Line data Source code
1 1 : /*
2 : * Copyright (c) 2013-2014 Wind River Systems, Inc.
3 : * Copyright (c) 2019 Nordic Semiconductor ASA.
4 : *
5 : * SPDX-License-Identifier: Apache-2.0
6 : */
7 :
8 : /**
9 : * @file
10 : * @brief ARM AArch32 public interrupt handling
11 : *
12 : * ARM AArch32-specific kernel interrupt handling interface. Included by
13 : * arm/arch.h.
14 : */
15 :
16 : #ifndef ZEPHYR_INCLUDE_ARCH_ARM_IRQ_H_
17 : #define ZEPHYR_INCLUDE_ARCH_ARM_IRQ_H_
18 :
19 : #include <zephyr/sw_isr_table.h>
20 : #include <stdbool.h>
21 :
22 : #ifdef __cplusplus
23 : extern "C" {
24 : #endif
25 :
26 : #ifdef _ASMLANGUAGE
27 : GTEXT(z_arm_int_exit);
28 : GTEXT(arch_irq_enable)
29 : GTEXT(arch_irq_disable)
30 : GTEXT(arch_irq_is_enabled)
31 : #if defined(CONFIG_ARM_CUSTOM_INTERRUPT_CONTROLLER)
32 : GTEXT(z_soc_irq_get_active)
33 : GTEXT(z_soc_irq_eoi)
34 : #endif /* CONFIG_ARM_CUSTOM_INTERRUPT_CONTROLLER */
35 : #else
36 :
37 : #if !defined(CONFIG_ARM_CUSTOM_INTERRUPT_CONTROLLER)
38 :
39 0 : extern void arch_irq_enable(unsigned int irq);
40 0 : extern void arch_irq_disable(unsigned int irq);
41 0 : extern int arch_irq_is_enabled(unsigned int irq);
42 :
43 : /* internal routine documented in C file, needed by IRQ_CONNECT() macro */
44 : extern void z_arm_irq_priority_set(unsigned int irq, unsigned int prio,
45 : uint32_t flags);
46 :
47 : #else
48 :
49 : /*
50 : * When a custom interrupt controller is specified, map the architecture
51 : * interrupt control functions to the SoC layer interrupt control functions.
52 : */
53 :
54 : void z_soc_irq_init(void);
55 : void z_soc_irq_enable(unsigned int irq);
56 : void z_soc_irq_disable(unsigned int irq);
57 : int z_soc_irq_is_enabled(unsigned int irq);
58 :
59 : void z_soc_irq_priority_set(
60 : unsigned int irq, unsigned int prio, unsigned int flags);
61 :
62 : unsigned int z_soc_irq_get_active(void);
63 : void z_soc_irq_eoi(unsigned int irq);
64 :
65 : #define arch_irq_enable(irq) z_soc_irq_enable(irq)
66 : #define arch_irq_disable(irq) z_soc_irq_disable(irq)
67 : #define arch_irq_is_enabled(irq) z_soc_irq_is_enabled(irq)
68 :
69 : #define z_arm_irq_priority_set(irq, prio, flags) \
70 : z_soc_irq_priority_set(irq, prio, flags)
71 :
72 : #endif /* !CONFIG_ARM_CUSTOM_INTERRUPT_CONTROLLER */
73 :
74 : extern void z_arm_int_exit(void);
75 :
76 : extern void z_arm_interrupt_init(void);
77 :
78 : /* Flags for use with IRQ_CONNECT() */
79 : /**
80 : * Set this interrupt up as a zero-latency IRQ. If CONFIG_ZERO_LATENCY_LEVELS
81 : * is 1 it has a fixed hardware priority level (discarding what was supplied
82 : * in the interrupt's priority argument). If CONFIG_ZERO_LATENCY_LEVELS is
83 : * greater 1 it has the priority level assigned by the argument.
84 : * The interrupt will run even if irq_lock() is active. Be careful!
