Zephyr API Documentation  3.5.0
A Scalable Open Source RTOS
3.5.0
All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
kernel.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
15
16#if !defined(_ASMLANGUAGE)
18#include <errno.h>
19#include <limits.h>
20#include <stdbool.h>
21#include <zephyr/toolchain.h>
25
26#ifdef __cplusplus
27extern "C" {
28#endif
29
30/*
31 * Zephyr currently assumes the size of a couple standard types to simplify
32 * print string formats. Let's make sure this doesn't change without notice.
33 */
34BUILD_ASSERT(sizeof(int32_t) == sizeof(int));
35BUILD_ASSERT(sizeof(int64_t) == sizeof(long long));
36BUILD_ASSERT(sizeof(intptr_t) == sizeof(long));
37
45#define K_ANY NULL
46
47#if CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES == 0
48#error Zero available thread priorities defined!
49#endif
50
51#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
52#define K_PRIO_PREEMPT(x) (x)
53
54#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
55#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
56#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
57#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
58#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
59
60#ifdef CONFIG_POLL
61#define _POLL_EVENT_OBJ_INIT(obj) \
62 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
63#define _POLL_EVENT sys_dlist_t poll_events
64#else
65#define _POLL_EVENT_OBJ_INIT(obj)
66#define _POLL_EVENT
67#endif
68
69struct k_thread;
70struct k_mutex;
71struct k_sem;
72struct k_msgq;
73struct k_mbox;
74struct k_pipe;
75struct k_queue;
76struct k_fifo;
77struct k_lifo;
78struct k_stack;
79struct k_mem_slab;
80struct k_timer;
81struct k_poll_event;
82struct k_poll_signal;
83struct k_mem_domain;
84struct k_mem_partition;
85struct k_futex;
86struct k_event;
87
89 K_ISR = 0,
92};
93
94/* private, used by k_poll and k_work_poll */
95struct k_work_poll;
96typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
97
103typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
104 void *user_data);
105
121extern void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data);
122
151 k_thread_user_cb_t user_cb, void *user_data);
152
161#endif /* !_ASMLANGUAGE */
162
163
164/*
165 * Thread user options. May be needed by assembly code. Common part uses low
166 * bits, arch-specific use high bits.
167 */
168
172#define K_ESSENTIAL (BIT(0))
173
174#if defined(CONFIG_FPU_SHARING)
184#define K_FP_IDX 1
185#define K_FP_REGS (BIT(K_FP_IDX))
186#endif
187
194#define K_USER (BIT(2))
195
204#define K_INHERIT_PERMS (BIT(3))
205
215#define K_CALLBACK_STATE (BIT(4))
216
217#ifdef CONFIG_ARC
218/* ARC processor Bitmask definitions for threads user options */
219
220#if defined(CONFIG_ARC_DSP_SHARING)
230#define K_DSP_IDX 6
231#define K_ARC_DSP_REGS (BIT(K_DSP_IDX))
232#endif
233
234#if defined(CONFIG_ARC_AGU_SHARING)
243#define K_AGU_IDX 7
244#define K_ARC_AGU_REGS (BIT(K_AGU_IDX))
245#endif
246#endif
247
248#ifdef CONFIG_X86
249/* x86 Bitmask definitions for threads user options */
250
251#if defined(CONFIG_FPU_SHARING) && defined(CONFIG_X86_SSE)
261#define K_SSE_REGS (BIT(7))
262#endif
263#endif
264
265/* end - thread options */
266
267#if !defined(_ASMLANGUAGE)
282__syscall k_thread_stack_t *k_thread_stack_alloc(size_t size, int flags);
283
297
346__syscall k_tid_t k_thread_create(struct k_thread *new_thread,
347 k_thread_stack_t *stack,
348 size_t stack_size,
350 void *p1, void *p2, void *p3,
351 int prio, uint32_t options, k_timeout_t delay);
352
375 void *p1, void *p2,
376 void *p3);
377
391#define k_thread_access_grant(thread, ...) \
392 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), thread, __VA_ARGS__)
393
408static inline void k_thread_heap_assign(struct k_thread *thread,
409 struct k_heap *heap)
410{
411 thread->resource_pool = heap;
412}
413
414#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
435__syscall int k_thread_stack_space_get(const struct k_thread *thread,
436 size_t *unused_ptr);
437#endif
438
439#if (CONFIG_HEAP_MEM_POOL_SIZE > 0)
453#endif /* (CONFIG_HEAP_MEM_POOL_SIZE > 0) */
454
474__syscall int k_thread_join(struct k_thread *thread, k_timeout_t timeout);
475
489__syscall int32_t k_sleep(k_timeout_t timeout);
490
501static inline int32_t k_msleep(int32_t ms)
502{
503 return k_sleep(Z_TIMEOUT_MS(ms));
504}
505
522
539__syscall void k_busy_wait(uint32_t usec_to_wait);
540
552bool k_can_yield(void);
553
561__syscall void k_yield(void);
562
572__syscall void k_wakeup(k_tid_t thread);
573
587__attribute_const__
589
596__attribute_const__
597static inline k_tid_t k_current_get(void)
598{
599#ifdef CONFIG_THREAD_LOCAL_STORAGE
600 /* Thread-local cache of current thread ID, set in z_thread_entry() */
601 extern __thread k_tid_t z_tls_current;
602
603 return z_tls_current;
604#else
606#endif
607}
608
632__syscall void k_thread_abort(k_tid_t thread);
633
634
644__syscall void k_thread_start(k_tid_t thread);
645
646extern k_ticks_t z_timeout_expires(const struct _timeout *timeout);
647extern k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
648
649#ifdef CONFIG_SYS_CLOCK_EXISTS
650
659
660static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
661 const struct k_thread *t)
662{
663 return z_timeout_expires(&t->base.timeout);
664}
665
674
675static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
676 const struct k_thread *t)
677{
678 return z_timeout_remaining(&t->base.timeout);
679}
680
681#endif /* CONFIG_SYS_CLOCK_EXISTS */
682
687struct _static_thread_data {
688 struct k_thread *init_thread;
689 k_thread_stack_t *init_stack;
690 unsigned int init_stack_size;
692 void *init_p1;
693 void *init_p2;
694 void *init_p3;
695 int init_prio;
696 uint32_t init_options;
697 const char *init_name;
698#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
699 int32_t init_delay_ms;
700#else
701 k_timeout_t init_delay;
702#endif
703};
704
705#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
706#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay_ms = (ms)
707#define Z_THREAD_INIT_DELAY(thread) SYS_TIMEOUT_MS((thread)->init_delay_ms)
708#else
709#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay = SYS_TIMEOUT_MS(ms)
710#define Z_THREAD_INIT_DELAY(thread) (thread)->init_delay
711#endif
712
713#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
714 entry, p1, p2, p3, \
715 prio, options, delay, tname) \
716 { \
717 .init_thread = (thread), \
718 .init_stack = (stack), \
719 .init_stack_size = (stack_size), \
720 .init_entry = (k_thread_entry_t)entry, \
721 .init_p1 = (void *)p1, \
722 .init_p2 = (void *)p2, \
723 .init_p3 = (void *)p3, \
724 .init_prio = (prio), \
725 .init_options = (options), \
726 .init_name = STRINGIFY(tname), \
727 Z_THREAD_INIT_DELAY_INITIALIZER(delay) \
728 }
729
730/*
731 * Refer to K_THREAD_DEFINE() and K_KERNEL_THREAD_DEFINE() for
732 * information on arguments.
