Line data Source code
1 1 : /*
2 : * Copyright (c) 2018 Intel Corporation.
3 : *
4 : * SPDX-License-Identifier: Apache-2.0
5 : */
6 :
7 : /**
8 : * @file
9 : * @brief Public interface for spinlocks
10 : */
11 :
12 : #ifndef ZEPHYR_INCLUDE_SPINLOCK_H_
13 : #define ZEPHYR_INCLUDE_SPINLOCK_H_
14 :
15 : #include <errno.h>
16 : #include <stdbool.h>
17 :
18 : #include <zephyr/arch/cpu.h>
19 : #include <zephyr/sys/atomic.h>
20 : #include <zephyr/sys/__assert.h>
21 : #include <zephyr/sys/time_units.h>
22 :
23 : #ifdef __cplusplus
24 : extern "C" {
25 : #endif
26 :
27 : /**
28 : * @brief Spinlock APIs
29 : * @defgroup spinlock_apis Spinlock APIs
30 : * @ingroup kernel_apis
31 : * @{
32 : */
33 :
34 : struct z_spinlock_key {
35 : int key;
36 : };
37 :
38 : /**
39 : * @brief Kernel Spin Lock
40 : *
41 : * This struct defines a spin lock record on which CPUs can wait with
42 : * k_spin_lock(). Any number of spinlocks may be defined in
43 : * application code.
44 : */
45 1 : struct k_spinlock {
46 : /**
47 : * @cond INTERNAL_HIDDEN
48 : */
49 : #ifdef CONFIG_SMP
50 : #ifdef CONFIG_TICKET_SPINLOCKS
51 : /*
52 : * Ticket spinlocks are conceptually two atomic variables,
53 : * one indicating the current FIFO head (spinlock owner),
54 : * and the other indicating the current FIFO tail.
55 : * Spinlock is acquired in the following manner:
56 : * - current FIFO tail value is atomically incremented while it's
57 : * original value is saved as a "ticket"
58 : * - we spin until the FIFO head becomes equal to the ticket value
59 : *
60 : * Spinlock is released by atomic increment of the FIFO head
61 : */
62 : atomic_t owner;
63 : atomic_t tail;
64 : #else
65 : atomic_t locked;
66 : #endif /* CONFIG_TICKET_SPINLOCKS */
67 : #endif /* CONFIG_SMP */
68 :
69 : #ifdef CONFIG_SPIN_VALIDATE
70 : /* Stores the thread that holds the lock with the locking CPU
71 : * ID in the bottom two bits.
72 : */
73 : uintptr_t thread_cpu;
74 : #ifdef CONFIG_SPIN_LOCK_TIME_LIMIT
75 : /* Stores the time (in cycles) when a lock was taken
76 : */
77 : uint32_t lock_time;
78 : #endif /* CONFIG_SPIN_LOCK_TIME_LIMIT */
79 : #endif /* CONFIG_SPIN_VALIDATE */
80 :
81 : #if defined(CONFIG_CPP) && !defined(CONFIG_SMP) && \
82 : !defined(CONFIG_SPIN_VALIDATE)
83 : /* If CONFIG_SMP and CONFIG_SPIN_VALIDATE are both not defined
84 : * the k_spinlock struct will have no members. The result
85 : * is that in C sizeof(k_spinlock) is 0 and in C++ it is 1.
86 : *
87 : * This size difference causes problems when the k_spinlock
88 : * is embedded into another struct like k_msgq, because C and
89 : * C++ will have different ideas on the offsets of the members
90 : * that come after the k_spinlock member.
91 : *
92 : * To prevent this we add a 1 byte dummy member to k_spinlock
93 : * when the user selects C++ support and k_spinlock would
94 : * otherwise be empty.
95 : */
96 : char dummy;
97 : #endif
98 : /**
99 : * INTERNAL_HIDDEN @endcond
100 : */
101 : };
102 :
103 : /* There's a spinlock validation framework available when asserts are
104 : * enabled. It adds a relatively hefty overhead (about 3k or so) to
105 : * kernel code size, don't use on platforms known to be small.
106 : */
107 : #ifdef CONFIG_SPIN_VALIDATE
108 : bool z_spin_lock_valid(struct k_spinlock *l);
109 : bool z_spin_unlock_valid(struct k_spinlock *l);
110 : void z_spin_lock_set_owner(struct k_spinlock *l);
111 : BUILD_ASSERT(CONFIG_MP_MAX_NUM_CPUS <= 4, "Too many CPUs for mask");
112 :
113 : # ifdef CONFIG_KERNEL_COHERENCE
114 : bool z_spin_lock_mem_coherent(struct k_spinlock *l);
115 : # endif /* CONFIG_KERNEL_COHERENCE */
116 :
117 : #endif /* CONFIG_SPIN_VALIDATE */
118 :
119 : /**
120 : * @brief Spinlock key type
121 : *
122 : * This type defines a "key" value used by a spinlock implementation
123 : * to store the system interrupt state at the time of a call to
124 : * k_spin_lock(). It is expected to be passed to a matching
125 : * k_spin_unlock().
