LCOV - code coverage report
Current view: top level - zephyr/sys - util.h Coverage Total Hit
Test: new.info Lines: 100.0 % 75 75
Test Date: 2025-10-20 12:20:01

            Line data    Source code
       1            1 : /*
       2              :  * Copyright (c) 2011-2014, Wind River Systems, Inc.
       3              :  *
       4              :  * SPDX-License-Identifier: Apache-2.0
       5              :  */
       6              : 
       7              : /**
       8              :  * @file
       9              :  * @brief Misc utilities
      10              :  *
      11              :  * Misc utilities usable by the kernel and application code.
      12              :  */
      13              : 
      14              : #ifndef ZEPHYR_INCLUDE_SYS_UTIL_H_
      15              : #define ZEPHYR_INCLUDE_SYS_UTIL_H_
      16              : 
      17              : #include <zephyr/sys/util_macro.h>
      18              : #include <zephyr/toolchain.h>
      19              : 
      20              : /* needs to be outside _ASMLANGUAGE so 'true' and 'false' can turn
      21              :  * into '1' and '0' for asm or linker scripts
      22              :  */
      23              : #include <stdbool.h>
      24              : 
      25              : #ifndef _ASMLANGUAGE
      26              : 
      27              : #include <zephyr/sys/__assert.h>
      28              : #include <zephyr/types.h>
      29              : #include <stddef.h>
      30              : #include <stdint.h>
      31              : #include <string.h>
      32              : 
      33              : /** @brief Number of bits that make up a type */
      34            1 : #define NUM_BITS(t) (sizeof(t) * BITS_PER_BYTE)
      35              : 
      36              : #ifdef __cplusplus
      37              : extern "C" {
      38              : #endif
      39              : 
      40              : /**
      41              :  * @defgroup sys-util Utility Functions
      42              :  * @since 2.4
      43              :  * @version 0.1.0
      44              :  * @ingroup utilities
      45              :  * @{
      46              :  */
      47              : 
      48              : /** @brief Cast @p x, a pointer, to an unsigned integer. */
      49            1 : #define POINTER_TO_UINT(x) ((uintptr_t)(x))
      50              : /** @brief Cast @p x, an unsigned integer, to a <tt>void*</tt>. */
      51            1 : #define UINT_TO_POINTER(x) ((void *)(uintptr_t)(x))
      52              : /** @brief Cast @p x, a pointer, to a signed integer. */
      53            1 : #define POINTER_TO_INT(x)  ((intptr_t)(x))
      54              : /** @brief Cast @p x, a signed integer, to a <tt>void*</tt>. */
      55            1 : #define INT_TO_POINTER(x)  ((void *)(intptr_t)(x))
      56              : 
      57              : #if !(defined(__CHAR_BIT__) && defined(__SIZEOF_LONG__) && defined(__SIZEOF_LONG_LONG__))
      58              : #error Missing required predefined macros for BITS_PER_LONG calculation
      59              : #endif
      60              : 
      61              : /** Number of bits in a byte. */
      62            1 : #define BITS_PER_BYTE (__CHAR_BIT__)
      63              : 
      64              : /** Number of bits in a nibble. */
      65            1 : #define BITS_PER_NIBBLE (__CHAR_BIT__ / 2)
      66              : 
      67              : /** Number of nibbles in a byte. */
      68            1 : #define NIBBLES_PER_BYTE (BITS_PER_BYTE / BITS_PER_NIBBLE)
      69              : 
      70              : /** Number of bits in a long int. */
      71            1 : #define BITS_PER_LONG (__CHAR_BIT__ * __SIZEOF_LONG__)
      72              : 
      73              : /** Number of bits in a long long int. */
      74            1 : #define BITS_PER_LONG_LONG (__CHAR_BIT__ * __SIZEOF_LONG_LONG__)
      75              : 
      76              : /**
      77              :  * @brief Create a contiguous bitmask starting at bit position @p l
      78              :  *        and ending at position @p h.
      79              :  */
      80            1 : #define GENMASK(h, l) (((~0UL) - (1UL << (l)) + 1) & (~0UL >> (BITS_PER_LONG - 1 - (h))))
      81              : 
      82              : /**
      83              :  * @brief Create a contiguous 64-bit bitmask starting at bit position @p l
      84              :  *        and ending at position @p h.