733 */
734#define Z_THREAD_COMMON_DEFINE(name, stack_size, \
735 entry, p1, p2, p3, \
736 prio, options, delay) \
737 struct k_thread _k_thread_obj_##name; \
738 STRUCT_SECTION_ITERABLE(_static_thread_data, \
739 _k_thread_data_##name) = \
740 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
741 _k_thread_stack_##name, stack_size,\
742 entry, p1, p2, p3, prio, options, \
743 delay, name); \
744 const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
745
781#define K_THREAD_DEFINE(name, stack_size, \
782 entry, p1, p2, p3, \
783 prio, options, delay) \
784 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
785 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
786 prio, options, delay)
787
818#define K_KERNEL_THREAD_DEFINE(name, stack_size, \
819 entry, p1, p2, p3, \
820 prio, options, delay) \
821 K_KERNEL_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
822 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
823 prio, options, delay)
824
834__syscall int k_thread_priority_get(k_tid_t thread);
835
861__syscall void k_thread_priority_set(k_tid_t thread, int prio);
862
863
864#ifdef CONFIG_SCHED_DEADLINE
897__syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
898#endif
899
900#ifdef CONFIG_SCHED_CPU_MASK
914
928
942
956
967int k_thread_cpu_pin(k_tid_t thread, int cpu);
968#endif
969
985__syscall void k_thread_suspend(k_tid_t thread);
986
997__syscall void k_thread_resume(k_tid_t thread);
998
1025extern void k_sched_time_slice_set(int32_t slice, int prio);
1026
1065void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
1066 k_thread_timeslice_fn_t expired, void *data);
1067
1086extern bool k_is_in_isr(void);
1087
1104__syscall int k_is_preempt_thread(void);
1105
1117static inline bool k_is_pre_kernel(void)
1118{
1119 extern bool z_sys_post_kernel; /* in init.c */
1120
1121 return !z_sys_post_kernel;
1122}
1123
1158extern void k_sched_lock(void);
1159
1167extern void k_sched_unlock(void);
1168
1181__syscall void k_thread_custom_data_set(void *value);
1182
1190__syscall void *k_thread_custom_data_get(void);
1191
1205__syscall int k_thread_name_set(k_tid_t thread, const char *str);
1206
1215const char *k_thread_name_get(k_tid_t thread);
1216
1228__syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1229 size_t size);
1230
1243const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size);
1244
1262#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1263
1276#define K_NSEC(t) Z_TIMEOUT_NS(t)
1277
1290#define K_USEC(t) Z_TIMEOUT_US(t)
1291
1302#define K_CYC(t) Z_TIMEOUT_CYC(t)
1303
1314#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1315
1326#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1327
1338#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1339
1350#define K_MINUTES(m) K_SECONDS((m) * 60)
1351
1362#define K_HOURS(h) K_MINUTES((h) * 60)
1363
1372#define K_FOREVER Z_FOREVER
1373
1374#ifdef CONFIG_TIMEOUT_64BIT
1375
1387#define K_TIMEOUT_ABS_TICKS(t) \
1388 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)MAX(t, 0)))
1389
1401#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1402
1415#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1416
1429#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1430
1443#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1444
1445#endif
1446
1455struct k_timer {
1456 /*
1457 * _timeout structure must be first here if we want to use
1458 * dynamic timer allocation. timeout.node is used in the double-linked
1459 * list of free timers
1460 */
1461 struct _timeout timeout;
1462
1463 /* wait queue for the (single) thread waiting on this timer */
1464 _wait_q_t wait_q;
1465
1466 /* runs in ISR context */
1467 void (*expiry_fn)(struct k_timer *timer);
1468
1469 /* runs in the context of the thread that calls k_timer_stop() */
1470 void (*stop_fn)(struct k_timer *timer);
1471
1472 /* timer period */
1473 k_timeout_t period;
1474
1475 /* timer status */
1476 uint32_t status;
1477
1478 /* user-specific data, also used to support legacy features */
1479 void *user_data;
1480
1482
1483#ifdef CONFIG_OBJ_CORE_TIMER
1484 struct k_obj_core obj_core;
1485#endif
1486};
1487
1488#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1489 { \
1490 .timeout = { \
1491 .node = {},\
1492 .fn = z_timer_expiration_handler, \
1493 .dticks = 0, \
1494 }, \
1495 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1496 .expiry_fn = expiry, \
1497 .stop_fn = stop, \
1498 .status = 0, \
1499 .user_data = 0, \
1500 }
1501
1522typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1523
1538typedef void (*k_timer_stop_t)(struct k_timer *timer);
1539
1551#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1552 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1553 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1554
1564extern void k_timer_init(struct k_timer *timer,
1565 k_timer_expiry_t expiry_fn,
1566 k_timer_stop_t stop_fn);
1567
1582__syscall void k_timer_start(struct k_timer *timer,
1583 k_timeout_t duration, k_timeout_t period);
1584
1601__syscall void k_timer_stop(struct k_timer *timer);
1602
1615__syscall uint32_t k_timer_status_get(struct k_timer *timer);
1616
1634__syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1635
1636#ifdef CONFIG_SYS_CLOCK_EXISTS
1637
1648__syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1649
1650static inline k_ticks_t z_impl_k_timer_expires_ticks(
1651 const struct k_timer *timer)
1652{
1653 return z_timeout_expires(&timer->timeout);
1654}
1655
1663__syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1664
1665static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1666 const struct k_timer *timer)
1667{
1668 return z_timeout_remaining(&timer->timeout);
1669}
1670
1681static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
1682{
1684}
1685
1686#endif /* CONFIG_SYS_CLOCK_EXISTS */
1687
1700__syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
1701
1705static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
1706 void *user_data)
1707{
1708 timer->user_data = user_data;
1709}
1710
1718__syscall void *k_timer_user_data_get(const struct k_timer *timer);
1719
1720static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
1721{
1722 return timer->user_data;
1723}
1724
1742__syscall int64_t k_uptime_ticks(void);
1743
1757static inline int64_t k_uptime_get(void)
1758{
1760}
1761
1781static inline uint32_t k_uptime_get_32(void)
1782{
1783 return (uint32_t)k_uptime_get();
1784}
1785
1797static inline int64_t k_uptime_delta(int64_t *reftime)
1798{
1799 int64_t uptime, delta;
1800
1801 uptime = k_uptime_get();
1802 delta = uptime - *reftime;
1803 *reftime = uptime;
1804
1805 return delta;
1806}
1807
1816static inline uint32_t k_cycle_get_32(void)
1817{
1818 return arch_k_cycle_get_32();
1819}
1820
1831static inline uint64_t k_cycle_get_64(void)
1832{
1833 if (!IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
1834 __ASSERT(0, "64-bit cycle counter not enabled on this platform. "
1835 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
1836 return 0;
1837 }
1838
1839 return arch_k_cycle_get_64();
1840}
1841
1846struct k_queue {
1849 _wait_q_t wait_q;
1850
1851 _POLL_EVENT;
1852
1854};
1855
1860#define Z_QUEUE_INITIALIZER(obj) \
1861 { \
1862 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
1863 .lock = { }, \
1864 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1865 _POLL_EVENT_OBJ_INIT(obj) \
1866 }
1867
1885__syscall void k_queue_init(struct k_queue *queue);
1886
1900__syscall void k_queue_cancel_wait(struct k_queue *queue);
1901
1914extern void k_queue_append(struct k_queue *queue, void *data);
1915
1932__syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
1933
1946extern void k_queue_prepend(struct k_queue *queue, void *data);
1947
1964__syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
1965
1979extern void k_queue_insert(struct k_queue *queue, void *prev, void *data);
1980
1999extern int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
2000