85 : */
86 1 : #define IRQ_ZERO_LATENCY BIT(0)
87 :
88 : #ifdef CONFIG_CPU_CORTEX_M
89 :
90 : #if defined(CONFIG_ZERO_LATENCY_LEVELS)
91 : #define ZERO_LATENCY_LEVELS CONFIG_ZERO_LATENCY_LEVELS
92 : #else
93 : #define ZERO_LATENCY_LEVELS 1
94 : #endif
95 :
96 : #define _CHECK_PRIO(priority_p, flags_p) \
97 : BUILD_ASSERT(((flags_p & IRQ_ZERO_LATENCY) && \
98 : ((ZERO_LATENCY_LEVELS == 1) || \
99 : (priority_p < ZERO_LATENCY_LEVELS))) || \
100 : (priority_p <= IRQ_PRIO_LOWEST), \
101 : "Invalid interrupt priority. Values must not exceed IRQ_PRIO_LOWEST");
102 : #else
103 : #define _CHECK_PRIO(priority_p, flags_p)
104 : #endif
105 :
106 : /* All arguments must be computable by the compiler at build time.
107 : *
108 : * Z_ISR_DECLARE will populate the .intList section with the interrupt's
109 : * parameters, which will then be used by gen_irq_tables.py to create
110 : * the vector table and the software ISR table. This is all done at
111 : * build-time.
112 : *
113 : * We additionally set the priority in the interrupt controller at
114 : * runtime.
115 : */
116 0 : #define ARCH_IRQ_CONNECT(irq_p, priority_p, isr_p, isr_param_p, flags_p) \
117 : { \
118 : BUILD_ASSERT(IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS) || !(flags_p & IRQ_ZERO_LATENCY), \
119 : "ZLI interrupt registered but feature is disabled"); \
120 : _CHECK_PRIO(priority_p, flags_p) \
121 : Z_ISR_DECLARE(irq_p, 0, isr_p, isr_param_p); \
122 : z_arm_irq_priority_set(irq_p, priority_p, flags_p); \
123 : }
124 :
125 0 : #define ARCH_IRQ_DIRECT_CONNECT(irq_p, priority_p, isr_p, flags_p) \
126 : { \
127 : BUILD_ASSERT(IS_ENABLED(CONFIG_ZERO_LATENCY_IRQS) || !(flags_p & IRQ_ZERO_LATENCY), \
128 : "ZLI interrupt registered but feature is disabled"); \
129 : _CHECK_PRIO(priority_p, flags_p) \
130 : Z_ISR_DECLARE_DIRECT(irq_p, ISR_FLAG_DIRECT, isr_p); \
131 : z_arm_irq_priority_set(irq_p, priority_p, flags_p); \
132 : }
133 :
134 : #ifdef CONFIG_PM
135 : extern void _arch_isr_direct_pm(void);
136 : #define ARCH_ISR_DIRECT_PM() _arch_isr_direct_pm()
137 : #else
138 0 : #define ARCH_ISR_DIRECT_PM() do { } while (false)
139 : #endif
140 :
141 0 : #define ARCH_ISR_DIRECT_HEADER() arch_isr_direct_header()
142 0 : #define ARCH_ISR_DIRECT_FOOTER(swap) arch_isr_direct_footer(swap)
143 :
144 : /* arch/arm/core/exc_exit.S */
145 : extern void z_arm_int_exit(void);
146 :
147 : #ifdef CONFIG_TRACING_ISR
148 : extern void sys_trace_isr_enter(void);
149 : extern void sys_trace_isr_exit(void);
150 : #endif
151 :
152 0 : static inline void arch_isr_direct_header(void)
153 : {
154 : #ifdef CONFIG_TRACING_ISR
155 : sys_trace_isr_enter();
156 : #endif
157 : }
158 :
159 0 : static inline void arch_isr_direct_footer(int maybe_swap)
160 : {
161 : #ifdef CONFIG_TRACING_ISR
162 : sys_trace_isr_exit();
163 : #endif
164 : if (maybe_swap != 0) {
165 : z_arm_int_exit();
166 : }
167 : }
168 :
169 : #if defined(__clang__)
170 : #define ARCH_ISR_DIAG_OFF \
171 : _Pragma("clang diagnostic push") \
172 : _Pragma("clang diagnostic ignored \"-Wextra\"")
173 : #define ARCH_ISR_DIAG_ON _Pragma("clang diagnostic pop")
174 : #elif defined(__GNUC__)
175 : #define ARCH_ISR_DIAG_OFF \
176 : _Pragma("GCC diagnostic push") \
177 : _Pragma("GCC diagnostic ignored \"-Wattributes\"")
178 : #define ARCH_ISR_DIAG_ON _Pragma("GCC diagnostic pop")
179 : #else
180 0 : #define ARCH_ISR_DIAG_OFF
181 0 : #define ARCH_ISR_DIAG_ON
182 : #endif
183 :
184 0 : #define ARCH_ISR_DIRECT_DECLARE(name) \
185 : static inline int name##_body(void); \
186 : ARCH_ISR_DIAG_OFF \
187 : __attribute__ ((interrupt ("IRQ"))) void name(void) \
188 : { \
189 : int check_reschedule; \
190 : ISR_DIRECT_HEADER(); \
191 : check_reschedule = name##_body(); \
192 : ISR_DIRECT_FOOTER(check_reschedule); \
193 : } \
194 : ARCH_ISR_DIAG_ON \
195 : static inline int name##_body(void)
196 :
197 : #if defined(CONFIG_DYNAMIC_DIRECT_INTERRUPTS)
198 :
199 : extern void z_arm_irq_direct_dynamic_dispatch_reschedule(void);
200 : extern void z_arm_irq_direct_dynamic_dispatch_no_reschedule(void);
201 :
202 : /**
203 : * @brief Macro to register an ISR Dispatcher (with or without re-scheduling
204 : * request) for dynamic direct interrupts.