126 : *
127 : * This type is opaque and should not be inspected by application
128 : * code.
129 : */
130 1 : typedef struct z_spinlock_key k_spinlock_key_t;
131 :
132 : static ALWAYS_INLINE void z_spinlock_validate_pre(struct k_spinlock *l)
133 : {
134 : ARG_UNUSED(l);
135 : #ifdef CONFIG_SPIN_VALIDATE
136 : __ASSERT(z_spin_lock_valid(l), "Invalid spinlock %p", l);
137 : #ifdef CONFIG_KERNEL_COHERENCE
138 : __ASSERT_NO_MSG(z_spin_lock_mem_coherent(l));
139 : #endif
140 : #endif
141 : }
142 :
143 : static ALWAYS_INLINE void z_spinlock_validate_post(struct k_spinlock *l)
144 : {
145 : ARG_UNUSED(l);
146 : #ifdef CONFIG_SPIN_VALIDATE
147 : z_spin_lock_set_owner(l);
148 : #if defined(CONFIG_SPIN_LOCK_TIME_LIMIT) && (CONFIG_SPIN_LOCK_TIME_LIMIT != 0)
149 : l->lock_time = sys_clock_cycle_get_32();
150 : #endif /* CONFIG_SPIN_LOCK_TIME_LIMIT */
151 : #endif /* CONFIG_SPIN_VALIDATE */
152 : }
153 :
154 : /**
155 : * @brief Lock a spinlock
156 : *
157 : * This routine locks the specified spinlock, returning a key handle
158 : * representing interrupt state needed at unlock time. Upon
159 : * returning, the calling thread is guaranteed not to be suspended or
160 : * interrupted on its current CPU until it calls k_spin_unlock(). The
161 : * implementation guarantees mutual exclusion: exactly one thread on
162 : * one CPU will return from k_spin_lock() at a time. Other CPUs
163 : * trying to acquire a lock already held by another CPU will enter an
164 : * implementation-defined busy loop ("spinning") until the lock is
165 : * released.
166 : *
167 : * Separate spin locks may be nested. It is legal to lock an
168 : * (unlocked) spin lock while holding a different lock. Spin locks
169 : * are not recursive, however: an attempt to acquire a spin lock that
170 : * the CPU already holds will deadlock.
171 : *
172 : * In circumstances where only one CPU exists, the behavior of
173 : * k_spin_lock() remains as specified above, though obviously no
174 : * spinning will take place. Implementations may be free to optimize
175 : * in uniprocessor contexts such that the locking reduces to an
176 : * interrupt mask operation.
177 : *
178 : * @param l A pointer to the spinlock to lock
179 : * @return A key value that must be passed to k_spin_unlock() when the
180 : * lock is released.
181 : */
182 1 : static ALWAYS_INLINE k_spinlock_key_t k_spin_lock(struct k_spinlock *l)
183 : {
184 : ARG_UNUSED(l);
185 : k_spinlock_key_t k;
186 :
187 : /* Note that we need to use the underlying arch-specific lock
188 : * implementation. The "irq_lock()" API in SMP context is
189 : * actually a wrapper for a global spinlock!
190 : */
191 : k.key = arch_irq_lock();
192 :
193 : z_spinlock_validate_pre(l);
194 : #ifdef CONFIG_SMP
195 : #ifdef CONFIG_TICKET_SPINLOCKS
196 : /*
197 : * Enqueue ourselves to the end of a spinlock waiters queue
198 : * receiving a ticket
199 : */
200 : atomic_val_t ticket = atomic_inc(&l->tail);
201 : /* Spin until our ticket is served */
202 : while (atomic_get(&l->owner) != ticket) {
203 : arch_spin_relax();
204 : }
205 : #else
206 : while (!atomic_cas(&l->locked, 0, 1)) {
207 : arch_spin_relax();
208 : }
209 : #endif /* CONFIG_TICKET_SPINLOCKS */
210 : #endif /* CONFIG_SMP */
211 : z_spinlock_validate_post(l);
212 :
213 : return k;
214 : }
215 :
216 : /**
217 : * @brief Attempt to lock a spinlock
218 : *
219 : * This routine makes one attempt to lock @p l. If it is successful, then
220 : * it will store the key into @p k.