2016extern int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
2017
2036__syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
2037
2054bool k_queue_remove(struct k_queue *queue, void *data);
2055
2070bool k_queue_unique_append(struct k_queue *queue, void *data);
2071
2085__syscall int k_queue_is_empty(struct k_queue *queue);
2086
2087static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
2088{
2089 return (int)sys_sflist_is_empty(&queue->data_q);
2090}
2091
2101__syscall void *k_queue_peek_head(struct k_queue *queue);
2102
2112__syscall void *k_queue_peek_tail(struct k_queue *queue);
2113
2123#define K_QUEUE_DEFINE(name) \
2124 STRUCT_SECTION_ITERABLE(k_queue, name) = \
2125 Z_QUEUE_INITIALIZER(name)
2126
2129#ifdef CONFIG_USERSPACE
2139struct k_futex {
2141};
2142
2150struct z_futex_data {
2151 _wait_q_t wait_q;
2152 struct k_spinlock lock;
2153};
2154
2155#define Z_FUTEX_DATA_INITIALIZER(obj) \
2156 { \
2157 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2158 }
2159
2185__syscall int k_futex_wait(struct k_futex *futex, int expected,
2186 k_timeout_t timeout);
2187
2202__syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
2203
2205#endif
2206
2218struct k_event {
2219 _wait_q_t wait_q;
2222
2224
2225#ifdef CONFIG_OBJ_CORE_EVENT
2226 struct k_obj_core obj_core;
2227#endif
2228
2229};
2230
2231#define Z_EVENT_INITIALIZER(obj) \
2232 { \
2233 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2234 .events = 0 \
2235 }
2236
2244__syscall void k_event_init(struct k_event *event);
2245
2261__syscall uint32_t k_event_post(struct k_event *event, uint32_t events);
2262
2278__syscall uint32_t k_event_set(struct k_event *event, uint32_t events);
2279
2294__syscall uint32_t k_event_set_masked(struct k_event *event, uint32_t events,
2295 uint32_t events_mask);
2296
2307__syscall uint32_t k_event_clear(struct k_event *event, uint32_t events);
2308
2330__syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2331 bool reset, k_timeout_t timeout);
2332
2354__syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2355 bool reset, k_timeout_t timeout);
2356
2365static inline uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
2366{
2367 return k_event_wait(event, events_mask, false, K_NO_WAIT);
2368}
2369
2379#define K_EVENT_DEFINE(name) \
2380 STRUCT_SECTION_ITERABLE(k_event, name) = \
2381 Z_EVENT_INITIALIZER(name);
2382
2385struct k_fifo {
2386 struct k_queue _queue;
2387#ifdef CONFIG_OBJ_CORE_FIFO
2388 struct k_obj_core obj_core;
2389#endif
2390};
2391
2395#define Z_FIFO_INITIALIZER(obj) \
2396 { \
2397 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2398 }
2399
2417#define k_fifo_init(fifo) \
2418 ({ \
2419 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2420 k_queue_init(&(fifo)->_queue); \
2421 K_OBJ_CORE_INIT(K_OBJ_CORE(fifo), _obj_type_fifo); \
2422 K_OBJ_CORE_LINK(K_OBJ_CORE(fifo)); \
2423 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2424 })
2425
2437#define k_fifo_cancel_wait(fifo) \
2438 ({ \
2439 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2440 k_queue_cancel_wait(&(fifo)->_queue); \
2441 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2442 })
2443
2456#define k_fifo_put(fifo, data) \
2457 ({ \
2458 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, data); \
2459 k_queue_append(&(fifo)->_queue, data); \
2460 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, data); \
2461 })
2462
2479#define k_fifo_alloc_put(fifo, data) \
2480 ({ \
2481 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, data); \
2482 int fap_ret = k_queue_alloc_append(&(fifo)->_queue, data); \
2483 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, data, fap_ret); \
2484 fap_ret; \
2485 })
2486
2501#define k_fifo_put_list(fifo, head, tail) \
2502 ({ \
2503 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2504 k_queue_append_list(&(fifo)->_queue, head, tail); \
2505 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2506 })
2507
2521#define k_fifo_put_slist(fifo, list) \
2522 ({ \
2523 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2524 k_queue_merge_slist(&(fifo)->_queue, list); \
2525 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2526 })
2527
2545#define k_fifo_get(fifo, timeout) \
2546 ({ \
2547 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2548 void *fg_ret = k_queue_get(&(fifo)->_queue, timeout); \
2549 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, fg_ret); \
2550 fg_ret; \
2551 })
2552
2566#define k_fifo_is_empty(fifo) \
2567 k_queue_is_empty(&(fifo)->_queue)
2568
2582#define k_fifo_peek_head(fifo) \
2583 ({ \
2584 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2585 void *fph_ret = k_queue_peek_head(&(fifo)->_queue); \
2586 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, fph_ret); \
2587 fph_ret; \
2588 })
2589
2601#define k_fifo_peek_tail(fifo) \
2602 ({ \
2603 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2604 void *fpt_ret = k_queue_peek_tail(&(fifo)->_queue); \
2605 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, fpt_ret); \
2606 fpt_ret; \
2607 })
2608
2618#define K_FIFO_DEFINE(name) \
2619 STRUCT_SECTION_ITERABLE(k_fifo, name) = \
2620 Z_FIFO_INITIALIZER(name)
2621
2624struct k_lifo {
2625 struct k_queue _queue;
2626#ifdef CONFIG_OBJ_CORE_LIFO
2627 struct k_obj_core obj_core;
2628#endif
2629};
2630
2635#define Z_LIFO_INITIALIZER(obj) \
2636 { \
2637 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2638 }
2639
2657#define k_lifo_init(lifo) \
2658 ({ \
2659 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2660 k_queue_init(&(lifo)->_queue); \
2661 K_OBJ_CORE_INIT(K_OBJ_CORE(lifo), _obj_type_lifo); \
2662 K_OBJ_CORE_LINK(K_OBJ_CORE(lifo)); \
2663 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2664 })
2665
2678#define k_lifo_put(lifo, data) \
2679 ({ \
2680 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, data); \
2681 k_queue_prepend(&(lifo)->_queue, data); \
2682 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, data); \
2683 })
2684
2701#define k_lifo_alloc_put(lifo, data) \
2702 ({ \
2703 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, data); \
2704 int lap_ret = k_queue_alloc_prepend(&(lifo)->_queue, data); \
2705 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, data, lap_ret); \
2706 lap_ret; \
2707 })
2708
2726#define k_lifo_get(lifo, timeout) \
2727 ({ \
2728 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2729 void *lg_ret = k_queue_get(&(lifo)->_queue, timeout); \
2730 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, lg_ret); \
2731 lg_ret; \
2732 })
2733
2743#define K_LIFO_DEFINE(name) \
2744 STRUCT_SECTION_ITERABLE(k_lifo, name) = \
2745 Z_LIFO_INITIALIZER(name)
2746
2752#define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
2753
2754typedef uintptr_t stack_data_t;
2755
2756struct k_stack {
2757 _wait_q_t wait_q;
2758 struct k_spinlock lock;
2759 stack_data_t *base, *next, *top;
2760
2761 uint8_t flags;
2762
2764
2765#ifdef CONFIG_OBJ_CORE_STACK
2766 struct k_obj_core obj_core;
2767#endif
2768};
2769
2770#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
2771 { \
2772 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2773 .base = stack_buffer, \
2774 .next = stack_buffer, \
2775 .top = stack_buffer + stack_num_entries, \
2776 }
2777
2797void k_stack_init(struct k_stack *stack,
2798 stack_data_t *buffer, uint32_t num_entries);
2799
2800
2815__syscall int32_t k_stack_alloc_init(struct k_stack *stack,
2816 uint32_t num_entries);
2817
2829int k_stack_cleanup(struct k_stack *stack);
2830
2844__syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
2845
2866__syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
2867 k_timeout_t timeout);
2868
2879#define K_STACK_DEFINE(name, stack_num_entries) \
2880 stack_data_t __noinit \
2881 _k_stack_buf_##name[stack_num_entries]; \
2882 STRUCT_SECTION_ITERABLE(k_stack, name) = \
2883 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
2884 stack_num_entries)
2885
2892struct k_work;
2893struct k_work_q;
2894struct k_work_queue_config;
