_delayed_work_submit_to_queue(struct k_work_q *work_q, struct k_delayed_work *work, k_timeout_t delay)
Definition: kernel.h:3809
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition: kernel.h:3976
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static int k_delayed_work_submit(struct k_delayed_work *work, k_timeout_t delay)
Definition: kernel.h:3820
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition: kernel.h:3748
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition: kernel.h:3765
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
static k_ticks_t k_delayed_work_expires_ticks(struct k_delayed_work *work)
Definition: kernel.h:3886
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
static void k_work_q_start(struct k_work_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio)
Definition: kernel.h:3785
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
static void k_delayed_work_init(struct k_delayed_work *work, k_work_handler_t handler)
Definition: kernel.h:3802
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition: kernel.h:3917
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition: kernel.h:3554
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition: kernel.h:3561
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition: kernel.h:3568
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition: kernel.h:3548
flags
Definition: http_parser.h:131
state
Definition: http_parser_state.h:30
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
execution_context_types
Definition: kernel.h:80
@ K_ISR
Definition: kernel.h:81
@ K_COOP_THREAD
Definition: kernel.h:82
@ K_PREEMPT_THREAD
Definition: kernel.h:83
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
static ZTEST_BMEM volatile int ret
Definition: k_float_disable.c:28
Header files included by kernel.h.
struct k_mem_slab ms
Definition: kobject.c:1313
struct k_mutex mutex
Definition: kobject.c:1315
struct k_thread t
Definition: kobject.c:1321
struct k_msgq msgq
Definition: test_msgq_contexts.c:12
char c
Definition: printk.c:71
void * ptr
Definition: printk.c:79
static struct k_work work[2]
Definition: main.c:16
struct _sfnode sys_sfnode_t
Definition: sflist.h:39
struct _sflist sys_sflist_t
Definition: sflist.h:46
struct _slist sys_slist_t
Definition: slist.h:40
struct _snode sys_snode_t
Definition: slist.h:33
char stack[2048]
Definition: main.c:22
static struct k_spinlock lock
Definition: spinlock_error_case.c:12
static k_spinlock_key_t key
Definition: spinlock_error_case.c:14
__UINT32_TYPE__ uint32_t
Definition: stdint.h:60
__INT32_TYPE__ int32_t
Definition: stdint.h:44
__UINT64_TYPE__ uint64_t
Definition: stdint.h:61
__UINT8_TYPE__ uint8_t
Definition: stdint.h:58
__UINTPTR_TYPE__ uintptr_t
Definition: stdint.h:75
__INT64_TYPE__ int64_t
Definition: stdint.h:45
Static init entry structure for each device driver or services.
Definition: init.h:43
Definition: kernel.h:2737
_wait_q_t wait_q
Definition: kernel.h:2738
Definition: kernel.h:3793
struct k_work_delayable work
Definition: kernel.h:3794
Definition: kernel.h:2002
struct k_spinlock lock
Definition: kernel.h:2005
uint32_t events
Definition: kernel.h:2004
_wait_q_t wait_q
Definition: kernel.h:2003
Definition: kernel.h:2116
futex structure
Definition: kernel.h:1923
atomic_t val
Definition: kernel.h:1924
Definition: kernel.h:5078
struct k_spinlock lock
Definition: kernel.h:5081
struct sys_heap heap
Definition: kernel.h:5079
_wait_q_t wait_q
Definition: kernel.h:5080
Definition: kernel.h:2350
Mailbox Message Structure.
Definition: kernel.h:4509
struct k_mem_block tx_block
Definition: kernel.h:4521
k_tid_t tx_target_thread
Definition: kernel.h:4525
void * tx_data
Definition: kernel.h:4517
k_tid_t rx_source_thread
Definition: kernel.h:4523
uint32_t info
Definition: kernel.h:4515
size_t size
Definition: kernel.h:4513
Mailbox Structure.
Definition: kernel.h:4537
_wait_q_t tx_msg_queue
Definition: kernel.h:4539
struct k_spinlock lock
Definition: kernel.h:4542
_wait_q_t rx_msg_queue
Definition: kernel.h:4541
Definition: mempool_heap.h:24
Memory Domain.
Definition: mem_domain.h:80
Memory Partition.
Definition: mem_domain.h:55
Message Queue Attributes.
Definition: kernel.h:4290
uint32_t used_msgs
Definition: kernel.h:4296
size_t msg_size
Definition: kernel.h:4292
uint32_t max_msgs
Definition: kernel.h:4294
Message Queue Structure.