221 : *
222 : * @param[in] l A pointer to the spinlock to lock
223 : * @param[out] k A pointer to the spinlock key
224 : * @retval 0 on success
225 : * @retval -EBUSY if another thread holds the lock
226 : *
227 : * @see k_spin_lock
228 : * @see k_spin_unlock
229 : */
230 1 : static ALWAYS_INLINE int k_spin_trylock(struct k_spinlock *l, k_spinlock_key_t *k)
231 : {
232 : int key = arch_irq_lock();
233 :
234 : z_spinlock_validate_pre(l);
235 : #ifdef CONFIG_SMP
236 : #ifdef CONFIG_TICKET_SPINLOCKS
237 : /*
238 : * atomic_get and atomic_cas operations below are not executed
239 : * simultaneously.
240 : * So in theory k_spin_trylock can lock an already locked spinlock.
241 : * To reproduce this the following conditions should be met after we
242 : * executed atomic_get and before we executed atomic_cas:
243 : *
244 : * - spinlock needs to be taken 0xffff_..._ffff + 1 times
245 : * (which requires 0xffff_..._ffff number of CPUs, as k_spin_lock call
246 : * is blocking) or
247 : * - spinlock needs to be taken and released 0xffff_..._ffff times and
248 : * then taken again
249 : *
250 : * In real-life systems this is considered non-reproducible given that
251 : * required actions need to be done during this tiny window of several
252 : * CPU instructions (which execute with interrupt locked,
253 : * so no preemption can happen here)
254 : */
255 : atomic_val_t ticket_val = atomic_get(&l->owner);
256 :
257 : if (!atomic_cas(&l->tail, ticket_val, ticket_val + 1)) {
258 : goto busy;
259 : }
260 : #else
261 : if (!atomic_cas(&l->locked, 0, 1)) {
262 : goto busy;
263 : }
264 : #endif /* CONFIG_TICKET_SPINLOCKS */
265 : #endif /* CONFIG_SMP */
266 : z_spinlock_validate_post(l);
267 :
268 : k->key = key;
269 :
270 : return 0;
271 :
272 : #ifdef CONFIG_SMP
273 : busy:
274 : arch_irq_unlock(key);
275 : return -EBUSY;
276 : #endif /* CONFIG_SMP */
277 : }
278 :
279 : /**
280 : * @brief Unlock a spin lock
281 : *
282 : * This releases a lock acquired by k_spin_lock(). After this
283 : * function is called, any CPU will be able to acquire the lock. If
284 : * other CPUs are currently spinning inside k_spin_lock() waiting for
285 : * this lock, exactly one of them will return synchronously with the
286 : * lock held.
287 : *
288 : * Spin locks must be properly nested. A call to k_spin_unlock() must
289 : * be made on the lock object most recently locked using
290 : * k_spin_lock(), using the key value that it returned. Attempts to
291 : * unlock mis-nested locks, or to unlock locks that are not held, or
292 : * to passing a key parameter other than the one returned from
293 : * k_spin_lock(), are illegal. When CONFIG_SPIN_VALIDATE is set, some
294 : * of these errors can be detected by the framework.
295 : *
296 : * @param l A pointer to the spinlock to release
297 : * @param key The value returned from k_spin_lock() when this lock was
298 : * acquired
299 : */
300 1 : static ALWAYS_INLINE void k_spin_unlock(struct k_spinlock *l,
301 : k_spinlock_key_t key)
302 : {
303 : ARG_UNUSED(l);
304 : #ifdef CONFIG_SPIN_VALIDATE
305 : __ASSERT(z_spin_unlock_valid(l), "Not my spinlock %p", l);
306 :
307 : #if defined(CONFIG_SPIN_LOCK_TIME_LIMIT) && (CONFIG_SPIN_LOCK_TIME_LIMIT != 0)
308 : uint32_t delta = sys_clock_cycle_get_32() - l->lock_time;
309 :
310 : __ASSERT(delta < CONFIG_SPIN_LOCK_TIME_LIMIT,
311 : "Spin lock %p held %u cycles, longer than limit of %u cycles",
312 : l, delta, CONFIG_SPIN_LOCK_TIME_LIMIT);
313 : #endif /* CONFIG_SPIN_LOCK_TIME_LIMIT */
314 : #endif /* CONFIG_SPIN_VALIDATE */
315 :
316 : #ifdef CONFIG_SMP
317 : #ifdef CONFIG_TICKET_SPINLOCKS
318 : /* Give the spinlock to the next CPU in a FIFO */
319 : (void)atomic_inc(&l->owner);
320 : #else
321 : /* Strictly we don't need atomic_clear() here (which is an
322 : * exchange operation that returns the old value). We are always
323 : * setting a zero and (because we hold the lock) know the existing
324 : * state won't change due to a race. But some architectures need
325 : * a memory barrier when used like this, and we don't have a
326 : * Zephyr framework for that.
327 : */
328 : (void)atomic_clear(&l->locked);
329 : #endif /* CONFIG_TICKET_SPINLOCKS */
330 : #endif /* CONFIG_SMP */
331 : arch_irq_unlock(key.key);
332 : }
333 :
334 : /**
335 : * @cond INTERNAL_HIDDEN
336 : */
337 :
338 : #if defined(CONFIG_SMP) && defined(CONFIG_TEST)
339 : /*
340 : * @brief Checks if spinlock is held by some CPU, including the local CPU.