2895extern struct k_work_q k_sys_work_q;
2896
2911struct k_mutex {
2913 _wait_q_t wait_q;
2916
2919
2922
2924
2925#ifdef CONFIG_OBJ_CORE_MUTEX
2926 struct k_obj_core obj_core;
2927#endif
2928};
2929
2933#define Z_MUTEX_INITIALIZER(obj) \
2934 { \
2935 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2936 .owner = NULL, \
2937 .lock_count = 0, \
2938 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
2939 }
2940
2954#define K_MUTEX_DEFINE(name) \
2955 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
2956 Z_MUTEX_INITIALIZER(name)
2957
2970__syscall int k_mutex_init(struct k_mutex *mutex);
2971
2972
2994__syscall int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout);
2995
3016__syscall int k_mutex_unlock(struct k_mutex *mutex);
3017
3024 _wait_q_t wait_q;
3025
3026#ifdef CONFIG_OBJ_CORE_CONDVAR
3027 struct k_obj_core obj_core;
3028#endif
3029};
3030
3031#define Z_CONDVAR_INITIALIZER(obj) \
3032 { \
3033 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3034 }
3035
3048__syscall int k_condvar_init(struct k_condvar *condvar);
3049
3056__syscall int k_condvar_signal(struct k_condvar *condvar);
3057
3065__syscall int k_condvar_broadcast(struct k_condvar *condvar);
3066
3084__syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
3085 k_timeout_t timeout);
3086
3097#define K_CONDVAR_DEFINE(name) \
3098 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
3099 Z_CONDVAR_INITIALIZER(name)
3108struct k_sem {
3109 _wait_q_t wait_q;
3110 unsigned int count;
3111 unsigned int limit;
3112
3113 _POLL_EVENT;
3114
3116
3117#ifdef CONFIG_OBJ_CORE_SEM
3118 struct k_obj_core obj_core;
3119#endif
3120};
3121
3122#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
3123 { \
3124 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3125 .count = initial_count, \
3126 .limit = count_limit, \
3127 _POLL_EVENT_OBJ_INIT(obj) \
3128 }
3129
3148#define K_SEM_MAX_LIMIT UINT_MAX
3149
3165__syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
3166 unsigned int limit);
3167
3186__syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
3187
3198__syscall void k_sem_give(struct k_sem *sem);
3199
3209__syscall void k_sem_reset(struct k_sem *sem);
3210
3220__syscall unsigned int k_sem_count_get(struct k_sem *sem);
3221
3225static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
3226{
3227 return sem->count;
3228}
3229
3241#define K_SEM_DEFINE(name, initial_count, count_limit) \
3242 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3243 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3244 BUILD_ASSERT(((count_limit) != 0) && \
3245 ((initial_count) <= (count_limit)) && \
3246 ((count_limit) <= K_SEM_MAX_LIMIT));
3247
3254struct k_work_delayable;
3255struct k_work_sync;
3256
3273typedef void (*k_work_handler_t)(struct k_work *work);
3274
3288void k_work_init(struct k_work *work,
3290
3305int k_work_busy_get(const struct k_work *work);
3306
3320static inline bool k_work_is_pending(const struct k_work *work);
3321
3343 struct k_work *work);
3344
3353extern int k_work_submit(struct k_work *work);
3354
3379bool k_work_flush(struct k_work *work,
3380 struct k_work_sync *sync);
3381
3401int k_work_cancel(struct k_work *work);
3402
3433bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3434
3445
3466 k_thread_stack_t *stack, size_t stack_size,
3467 int prio, const struct k_work_queue_config *cfg);
3468
3478static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
3479
3503int k_work_queue_drain(struct k_work_q *queue, bool plug);
3504
3519
3535
3547static inline struct k_work_delayable *
3549
3564
3579static inline bool k_work_delayable_is_pending(
3580 const struct k_work_delayable *dwork);
3581
3596 const struct k_work_delayable *dwork);
3597
3612 const struct k_work_delayable *dwork);
3613
3640 struct k_work_delayable *dwork,
3641 k_timeout_t delay);
3642
3656extern int k_work_schedule(struct k_work_delayable *dwork,
3657 k_timeout_t delay);
3658
3695 struct k_work_delayable *dwork,
3696 k_timeout_t delay);
3697
3710extern int k_work_reschedule(struct k_work_delayable *dwork,
3711 k_timeout_t delay);
3712
3738 struct k_work_sync *sync);
3739
3761
3791 struct k_work_sync *sync);
3792
3793enum {
3798 /* The atomic API is used for all work and queue flags fields to
3799 * enforce sequential consistency in SMP environments.
3800 */
3801
3802 /* Bits that represent the work item states. At least nine of the
3803 * combinations are distinct valid stable states.
3804 */
3805 K_WORK_RUNNING_BIT = 0,
3806 K_WORK_CANCELING_BIT = 1,
3807 K_WORK_QUEUED_BIT = 2,
3808 K_WORK_DELAYED_BIT = 3,
3809
3810 K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
3811 | BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT),
3812
3813 /* Static work flags */
3814 K_WORK_DELAYABLE_BIT = 8,
3815 K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
3816
3817 /* Dynamic work queue flags */
3818 K_WORK_QUEUE_STARTED_BIT = 0,
3819 K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
3820 K_WORK_QUEUE_BUSY_BIT = 1,
3821 K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
3822 K_WORK_QUEUE_DRAIN_BIT = 2,
3823 K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
3824 K_WORK_QUEUE_PLUGGED_BIT = 3,
3825 K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
3826
3827 /* Static work queue flags */
3828 K_WORK_QUEUE_NO_YIELD_BIT = 8,
3829 K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
3830
3834 /* Transient work flags */
3835
3841 K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
3842
3847 K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
3848
3854 K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
3855
3861 K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
3862};
3863
3865struct k_work {
3866 /* All fields are protected by the work module spinlock. No fields
3867 * are to be accessed except through kernel API.
3868 */
3869
3870 /* Node to link into k_work_q pending list. */
3872
3873 /* The function to be invoked by the work queue thread. */
3875
3876 /* The queue on which the work item was last submitted. */
3878
3879 /* State of the work item.
3880 *
3881 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
3882 *
3883 * It can be RUNNING and CANCELING simultaneously.
3884 */
3886};
3887
3888#define Z_WORK_INITIALIZER(work_handler) { \
3889 .handler = work_handler, \
3890}
3891
3894 /* The work item. */
3895 struct k_work work;
3896
3897 /* Timeout used to submit work after a delay. */
3898 struct _timeout timeout;
3899
3900 /* The queue to which the work should be submitted. */
3902};
3903
3904#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
3905 .work = { \
3906 .handler = work_handler, \
3907 .flags = K_WORK_DELAYABLE, \
3908 }, \
3909}
3910
3927#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
3928 struct k_work_delayable work \
3929 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
3930
3935/* Record used to wait for work to flush.
3936 *
3937 * The work item is inserted into the queue that will process (or is
3938 * processing) the item, and will be processed as soon as the item
3939 * completes. When the flusher is processed the semaphore will be
3940 * signaled, releasing the thread waiting for the flush.
3941 */
3942struct z_work_flusher {
3943 struct k_work work;
3944 struct k_sem sem;
3945};
3946
3947/* Record used to wait for work to complete a cancellation.
3948 *
3949 * The work item is inserted into a global queue of pending cancels.
3950 * When a cancelling work item goes idle any matching waiters are
3951 * removed from pending_cancels and are woken.
3952 */
3953struct z_work_canceller {
3954 sys_snode_t node;
3955 struct k_work *work;
3956 struct k_sem sem;
3957};
3958
3977 union {
3978 struct z_work_flusher flusher;
3979 struct z_work_canceller canceller;
3980 };
3981};
3982
3994 const char *name;
3995
4009};
4010
4012struct k_work_q {
4013 /* The thread that animates the work. */
4015
4016 /* All the following fields must be accessed only while the
4017 * work module spinlock is held.