      85              :  */
      86            1 : #define GENMASK64(h, l) (((~0ULL) - (1ULL << (l)) + 1) & (~0ULL >> (BITS_PER_LONG_LONG - 1 - (h))))
      87              : 
      88              : /** @brief 0 if @p cond is true-ish; causes a compile error otherwise. */
      89            1 : #define ZERO_OR_COMPILE_ERROR(cond) ((int)sizeof(char[1 - (2 * !(cond))]) - 1)
      90              : 
      91              : #if defined(__cplusplus)
      92              : 
      93              : /* The built-in function used below for type checking in C is not
      94              :  * supported by GNU C++.
      95              :  */
      96              : #define ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
      97              : 
      98              : #else /* __cplusplus */
      99              : 
     100              : /**
     101              :  * @brief Zero if @p array has an array type, a compile error otherwise
     102              :  *
     103              :  * This macro is available only from C, not C++.
     104              :  */
     105            1 : #define IS_ARRAY(array)                                                                            \
     106              :         ZERO_OR_COMPILE_ERROR(                                                                     \
     107              :                 !__builtin_types_compatible_p(__typeof__(array), __typeof__(&(array)[0])))
     108              : 
     109              : /**
     110              :  * @brief Number of elements in the given @p array
     111              :  *
     112              :  * In C++, due to language limitations, this will accept as @p array
     113              :  * any type that implements <tt>operator[]</tt>. The results may not be
     114              :  * particularly meaningful in this case.
     115              :  *
     116              :  * In C, passing a pointer as @p array causes a compile error.
     117              :  */
     118            1 : #define ARRAY_SIZE(array) ((size_t)(IS_ARRAY(array) + (sizeof(array) / sizeof((array)[0]))))
     119              : 
     120              : #endif /* __cplusplus */
     121              : 
     122              : /**
     123              :  * @brief Declare a flexible array member.
     124              :  *
     125              :  * This macro declares a flexible array member in a struct. The member
     126              :  * is named @p name and has type @p type.
     127              :  *
     128              :  * Since C99, flexible arrays are part of the C standard, but for historical
     129              :  * reasons many places still use an older GNU extension that is declare
     130              :  * zero length arrays.
     131              :  *
     132              :  * Although zero length arrays are flexible arrays, we can't blindly
     133              :  * replace [0] with [] because of some syntax limitations. This macro
     134              :  * workaround these limitations.
     135              :  *
     136              :  * It is specially useful for cases where flexible arrays are
     137              :  * used in unions or are not the last element in the struct.
     138              :  */
     139            1 : #define FLEXIBLE_ARRAY_DECLARE(type, name)                                                         \
     140              :         struct {                                                                                   \
     141              :                 struct {                                                                           \
     142              :                 } __unused_##name;                                                                 \
     143              :                 type name[];                                                                       \
     144              :         }
     145              : 
     146              : /**
     147              :  * @brief Whether @p ptr is an element of @p array
     148              :  *
     149              :  * This macro can be seen as a slightly stricter version of @ref PART_OF_ARRAY
     150              :  * in that it also ensures that @p ptr is aligned to an array-element boundary
     151              :  * of @p array.
     152              :  *
     153              :  * In C, passing a pointer as @p array causes a compile error.
     154              :  *
     155              :  * @param array the array in question
     156              :  * @param ptr the pointer to check
     157              :  *
     158              :  * @return 1 if @p ptr is part of @p array, 0 otherwise
     159              :  */
     160            1 : #define IS_ARRAY_ELEMENT(array, ptr)                                                               \
     161              :         ((ptr) && POINTER_TO_UINT(array) <= POINTER_TO_UINT(ptr) &&                                \
     162              :          POINTER_TO_UINT(ptr) < POINTER_TO_UINT(&(array)[ARRAY_SIZE(array)]) &&                    \
     163              :          (POINTER_TO_UINT(ptr) - POINTER_TO_UINT(array)) % sizeof((array)[0]) == 0)
     164              : 
     165              : /**
     166              :  * @brief Index of @p ptr within @p array
     167              :  *
     168              :  * With `CONFIG_ASSERT=y`, this macro will trigger a runtime assertion
     169              :  * when @p ptr does not fall into the range of @p array or when @p ptr
     170              :  * is not aligned to an array-element boundary of @p array.
     171              :  *
     172              :  * In C, passing a pointer as @p array causes a compile error.
     173              :  *
     174              :  * @param array the array in question
     175              :  * @param ptr pointer to an element of @p array
     176              :  *
     177              :  * @return the array index of @p ptr within @p array, on success
     178              :  */
     179            1 : #define ARRAY_INDEX(array, ptr)                                                                    \
     180              :         ({                                                                                         \
     181              :                 __ASSERT_NO_MSG(IS_ARRAY_ELEMENT(array, ptr));                                     \
     182              :                 (__typeof__((array)[0]) *)(ptr) - (array);                                         \
     183              :         })
     184              : 
     185              : /**
     186              :  * @brief Check if a pointer @p ptr lies within @p array.