Definition: kernel.h:4235
size_t msg_size
Definition: kernel.h:4241
char * read_ptr
Definition: kernel.h:4249
uint32_t used_msgs
Definition: kernel.h:4253
char * buffer_end
Definition: kernel.h:4247
struct k_spinlock lock
Definition: kernel.h:4239
char * write_ptr
Definition: kernel.h:4251
char * buffer_start
Definition: kernel.h:4245
uint8_t flags
Definition: kernel.h:4255
_wait_q_t wait_q
Definition: kernel.h:4237
uint32_t max_msgs
Definition: kernel.h:4243
Definition: kernel.h:2629
uint32_t lock_count
Definition: kernel.h:2636
_wait_q_t wait_q
Definition: kernel.h:2631
int owner_orig_prio
Definition: kernel.h:2639
struct k_thread * owner
Definition: kernel.h:2633
Definition: kernel.h:4664
uint8_t flags
Definition: kernel.h:4677
_wait_q_t readers
Definition: kernel.h:4673
size_t write_index
Definition: kernel.h:4669
size_t bytes_used
Definition: kernel.h:4667
struct k_spinlock lock
Definition: kernel.h:4670
struct k_pipe::@122 wait_q
_wait_q_t writers
Definition: kernel.h:4674
size_t size
Definition: kernel.h:4666
unsigned char * buffer
Definition: kernel.h:4665
size_t read_index
Definition: kernel.h:4668
Poll Event.
Definition: kernel.h:5417
struct k_poll_signal * signal
Definition: kernel.h:5442
uint32_t tag
Definition: kernel.h:5425
struct k_fifo * fifo
Definition: kernel.h:5444
struct k_msgq * msgq
Definition: kernel.h:5446
struct k_queue * queue
Definition: kernel.h:5445
uint32_t unused
Definition: kernel.h:5437
uint32_t type
Definition: kernel.h:5428
struct k_sem * sem
Definition: kernel.h:5443
uint32_t state
Definition: kernel.h:5431
uint32_t mode
Definition: kernel.h:5434
struct z_poller * poller
Definition: kernel.h:5422
void * obj
Definition: kernel.h:5441
Definition: kernel.h:5393
sys_dlist_t poll_events
Definition: kernel.h:5395
int result
Definition: kernel.h:5404
unsigned int signaled
Definition: kernel.h:5401
Kernel Spin Lock.
Definition: spinlock.h:42
Definition: thread.h:172
Definition: thread.h:216
struct _thread_base base
Definition: thread.h:218
struct k_heap * resource_pool
Definition: thread.h:296
struct __thread_entry entry
Definition: thread.h:242
Kernel timeout type.
Definition: sys_clock.h:65
A structure used to submit work after a delay.
Definition: kernel.h:3600
struct _timeout timeout
Definition: kernel.h:3605
struct k_work_q * queue
Definition: kernel.h:3608
struct k_work work
Definition: kernel.h:3602
A structure used to hold work until it can be processed.
Definition: kernel.h:3719
sys_slist_t pending
Definition: kernel.h:3728
_wait_q_t drainq
Definition: kernel.h:3734
_wait_q_t notifyq
Definition: kernel.h:3731
uint32_t flags
Definition: kernel.h:3737
struct k_thread thread
Definition: kernel.h:3721
A structure holding optional configuration items for a work queue.
Definition: kernel.h:3696
const char * name
Definition: kernel.h:3701
bool no_yield
Definition: kernel.h:3715
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition: kernel.h:3683
struct z_work_canceller canceller
Definition: kernel.h:3686
struct z_work_flusher flusher
Definition: kernel.h:3685
A structure used to submit work.
Definition: kernel.h:3572
k_work_handler_t handler
Definition: kernel.h:3581
uint32_t flags
Definition: kernel.h:3592
struct k_work_q * queue
Definition: kernel.h:3584
sys_snode_t node
Definition: kernel.h:3578
Definition: errno.c:36
Definition: sys_heap.h:55
static fdata_t data[2]
Definition: test_fifo_contexts.c:15
static struct k_mbox mbox
Definition: test_mbox_api.c:28
static struct k_pipe pipe
Definition: test_mutex_error.c:18
struct k_queue queue
Definition: test_queue_contexts.c:17
static int init_prio
Definition: test_sched_timeslice_and_lock.c:15
static ZTEST_BMEM struct thread_data expected
static uint64_t k_ticks_to_ms_floor64(uint64_t t)
Convert ticks to milliseconds.
Definition: time_units.h:1102
static uint32_t k_ticks_to_ms_floor32(uint32_t t)
Convert ticks to milliseconds.
Definition: time_units.h:1088
static struct k_timer timer[3]
Definition: timeout_order.c:13
static struct k_sem sem[3]
Definition: timeout_order.c:14
static void handler(struct k_timer *timer)
Definition: main.c:19
static const intptr_t user_data[5]
Definition: main.c:590
Macros to abstract toolchain specific capabilities.
static struct k_work_delayable dwork
Definition: main.c:48