4018 */
4019
4020 /* List of k_work items to be worked. */
4022
4023 /* Wait queue for idle work thread. */
4024 _wait_q_t notifyq;
4025
4026 /* Wait queue for threads waiting for the queue to drain. */
4027 _wait_q_t drainq;
4028
4029 /* Flags describing queue state. */
4031};
4032
4033/* Provide the implementation for inline functions declared above */
4034
4035static inline bool k_work_is_pending(const struct k_work *work)
4036{
4037 return k_work_busy_get(work) != 0;
4038}
4039
4040static inline struct k_work_delayable *
4042{
4043 return CONTAINER_OF(work, struct k_work_delayable, work);
4044}
4045
4047 const struct k_work_delayable *dwork)
4048{
4049 return k_work_delayable_busy_get(dwork) != 0;
4050}
4051
4053 const struct k_work_delayable *dwork)
4054{
4055 return z_timeout_expires(&dwork->timeout);
4056}
4057
4059 const struct k_work_delayable *dwork)
4060{
4061 return z_timeout_remaining(&dwork->timeout);
4062}
4063
4065{
4066 return &queue->thread;
4067}
4068
4071struct k_work_user;
4072
4087typedef void (*k_work_user_handler_t)(struct k_work_user *work);
4088
4093struct k_work_user_q {
4094 struct k_queue queue;
4095 struct k_thread thread;
4096};
4097
4098enum {
4099 K_WORK_USER_STATE_PENDING, /* Work item pending state */
4100};
4101
4102struct k_work_user {
4103 void *_reserved; /* Used by k_queue implementation. */
4104 k_work_user_handler_t handler;
4106};
4107
4112#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
4113#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
4114#else
4115#define Z_WORK_USER_INITIALIZER(work_handler) \
4116 { \
4117 ._reserved = NULL, \
4118 .handler = work_handler, \
4119 .flags = 0 \
4120 }
4121#endif
4122
4134#define K_WORK_USER_DEFINE(work, work_handler) \
4135 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4136
4146static inline void k_work_user_init(struct k_work_user *work,
4147 k_work_user_handler_t handler)
4148{
4149 *work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
4150}
4151
4168static inline bool k_work_user_is_pending(struct k_work_user *work)
4169{
4170 return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
4171}
4172
4191static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
4192 struct k_work_user *work)
4193{
4194 int ret = -EBUSY;
4195
4196 if (!atomic_test_and_set_bit(&work->flags,
4197 K_WORK_USER_STATE_PENDING)) {
4198 ret = k_queue_alloc_append(&work_q->queue, work);
4199
4200 /* Couldn't insert into the queue. Clear the pending bit
4201 * so the work item can be submitted again
4202 */
4203 if (ret != 0) {
4204 atomic_clear_bit(&work->flags,
4205 K_WORK_USER_STATE_PENDING);
4206 }
4207 }
4208
4209 return ret;
4210}
4211
4231extern void k_work_user_queue_start(struct k_work_user_q *work_q,
4232 k_thread_stack_t *stack,
4233 size_t stack_size, int prio,
4234 const char *name);
4235
4246static inline k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
4247{
4248 return &work_q->thread;
4249}
4250
4257struct k_work_poll {
4258 struct k_work work;
4259 struct k_work_q *workq;
4260 struct z_poller poller;
4261 struct k_poll_event *events;
4262 int num_events;
4263 k_work_handler_t real_handler;
4264 struct _timeout timeout;
4265 int poll_result;
4266};
4267
4288#define K_WORK_DEFINE(work, work_handler) \
4289 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4290
4300extern void k_work_poll_init(struct k_work_poll *work,
4301 k_work_handler_t handler);
4302
4337extern int k_work_poll_submit_to_queue(struct k_work_q *work_q,
4338 struct k_work_poll *work,
4339 struct k_poll_event *events,
4340 int num_events,
4341 k_timeout_t timeout);
4342
4374extern int k_work_poll_submit(struct k_work_poll *work,
4375 struct k_poll_event *events,
4376 int num_events,
4377 k_timeout_t timeout);
4378
4393extern int k_work_poll_cancel(struct k_work_poll *work);
4394
4406struct k_msgq {
4408 _wait_q_t wait_q;
4412 size_t msg_size;
4425
4426 _POLL_EVENT;
4427
4430
4432
4433#ifdef CONFIG_OBJ_CORE_MSGQ
4434 struct k_obj_core obj_core;
4435#endif
4436};
4442#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4443 { \
4444 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4445 .msg_size = q_msg_size, \
4446 .max_msgs = q_max_msgs, \
4447 .buffer_start = q_buffer, \
4448 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4449 .read_ptr = q_buffer, \
4450 .write_ptr = q_buffer, \
4451 .used_msgs = 0, \
4452 _POLL_EVENT_OBJ_INIT(obj) \
4453 }
4454
4460#define K_MSGQ_FLAG_ALLOC BIT(0)
4461
4467 size_t msg_size;
4472};
4473
4474
4493#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4494 static char __noinit __aligned(q_align) \
4495 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4496 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4497 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4498 (q_msg_size), (q_max_msgs))
4499
4514void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
4515 uint32_t max_msgs);
4516
4536__syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
4537 uint32_t max_msgs);
4538
4549int k_msgq_cleanup(struct k_msgq *msgq);
4550
4572__syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
4573
4594__syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
4595
4610__syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
4611
4628__syscall int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx);
4629
4639__syscall void k_msgq_purge(struct k_msgq *msgq);
4640
4651__syscall uint32_t k_msgq_num_free_get(struct k_msgq *msgq);
4652
4661__syscall void k_msgq_get_attrs(struct k_msgq *msgq,
4662 struct k_msgq_attrs *attrs);
4663
4664
4665static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
4666{
4667 return msgq->max_msgs - msgq->used_msgs;
4668}
4669
4679__syscall uint32_t k_msgq_num_used_get(struct k_msgq *msgq);
4680
4681static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
4682{
4683 return msgq->used_msgs;
4684}
4685
4700 uint32_t _mailbox;
4702 size_t size;
4706 void *tx_data;
4712 k_tid_t _syncing_thread;
4713#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
4715 struct k_sem *_async_sem;
4716#endif
4717};
4722struct k_mbox {
4724 _wait_q_t tx_msg_queue;
4726 _wait_q_t rx_msg_queue;
4728
4730
4731#ifdef CONFIG_OBJ_CORE_MAILBOX
4732 struct k_obj_core obj_core;
4733#endif
4734};
4739#define Z_MBOX_INITIALIZER(obj) \
4740 { \
4741 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
4742 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
4743 }
4744
4758#define K_MBOX_DEFINE(name) \
4759 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
4760 Z_MBOX_INITIALIZER(name) \
4761
4769extern void k_mbox_init(struct k_mbox *mbox);
4770
4790extern int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4791 k_timeout_t timeout);
4792
4806extern void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4807 struct k_sem *sem);
4808
4826extern int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
4827 void *buffer, k_timeout_t timeout);
4828
4842extern void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
4843
4853struct k_pipe {
4854 unsigned char *buffer;
4855 size_t size;
4856 size_t bytes_used;
4857 size_t read_index;
4861 struct {
4862 _wait_q_t readers;
4863 _wait_q_t writers;
4866 _POLL_EVENT;
4867
4871
4872#ifdef CONFIG_OBJ_CORE_PIPE
4873 struct k_obj_core obj_core;
4874#endif
4875};
4876
4880#define K_PIPE_FLAG_ALLOC BIT(0)
4882#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
4883 { \
4884 .buffer = pipe_buffer, \
4885 .size = pipe_buffer_size, \
4886 .bytes_used = 0, \
4887 .read_index = 0, \
4888 .write_index = 0, \
4889 .lock = {}, \
4890 .wait_q = { \
4891 .readers = Z_WAIT_Q_INIT(&obj.wait_q.readers), \
4892 .writers = Z_WAIT_Q_INIT(&obj.wait_q.writers) \
4893 }, \
4894 _POLL_EVENT_OBJ_INIT(obj) \
4895 .flags = 0, \
4896 }
4897
4915#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
4916 static unsigned char __noinit __aligned(pipe_align) \
4917 _k_pipe_buf_##name[pipe_buffer_size]; \
4918 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
4919 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
4920
4932void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size);
4933
4945int k_pipe_cleanup(struct k_pipe *pipe);
4946
4962__syscall int k_pipe_alloc_init(struct k_pipe *pipe, size_t size);
4963
4982__syscall int k_pipe_put(struct k_pipe *pipe, void *data,
4983 size_t bytes_to_write, size_t *bytes_written,
4984 size_t min_xfer, k_timeout_t timeout);
4985
5005__syscall int k_pipe_get(struct k_pipe *pipe, void *data,
5006 size_t bytes_to_read, size_t *bytes_read,
5007 size_t min_xfer, k_timeout_t timeout);
5008
5017__syscall size_t k_pipe_read_avail(struct k_pipe *pipe);