205 : *
206 : * This macro registers the ISR dispatcher function for dynamic direct
207 : * interrupts for a particular IRQ line, allowing the use of dynamic
208 : * direct ISRs in the kernel for that interrupt source.
209 : * The dispatcher function is invoked when the hardware
210 : * interrupt occurs and then triggers the (software) Interrupt Service Routine
211 : * (ISR) that is registered dynamically (i.e. at run-time) into the software
212 : * ISR table stored in SRAM. The ISR must be connected with
213 : * irq_connect_dynamic() and enabled via irq_enable() before the dynamic direct
214 : * interrupt can be serviced. This ISR dispatcher must be configured by the
215 : * user to trigger thread re-secheduling upon return, using the @param resch
216 : * parameter.
217 : *
218 : * These ISRs are designed for performance-critical interrupt handling and do
219 : * not go through all of the common interrupt handling code.
220 : *
221 : * With respect to their declaration, dynamic 'direct' interrupts are regular
222 : * Zephyr interrupts; their signature must match void isr(void* parameter), as,
223 : * unlike regular direct interrupts, they are not placed directly into the
224 : * ROM hardware vector table but instead they are installed in the software
225 : * ISR table.
226 : *
227 : * The major differences with regular Zephyr interrupts are the following:
228 : * - Similar to direct interrupts, the call into the OS to exit power
229 : * management idle state is optional. Normal interrupts always do this
230 : * before the ISR is run, but with dynamic direct ones when and if it runs
231 : * is controlled by the placement of
232 : * a ISR_DIRECT_PM() macro, or omitted entirely.
233 : * - Similar to direct interrupts, scheduling decisions are optional. Unlike
234 : * direct interrupts, the decisions must be made at build time.
235 : * They are controlled by @param resch to this macro.
236 : *
237 : * @param irq_p IRQ line number.
238 : * @param priority_p Interrupt priority.
239 : * @param flags_p Architecture-specific IRQ configuration flags.
240 : * @param resch Set flag to 'reschedule' to request thread
241 : * re-scheduling upon ISR function. Set flag
242 : * 'no_reschedule' to skip thread re-scheduling
243 : *
244 : * Note: the function is an ARM Cortex-M only API.
245 : *
246 : * @return Interrupt vector assigned to this interrupt.
247 : */
248 : #define ARM_IRQ_DIRECT_DYNAMIC_CONNECT(irq_p, priority_p, flags_p, resch) \
249 : IRQ_DIRECT_CONNECT(irq_p, priority_p, \
250 : _CONCAT(z_arm_irq_direct_dynamic_dispatch_, resch), flags_p)
251 :
252 : #endif /* CONFIG_DYNAMIC_DIRECT_INTERRUPTS */
253 :
254 : #if defined(CONFIG_ARM_SECURE_FIRMWARE)
255 : /* Architecture-specific definition for the target security
256 : * state of an NVIC IRQ line.
257 : */
258 : typedef enum {
259 : IRQ_TARGET_STATE_SECURE = 0,
260 : IRQ_TARGET_STATE_NON_SECURE
261 : } irq_target_state_t;
262 :
263 : #endif /* CONFIG_ARM_SECURE_FIRMWARE */
264 :
265 : #endif /* _ASMLANGUAGE */
266 :
267 : #ifdef __cplusplus
268 : }
269 : #endif
270 :
271 : #endif /* ZEPHYR_INCLUDE_ARCH_ARM_IRQ_H_ */
|