The latest development version of this page may be more current than this released 3.7.0 version.

ESP32-C6-DevKitC-1

Overview

ESP32-C6 is Espressif’s first Wi-Fi 6 SoC integrating 2.4 GHz Wi-Fi 6, Bluetooth 5.3 (LE) and the 802.15.4 protocol. ESP32-C6 achieves an industry-leading RF performance, with reliable security features and multiple memory resources for IoT products. It consists of a high-performance (HP) 32-bit RISC-V processor, which can be clocked up to 160 MHz, and a low-power (LP) 32-bit RISC-V processor, which can be clocked up to 20 MHz. It has a 320KB ROM, a 512KB SRAM, and works with external flash. [1]

ESP32-C6-DevKitC-1 is an entry-level development board based on ESP32-C6-WROOM-1(U), a general-purpose module with a 8 MB SPI flash.

Most of the I/O pins are broken out to the pin headers on both sides for easy interfacing. Developers can either connect peripherals with jumper wires or mount ESP32-C6-DevKitC-1 on a breadboard. [2]

ESP32-C6 includes the following features:

  • 32-bit core RISC-V microcontroller with a clock speed of up to 160 MHz

  • 400 KB of internal RAM

  • WiFi 802.11 ax 2.4GHz

  • Fully compatible with IEEE 802.11b/g/n protocol

  • Bluetooth LE: Bluetooth 5.3 certified

  • Internal co-existence mechanism between Wi-Fi and Bluetooth to share the same antenna

  • IEEE 802.15.4 (Zigbee and Thread)

Digital interfaces:

  • 30x GPIOs (QFN40), or 22x GPIOs (QFN32)

  • 2x UART

  • 1x Low-power (LP) UART

  • 1x General purpose SPI

  • 1x I2C

  • 1x Low-power (LP) I2C

  • 1x I2S

  • 1x Pulse counter

  • 1x USB Serial/JTAG controller

  • 1x TWAI® controller, compatible with ISO 11898-1 (CAN Specification 2.0)

  • 1x SDIO 2.0 slave controller

  • LED PWM controller, up to 6 channels

  • 1x Motor control PWM (MCPWM)

  • 1x Remote control peripehral

  • 1x Parallel IO interface (PARLIO)

  • General DMA controller (GDMA), with 3 transmit channels and 3 receive channels

  • Event task matrix (ETM)

Analog interfaces:

  • 1x 12-bit SAR ADCs, up to 7 channels

  • 1x temperature sensor

Timers:

  • 1x 52-bit system timer

  • 1x 54-bit general-purpose timers

  • 3x Watchdog timers

  • 1x Analog watchdog timer

Low Power:

  • Four power modes designed for typical scenarios: Active, Modem-sleep, Light-sleep, Deep-sleep

Security:

  • Secure boot

  • Flash encryption

  • 4-Kbit OTP, up to 1792 bits for users

  • Cryptographic hardware acceleration: (AES-128/256, ECC, HMAC, RSA, SHA, Digital signature, Hash)

  • Random number generator (RNG)

For more information, check the datasheet at ESP32C6 Datasheet

Supported Features

Current Zephyr’s ESP32-C6-DevKitC board supports the following features:

Interface

Controller

Driver/Component

UART

on-chip

serial port

GPIO

on-chip

gpio

PINMUX

on-chip

pinmux

USB-JTAG

on-chip

hardware interface

SPI Master

on-chip

spi

Watchdog

on-chip

watchdog

LEDC

on-chip

pwm

SPI DMA

on-chip

spi

System requirements

Prerequisites

Espressif HAL requires WiFi and Bluetooth binary blobs in order work. Run the command below to retrieve those files.

west blobs fetch hal_espressif

Note

It is recommended running the command above after west update.

Building & Flashing

Simple boot

The board could be loaded using the single binary image, without 2nd stage bootloader. It is the default option when building the application without additional configuration.

Note

Simple boot does not provide any security features nor OTA updates.

MCUboot bootloader

User may choose to use MCUboot bootloader instead. In that case the bootloader must be build (and flash) at least once.

There are two options to be used when building an application:

  1. Sysbuild

  2. Manual build

Note

User can select the MCUboot bootloader by adding the following line to the board default configuration file.

CONFIG_BOOTLOADER_MCUBOOT=y

Sysbuild

The sysbuild makes possible to build and flash all necessary images needed to bootstrap the board with the EPS32 SoC.

To build the sample application using sysbuild use the command:

west build -b esp32c6_devkitc --sysbuild samples/hello_world

By default, the ESP32 sysbuild creates bootloader (MCUboot) and application images. But it can be configured to create other kind of images.

Build directory structure created by sysbuild is different from traditional Zephyr build. Output is structured by the domain subdirectories:

build/
├── hello_world
│   └── zephyr
│       ├── zephyr.elf
│       └── zephyr.bin
├── mcuboot
│    └── zephyr
│       ├── zephyr.elf
│       └── zephyr.bin
└── domains.yaml

Note

With --sysbuild option the bootloader will be re-build and re-flash every time the pristine build is used.

For more information about the system build please read the Sysbuild (System build) documentation.

Manual build

During the development cycle, it is intended to build & flash as quickly possible. For that reason, images can be build one at a time using traditional build.

The instructions following are relevant for both manual build and sysbuild. The only difference is the structure of the build directory.

Note

Remember that bootloader (MCUboot) needs to be flash at least once.

Build and flash applications as usual (see Building an Application and Run an Application for more details).

# From the root of the zephyr repository
west build -b esp32c6_devkitc samples/hello_world

The usual flash target will work with the esp32c6_devkitc board configuration. Here is an example for the Hello World application.

# From the root of the zephyr repository
west build -b esp32c6_devkitc samples/hello_world
west flash

Open the serial monitor using the following command:

west espressif monitor

After the board has automatically reset and booted, you should see the following message in the monitor:

***** Booting Zephyr OS vx.x.x-xxx-gxxxxxxxxxxxx *****
Hello World! esp32c6_devkitc

Debugging

As with much custom hardware, the ESP32-C6 modules require patches to OpenOCD that are not upstreamed yet. Espressif maintains their own fork of the project. The custom OpenOCD can be obtained at OpenOCD ESP32

The Zephyr SDK uses a bundled version of OpenOCD by default. You can overwrite that behavior by adding the -DOPENOCD=<path/to/bin/openocd> -DOPENOCD_DEFAULT_PATH=<path/to/openocd/share/openocd/scripts> parameter when building.

Here is an example for building the Hello World application.

# From the root of the zephyr repository
west build -b esp32c6_devkitc samples/hello_world -- -DOPENOCD=<path/to/bin/openocd> -DOPENOCD_DEFAULT_PATH=<path/to/openocd/share/openocd/scripts>
west flash

You can debug an application in the usual way. Here is an example for the Hello World application.

# From the root of the zephyr repository
west build -b esp32c6_devkitc samples/hello_world
west debug

References