5018
5027__syscall size_t k_pipe_write_avail(struct k_pipe *pipe);
5028
5039__syscall void k_pipe_flush(struct k_pipe *pipe);
5040
5052__syscall void k_pipe_buffer_flush(struct k_pipe *pipe);
5053
5060struct k_mem_slab_info {
5061 uint32_t num_blocks;
5062 size_t block_size;
5063 uint32_t num_used;
5064#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5065 uint32_t max_used;
5066#endif
5067};
5068
5069struct k_mem_slab {
5070 _wait_q_t wait_q;
5071 struct k_spinlock lock;
5072 char *buffer;
5073 char *free_list;
5074 struct k_mem_slab_info info;
5075
5077
5078#ifdef CONFIG_OBJ_CORE_MEM_SLAB
5079 struct k_obj_core obj_core;
5080#endif
5081};
5082
5083#define Z_MEM_SLAB_INITIALIZER(_slab, _slab_buffer, _slab_block_size, \
5084 _slab_num_blocks) \
5085 { \
5086 .wait_q = Z_WAIT_Q_INIT(&(_slab).wait_q), \
5087 .lock = {}, \
5088 .buffer = _slab_buffer, \
5089 .free_list = NULL, \
5090 .info = {_slab_num_blocks, _slab_block_size, 0} \
5091 }
5092
5093
5127#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
5128 char __noinit_named(k_mem_slab_buf_##name) \
5129 __aligned(WB_UP(slab_align)) \
5130 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5131 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5132 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5133 WB_UP(slab_block_size), slab_num_blocks)
5134
5149#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
5150 static char __noinit_named(k_mem_slab_buf_##name) \
5151 __aligned(WB_UP(slab_align)) \
5152 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5153 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5154 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5155 WB_UP(slab_block_size), slab_num_blocks)
5156
5178extern int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
5179 size_t block_size, uint32_t num_blocks);
5180
5203extern int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
5204 k_timeout_t timeout);
5205
5215extern void k_mem_slab_free(struct k_mem_slab *slab, void *mem);
5216
5227static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
5228{
5229 return slab->info.num_used;
5230}
5231
5242static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5243{
5244#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5245 return slab->info.max_used;
5246#else
5247 ARG_UNUSED(slab);
5248 return 0;
5249#endif
5250}
5251
5262static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5263{
5264 return slab->info.num_blocks - slab->info.num_used;
5265}
5266
5279int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats);
5280
5292int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab);
5293
5301/* kernel synchronized heap struct */
5302
5303struct k_heap {
5305 _wait_q_t wait_q;
5307};
5308
5322void k_heap_init(struct k_heap *h, void *mem, size_t bytes);
5323
5343void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5344 k_timeout_t timeout);
5345
5367void *k_heap_alloc(struct k_heap *h, size_t bytes,
5368 k_timeout_t timeout);
5369
5380void k_heap_free(struct k_heap *h, void *mem);
5381
5382/* Hand-calculated minimum heap sizes needed to return a successful
5383 * 1-byte allocation. See details in lib/os/heap.[ch]
5384 */
5385#define Z_HEAP_MIN_SIZE (sizeof(void *) > 4 ? 56 : 44)
5386
5403#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5404 char in_section \
5405 __aligned(8) /* CHUNK_UNIT */ \
5406 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5407 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5408 .heap = { \
5409 .init_mem = kheap_##name, \
5410 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5411 }, \
5412 }
5413
5428#define K_HEAP_DEFINE(name, bytes) \
5429 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5430 __noinit_named(kheap_buf_##name))
5431
5446#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5447 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5448
5477extern void *k_aligned_alloc(size_t align, size_t size);
5478
5490extern void *k_malloc(size_t size);
5491
5502extern void k_free(void *ptr);
5503
5515extern void *k_calloc(size_t nmemb, size_t size);
5516
5519/* polling API - PRIVATE */
5520
5521#ifdef CONFIG_POLL
5522#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
5523#else
5524#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
5525#endif
5526
5527/* private - types bit positions */
5528enum _poll_types_bits {
5529 /* can be used to ignore an event */
5530 _POLL_TYPE_IGNORE,
5531
5532 /* to be signaled by k_poll_signal_raise() */
5533 _POLL_TYPE_SIGNAL,
5534
5535 /* semaphore availability */
5536 _POLL_TYPE_SEM_AVAILABLE,
5537
5538 /* queue/FIFO/LIFO data availability */
5539 _POLL_TYPE_DATA_AVAILABLE,
5540
5541 /* msgq data availability */
5542 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
5543
5544 /* pipe data availability */
5545 _POLL_TYPE_PIPE_DATA_AVAILABLE,
5546
5547 _POLL_NUM_TYPES
5548};
5549
5550#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
5551
5552/* private - states bit positions */
5553enum _poll_states_bits {
5554 /* default state when creating event */
5555 _POLL_STATE_NOT_READY,
5556
5557 /* signaled by k_poll_signal_raise() */
5558 _POLL_STATE_SIGNALED,
5559
5560 /* semaphore is available */
5561 _POLL_STATE_SEM_AVAILABLE,
5562
5563 /* data is available to read on queue/FIFO/LIFO */
5564 _POLL_STATE_DATA_AVAILABLE,
5565
5566 /* queue/FIFO/LIFO wait was cancelled */
5567 _POLL_STATE_CANCELLED,
5568
5569 /* data is available to read on a message queue */
5570 _POLL_STATE_MSGQ_DATA_AVAILABLE,
5571
5572 /* data is available to read from a pipe */
5573 _POLL_STATE_PIPE_DATA_AVAILABLE,
5574
5575 _POLL_NUM_STATES
5576};
5577
5578#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
5579
5580#define _POLL_EVENT_NUM_UNUSED_BITS \
5581 (32 - (0 \
5582 + 8 /* tag */ \
5583 + _POLL_NUM_TYPES \
5584 + _POLL_NUM_STATES \
5585 + 1 /* modes */ \
5586 ))
5587
5588/* end of polling API - PRIVATE */
5589
5590
5597/* Public polling API */
5598
5599/* public - values for k_poll_event.type bitfield */
5600#define K_POLL_TYPE_IGNORE 0
5601#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
5602#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
5603#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
5604#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
5605#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
5606#define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
5607
5608/* public - polling modes */
5610 /* polling thread does not take ownership of objects when available */
5612
5615
5616/* public - values for k_poll_event.state bitfield */
5617#define K_POLL_STATE_NOT_READY 0
5618#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
5619#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
5620#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
5621#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
5622#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
5623#define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
5624#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
5625
5626/* public - poll signal object */
5630
5635 unsigned int signaled;
5636
5639};
5640
5641#define K_POLL_SIGNAL_INITIALIZER(obj) \
5642 { \
5643 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
5644 .signaled = 0, \
5645 .result = 0, \
5646 }
5653 sys_dnode_t _node;
5654
5656 struct z_poller *poller;
5657
5660
5662 uint32_t type:_POLL_NUM_TYPES;
5663
5665 uint32_t state:_POLL_NUM_STATES;
5666
5669
5671 uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
5672
5674 union {
5675 void *obj;
5677 struct k_sem *sem;
5678 struct k_fifo *fifo;
5680 struct k_msgq *msgq;
5681#ifdef CONFIG_PIPES
5682 struct k_pipe *pipe;
5683#endif
5684 };
5685};
5686
5687#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
5688 { \
5689 .poller = NULL, \
5690 .type = _event_type, \
5691 .state = K_POLL_STATE_NOT_READY, \
5692 .mode = _event_mode, \
5693 .unused = 0, \
5694 { \
5695 .obj = _event_obj, \
5696 }, \
5697 }
5698
5699#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
5700 event_tag) \
5701 { \
5702 .tag = event_tag, \
5703 .type = _event_type, \
5704 .state = K_POLL_STATE_NOT_READY, \
5705 .mode = _event_mode, \
5706 .unused = 0, \
5707 { \
5708 .obj = _event_obj, \
5709 }, \
5710 }
5711
5727extern void k_poll_event_init(struct k_poll_event *event, uint32_t type,
5728 int mode, void *obj);
5729
5773__syscall int k_poll(struct k_poll_event *events, int num_events,
5774 k_timeout_t timeout);
5775
5784__syscall void k_poll_signal_init(struct k_poll_signal *sig);
5785
5786/*
5787 * @brief Reset a poll signal object's state to unsignaled.