341 : * This API shouldn't be used outside the tests for spinlock
342 : *
343 : * @param l A pointer to the spinlock
344 : * @retval true - if spinlock is held by some CPU; false - otherwise
345 : */
346 : static ALWAYS_INLINE bool z_spin_is_locked(struct k_spinlock *l)
347 : {
348 : #ifdef CONFIG_TICKET_SPINLOCKS
349 : atomic_val_t ticket_val = atomic_get(&l->owner);
350 :
351 : return !atomic_cas(&l->tail, ticket_val, ticket_val);
352 : #else
353 : return l->locked;
354 : #endif /* CONFIG_TICKET_SPINLOCKS */
355 : }
356 : #endif /* defined(CONFIG_SMP) && defined(CONFIG_TEST) */
357 :
358 : /* Internal function: releases the lock, but leaves local interrupts disabled */
359 : static ALWAYS_INLINE void k_spin_release(struct k_spinlock *l)
360 : {
361 : ARG_UNUSED(l);
362 : #ifdef CONFIG_SPIN_VALIDATE
363 : __ASSERT(z_spin_unlock_valid(l), "Not my spinlock %p", l);
364 : #endif
365 : #ifdef CONFIG_SMP
366 : #ifdef CONFIG_TICKET_SPINLOCKS
367 : (void)atomic_inc(&l->owner);
368 : #else
369 : (void)atomic_clear(&l->locked);
370 : #endif /* CONFIG_TICKET_SPINLOCKS */
371 : #endif /* CONFIG_SMP */
372 : }
373 :
374 : #if defined(CONFIG_SPIN_VALIDATE) && defined(__GNUC__)
375 : static ALWAYS_INLINE void z_spin_onexit(__maybe_unused k_spinlock_key_t *k)
376 : {
377 : __ASSERT(k->key, "K_SPINLOCK exited with goto, break or return, "
378 : "use K_SPINLOCK_BREAK instead.");
379 : }
380 : #define K_SPINLOCK_ONEXIT __attribute__((__cleanup__(z_spin_onexit)))
381 : #else
382 : #define K_SPINLOCK_ONEXIT
383 : #endif
384 :
385 : /**
386 : * INTERNAL_HIDDEN @endcond
387 : */
388 :
389 : /**
390 : * @brief Leaves a code block guarded with @ref K_SPINLOCK after releasing the
391 : * lock.
392 : *
393 : * See @ref K_SPINLOCK for details.
394 : */
395 1 : #define K_SPINLOCK_BREAK continue
396 :
397 : /**
398 : * @brief Guards a code block with the given spinlock, automatically acquiring
399 : * the lock before executing the code block. The lock will be released either
400 : * when reaching the end of the code block or when leaving the block with
401 : * @ref K_SPINLOCK_BREAK.
402 : *
403 : * @details Example usage:
404 : *
405 : * @code{.c}
406 : * K_SPINLOCK(&mylock) {
407 : *
408 : * ...execute statements with the lock held...
409 : *
410 : * if (some_condition) {
411 : * ...release the lock and leave the guarded section prematurely:
412 : * K_SPINLOCK_BREAK;
413 : * }
414 : *
415 : * ...execute statements with the lock held...
416 : *
417 : * }
418 : * @endcode
419 : *
420 : * Behind the scenes this pattern expands to a for-loop whose body is executed
421 : * exactly once:
422 : *
423 : * @code{.c}
424 : * for (k_spinlock_key_t key = k_spin_lock(&mylock); ...; k_spin_unlock(&mylock, key)) {
425 : * ...
426 : * }
427 : * @endcode
428 : *
429 : * @warning The code block must execute to its end or be left by calling
430 : * @ref K_SPINLOCK_BREAK. Otherwise, e.g. if exiting the block with a break,
431 : * goto or return statement, the spinlock will not be released on exit.
432 : *
433 : * @note In user mode the spinlock must be placed in memory accessible to the
434 : * application, see @ref K_APP_DMEM and @ref K_APP_BMEM macros for details.
435 : *
436 : * @param lck Spinlock used to guard the enclosed code block.
437 : */
438 1 : #define K_SPINLOCK(lck) \
439 : for (k_spinlock_key_t __i K_SPINLOCK_ONEXIT = {}, __key = k_spin_lock(lck); !__i.key; \
440 : k_spin_unlock((lck), __key), __i.key = 1)
441 :
442 : /** @} */
443 :
444 : #ifdef __cplusplus
445 : }
446 : #endif
447 :
448 : #endif /* ZEPHYR_INCLUDE_SPINLOCK_H_ */
|