5788 *
5789 * @param sig A poll signal object
5790 */
5791__syscall void k_poll_signal_reset(struct k_poll_signal *sig);
5792
5803__syscall void k_poll_signal_check(struct k_poll_signal *sig,
5804 unsigned int *signaled, int *result);
5805
5830__syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
5831
5852static inline void k_cpu_idle(void)
5853{
5854 arch_cpu_idle();
5855}
5856
5871static inline void k_cpu_atomic_idle(unsigned int key)
5872{
5874}
5875
5884#ifdef ARCH_EXCEPT
5885/* This architecture has direct support for triggering a CPU exception */
5886#define z_except_reason(reason) ARCH_EXCEPT(reason)
5887#else
5888
5889#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
5890#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
5891#else
5892#define __EXCEPT_LOC()
5893#endif
5894
5895/* NOTE: This is the implementation for arches that do not implement
5896 * ARCH_EXCEPT() to generate a real CPU exception.
5897 *
5898 * We won't have a real exception frame to determine the PC value when
5899 * the oops occurred, so print file and line number before we jump into
5900 * the fatal error handler.
5901 */
5902#define z_except_reason(reason) do { \
5903 __EXCEPT_LOC(); \
5904 z_fatal_error(reason, NULL); \
5905 } while (false)
5906
5907#endif /* _ARCH__EXCEPT */
5923#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
5924
5933#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
5934
5939/*
5940 * private APIs that are utilized by one or more public APIs
5941 */
5942
5946#ifdef CONFIG_MULTITHREADING
5950extern void z_init_static_threads(void);
5951#else
5955#define z_init_static_threads() do { } while (false)
5956#endif
5957
5961extern void z_timer_expiration_handler(struct _timeout *t);
5966#ifdef CONFIG_PRINTK
5974__syscall void k_str_out(char *c, size_t n);
5975#endif
5976
5997__syscall int k_float_disable(struct k_thread *thread);
5998
6037__syscall int k_float_enable(struct k_thread *thread, unsigned int options);
6038
6048
6056
6067
6078
6087
6096
6097#ifdef __cplusplus
6098}
6099#endif
6100
6101#include <zephyr/tracing/tracing.h>
6102#include <syscalls/kernel.h>
6103
6104#endif /* !_ASMLANGUAGE */
6105
6106#endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
static uint32_t arch_k_cycle_get_32(void)
Definition: misc.h:26
static uint64_t arch_k_cycle_get_64(void)
Definition: misc.h:33
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition: arch_interface.h:44
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition: arch_interface.h:46
long atomic_t
Definition: atomic.h:22
System error numbers.
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically test a bit.
Definition: atomic.h:131
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition: atomic.h:198
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit.
Definition: atomic.h:176
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition: kernel.h:1816
#define K_NO_WAIT
Generate null timeout delay.
Definition: kernel.h:1262
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition: kernel.h:1781
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition: sys_clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition: kernel.h:1797
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition: kernel.h:1831
static int64_t k_uptime_get(void)
Get system uptime.
Definition: kernel.h:1757
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition: kernel.h:5852
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition: kernel.h:5871
struct _dnode sys_dnode_t
Doubly-linked list node structure.
Definition: dlist.h:55
struct _dnode sys_dlist_t
Doubly-linked list structure.
Definition: dlist.h:51
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
uint32_t k_event_set_masked(struct k_event *event, uint32_t events, uint32_t events_mask)
Set or clear the events in an event object.
static uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
Test the events currently tracked in the event object.
Definition: kernel.h:2365
uint32_t k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
uint32_t k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_clear(struct k_event *event, uint32_t events)
Clear the events in an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events.
struct _sflist sys_sflist_t
Flagged single-linked list structure.
Definition: sflist.h:60
static bool sys_sflist_is_empty(sys_sflist_t *list)
Test if the given list is empty.
Definition: sflist.h:335
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition: kernel.h:1117
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void *mem)
Free memory allocated from a memory slab.
int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats)
Get the memory stats for a memory slab.
int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
Reset the maximum memory usage for a slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition: kernel.h:5227
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition: kernel.h:5242
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition: kernel.h:5262
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to a message queue.
int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx)
Peek/read a message from a message queue at the specified index.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
size_t k_pipe_read_avail(struct k_pipe *pipe)
Query the number of bytes that may be read from pipe.
int k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
Initialize a pipe and allocate a buffer for it.
void k_pipe_flush(struct k_pipe *pipe)
Flush the pipe of write data.
int k_pipe_put(struct k_pipe *pipe, void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, k_timeout_t timeout)
Write data to a pipe.
void k_pipe_buffer_flush(struct k_pipe *pipe)
Flush the pipe's internal buffer.
int k_pipe_cleanup(struct k_pipe *pipe)
Release a pipe's allocated buffer.
int k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
Read data from a pipe.
void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)
Initialize a pipe.
size_t k_pipe_write_avail(struct k_pipe *pipe)
Query the number of bytes that may be written to pipe.
void k_poll_signal_reset(struct k_poll_signal *sig)
k_poll_modes
Definition: kernel.h:5609
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition: kernel.h:5611
@ K_POLL_NUM_MODES
Definition: kernel.h:5613
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
struct _slist sys_slist_t
Single-linked list structure.
Definition: slist.h:49
struct _snode sys_snode_t
Single-linked list node structure.
Definition: slist.h:39
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition: tracing_macros.h:354
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition: util_macro.h:124
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition: util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition: util.h:247
#define EBUSY
Mount device busy.
Definition: errno.h:55
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
const char * k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
void k_thread_system_pool_assign(struct k_thread *thread)
Assign the system heap as a thread's resource pool.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
bool k_can_yield(void)
Check whether it is possible to yield in the current context.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition: kernel.h:408
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *t)
Get time remaining before a thread wakes up, in system ticks.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition: kernel.h:501
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, k_thread_timeslice_fn_t expired, void *data)
Set thread time slice.
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition: kernel.h:597
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *t)
Get time when a thread wakes up, in system ticks.
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
void k_thread_start(k_tid_t thread)
Start an inactive thread.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
int k_thread_stack_free(k_thread_stack_t *stack)
Free a dynamically allocated thread stack.
__attribute_const__ k_tid_t k_sched_current_thread_query(void)
Query thread ID of the current thread.
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition: kernel.h:103
k_thread_stack_t * k_thread_stack_alloc(size_t size, int flags)
Dynamically allocate a thread stack.
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition: kernel.h:1538
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition: kernel.h:1522
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition: kernel.h:1681
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
#define k_ticks_to_ms_floor32(t)
Convert ticks to milliseconds.
Definition: time_units.h:1243
#define k_ticks_to_ms_floor64(t)
Convert ticks to milliseconds.
Definition: time_units.h:1258
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition: kernel.h:4064
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition: kernel.h:4035
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition: kernel.h:4052
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition: kernel.h:4191
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition: kernel.h:4168
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition: kernel.h:3273
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition: kernel.h:4046
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition: kernel.h:4146
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
static k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
Access the user mode thread that animates a work queue.
Definition: kernel.h:4246
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition: kernel.h:4041
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition: kernel.h:4058
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition: kernel.h:4087
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition: kernel.h:3847
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition: kernel.h:3854
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition: kernel.h:3861
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition: kernel.h:3841
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
execution_context_types
Definition: kernel.h:88
@ K_ISR
Definition: kernel.h:89
@ K_COOP_THREAD
Definition: kernel.h:90
@ K_PREEMPT_THREAD
Definition: kernel.h:91
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
Header files included by kernel.h.
void(* k_thread_timeslice_fn_t)(struct k_thread *thread, void *data)
Definition: kernel_structs.h:265
Memory Statistics.
flags
Definition: parser.h:96
state
Definition: parser_state.h:29
__UINT32_TYPE__ uint32_t
Definition: stdint.h:90
__INTPTR_TYPE__ intptr_t
Definition: stdint.h:104
__INT32_TYPE__ int32_t
Definition: stdint.h:74
__UINT64_TYPE__ uint64_t
Definition: stdint.h:91
__UINT8_TYPE__ uint8_t
Definition: stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition: stdint.h:105
__INT64_TYPE__ int64_t
Definition: stdint.h:75
Structure to store initialization entry information.
Definition: init.h:92
Definition: kernel.h:3023
_wait_q_t wait_q
Definition: kernel.h:3024
Event Structure.
Definition: kernel.h:2218
struct k_spinlock lock
Definition: kernel.h:2221
uint32_t events
Definition: kernel.h:2220
_wait_q_t wait_q
Definition: kernel.h:2219
Definition: kernel.h:2385
futex structure
Definition: kernel.h:2139
atomic_t val
Definition: kernel.h:2140
Definition: kernel.h:5303
struct k_spinlock lock
Definition: kernel.h:5306
struct sys_heap heap
Definition: kernel.h:5304
_wait_q_t wait_q
Definition: kernel.h:5305
Definition: kernel.h:2624
Mailbox Message Structure.
Definition: kernel.h:4698
k_tid_t tx_target_thread
target thread id
Definition: kernel.h:4710
void * tx_data
sender's message data buffer
Definition: kernel.h:4706
k_tid_t rx_source_thread
source thread id
Definition: kernel.h:4708
uint32_t info
application-defined information value
Definition: kernel.h:4704
size_t size
size of message (in bytes)
Definition: kernel.h:4702
Mailbox Structure.
Definition: kernel.h:4722
_wait_q_t tx_msg_queue
Transmit messages queue.
Definition: kernel.h:4724
struct k_spinlock lock
Definition: kernel.h:4727
_wait_q_t rx_msg_queue
Receive message queue.
Definition: kernel.h:4726
Memory Domain.
Definition: mem_domain.h:80
Memory Partition.
Definition: mem_domain.h:55
Message Queue Attributes.
Definition: kernel.h:4465
uint32_t used_msgs
Used messages.
Definition: kernel.h:4471
size_t msg_size
Message Size.
Definition: kernel.h:4467
uint32_t max_msgs
Maximal number of messages.
Definition: kernel.h:4469
Message Queue Structure.
Definition: kernel.h:4406
size_t msg_size
Message size.
Definition: kernel.h:4412
char * read_ptr
Read pointer.
Definition: kernel.h:4420
uint32_t used_msgs
Number of used messages.
Definition: kernel.h:4424
char * buffer_end
End of message buffer.
Definition: kernel.h:4418
struct k_spinlock lock
Lock.
Definition: kernel.h:4410
char * write_ptr
Write pointer.
Definition: kernel.h:4422
char * buffer_start
Start of message buffer.
Definition: kernel.h:4416
uint8_t flags
Message queue.
Definition: kernel.h:4429
_wait_q_t wait_q
Message queue wait queue.
Definition: kernel.h:4408
uint32_t max_msgs
Maximal number of messages.
Definition: kernel.h:4414
Mutex Structure.
Definition: kernel.h:2911
uint32_t lock_count
Current lock count.
Definition: kernel.h:2918
_wait_q_t wait_q
Mutex wait queue.
Definition: kernel.h:2913
int owner_orig_prio
Original thread priority.
Definition: kernel.h:2921
struct k_thread * owner
Mutex owner.
Definition: kernel.h:2915
Object core structure.
Definition: obj_core.h:121
Pipe Structure.
Definition: kernel.h:4853
uint8_t flags
Wait queue.
Definition: kernel.h:4868
_wait_q_t readers
Reader wait queue.
Definition: kernel.h:4862
size_t write_index
Where in buffer to write.
Definition: kernel.h:4858
size_t bytes_used
Definition: kernel.h:4856
struct k_spinlock lock
Synchronization lock.
Definition: kernel.h:4859
struct k_pipe::@227 wait_q
_wait_q_t writers
Writer wait queue.
Definition: kernel.h:4863
size_t size
Buffer size.
Definition: kernel.h:4855
unsigned char * buffer
Pipe buffer: may be NULL.
Definition: kernel.h:4854
size_t read_index
Where in buffer to read from.
Definition: kernel.h:4857
Poll Event.
Definition: kernel.h:5651
struct k_poll_signal * signal
Definition: kernel.h:5676
uint32_t tag
optional user-specified tag, opaque, untouched by the API
Definition: kernel.h:5659
struct k_fifo * fifo
Definition: kernel.h:5678
struct k_msgq * msgq
Definition: kernel.h:5680
struct k_queue * queue
Definition: kernel.h:5679
uint32_t unused
unused bits in 32-bit word
Definition: kernel.h:5671
uint32_t type
bitfield of event types (bitwise-ORed K_POLL_TYPE_xxx values)
Definition: kernel.h:5662
struct k_sem * sem
Definition: kernel.h:5677
uint32_t state
bitfield of event states (bitwise-ORed K_POLL_STATE_xxx values)
Definition: kernel.h:5665
uint32_t mode
mode of operation, from enum k_poll_modes
Definition: kernel.h:5668
struct z_poller * poller
PRIVATE - DO NOT TOUCH.
Definition: kernel.h:5656
void * obj
Definition: kernel.h:5675
Definition: kernel.h:5627
sys_dlist_t poll_events
PRIVATE - DO NOT TOUCH.
Definition: kernel.h:5629
int result
custom result value passed to k_poll_signal_raise() if needed
Definition: kernel.h:5638
unsigned int signaled
1 if the event has been signaled, 0 otherwise.
Definition: kernel.h:5635
Definition: kernel.h:1846
struct k_spinlock lock
Definition: kernel.h:1848
_wait_q_t wait_q
Definition: kernel.h:1849
sys_sflist_t data_q
Definition: kernel.h:1847
Kernel Spin Lock.
Definition: spinlock.h:45
Definition: thread.h:197
Thread Structure.
Definition: thread.h:250
struct _thread_base base
Definition: thread.h:252
struct k_heap * resource_pool
resource pool
Definition: thread.h:333
struct __thread_entry entry
thread entry and parameters description
Definition: thread.h:279
Kernel timeout type.
Definition: sys_clock.h:65
A structure used to submit work after a delay.
Definition: kernel.h:3893
struct _timeout timeout
Definition: kernel.h:3898
struct k_work_q * queue
Definition: kernel.h:3901
struct k_work work
Definition: kernel.h:3895
A structure used to hold work until it can be processed.
Definition: kernel.h:4012
sys_slist_t pending
Definition: kernel.h:4021
_wait_q_t drainq
Definition: kernel.h:4027
_wait_q_t notifyq
Definition: kernel.h:4024
uint32_t flags
Definition: kernel.h:4030
struct k_thread thread
Definition: kernel.h:4014
A structure holding optional configuration items for a work queue.
Definition: kernel.h:3989
const char * name
The name to be given to the work queue thread.
Definition: kernel.h:3994
bool no_yield
Control whether the work queue thread should yield between items.
Definition: kernel.h:4008
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition: kernel.h:3976
struct z_work_canceller canceller
Definition: kernel.h:3979
struct z_work_flusher flusher
Definition: kernel.h:3978
A structure used to submit work.
Definition: kernel.h:3865
k_work_handler_t handler
Definition: kernel.h:3874
uint32_t flags
Definition: kernel.h:3885
struct k_work_q * queue
Definition: kernel.h:3877
sys_snode_t node
Definition: kernel.h:3871
Definition: sys_heap.h:56
Definition: mem_stats.h:24
Macros to abstract toolchain specific capabilities.