     187              :  *
     188              :  * In C but not C++, this causes a compile error if @p array is not an array
     189              :  * (e.g. if @p ptr and @p array are mixed up).
     190              :  *
     191              :  * @param array an array
     192              :  * @param ptr a pointer
     193              :  * @return 1 if @p ptr is part of @p array, 0 otherwise
     194              :  */
     195            1 : #define PART_OF_ARRAY(array, ptr)                                                                  \
     196              :         ((ptr) && POINTER_TO_UINT(array) <= POINTER_TO_UINT(ptr) &&                                \
     197              :          POINTER_TO_UINT(ptr) < POINTER_TO_UINT(&(array)[ARRAY_SIZE(array)]))
     198              : 
     199              : /**
     200              :  * @brief Array-index of @p ptr within @p array, rounded down
     201              :  *
     202              :  * This macro behaves much like @ref ARRAY_INDEX with the notable
     203              :  * difference that it accepts any @p ptr in the range of @p array rather than
     204              :  * exclusively a @p ptr aligned to an array-element boundary of @p array.
     205              :  *
     206              :  * With `CONFIG_ASSERT=y`, this macro will trigger a runtime assertion
     207              :  * when @p ptr does not fall into the range of @p array.
     208              :  *
     209              :  * In C, passing a pointer as @p array causes a compile error.
     210              :  *
     211              :  * @param array the array in question
     212              :  * @param ptr pointer to an element of @p array
     213              :  *
     214              :  * @return the array index of @p ptr within @p array, on success
     215              :  */
     216            1 : #define ARRAY_INDEX_FLOOR(array, ptr)                                                              \
     217              :         ({                                                                                         \
     218              :                 __ASSERT_NO_MSG(PART_OF_ARRAY(array, ptr));                                        \
     219              :                 (POINTER_TO_UINT(ptr) - POINTER_TO_UINT(array)) / sizeof((array)[0]);              \
     220              :         })
     221              : 
     222              : /**
     223              :  * @brief Iterate over members of an array using an index variable
     224              :  *
     225              :  * @param array the array in question
     226              :  * @param idx name of array index variable
     227              :  */
     228            1 : #define ARRAY_FOR_EACH(array, idx) for (size_t idx = 0; (idx) < ARRAY_SIZE(array); ++(idx))
     229              : 
     230              : /**
     231              :  * @brief Iterate over members of an array using a pointer
     232              :  *
     233              :  * @param array the array in question
     234              :  * @param ptr pointer to an element of @p array
     235              :  */
     236            1 : #define ARRAY_FOR_EACH_PTR(array, ptr)                                                             \
     237              :         for (__typeof__(*(array)) *ptr = (array); (size_t)((ptr) - (array)) < ARRAY_SIZE(array);   \
     238              :              ++(ptr))
     239              : 
     240              : /**
     241              :  * @brief Validate if two entities have a compatible type
     242              :  *
     243              :  * @param a the first entity to be compared
     244              :  * @param b the second entity to be compared
     245              :  * @return 1 if the two elements are compatible, 0 if they are not
     246              :  */
     247            1 : #define SAME_TYPE(a, b) __builtin_types_compatible_p(__typeof__(a), __typeof__(b))
     248              : 
     249              : /**
     250              :  * @brief Validate CONTAINER_OF parameters, only applies to C mode.
     251              :  */
     252              : #ifndef __cplusplus
     253            1 : #define CONTAINER_OF_VALIDATE(ptr, type, field)                                                    \
     254              :         BUILD_ASSERT(SAME_TYPE(*(ptr), ((type *)0)->field) || SAME_TYPE(*(ptr), void),             \
     255              :                      "pointer type mismatch in CONTAINER_OF");
     256              : #else
     257              : #define CONTAINER_OF_VALIDATE(ptr, type, field)
     258              : #endif
     259              : 
     260              : /**
     261              :  * @brief Get a pointer to a structure containing the element
     262              :  *
     263              :  * Example:
     264              :  *
     265              :  *      struct foo {
     266              :  *              int bar;
     267              :  *      };
     268              :  *
     269              :  *      struct foo my_foo;
     270              :  *      int *ptr = &my_foo.bar;
     271              :  *
     272              :  *      struct foo *container = CONTAINER_OF(ptr, struct foo, bar);
     273              :  *
     274              :  * Above, @p container points at @p my_foo.
     275              :  *
     276              :  * @param ptr pointer to a structure element
     277              :  * @param type name of the type that @p ptr is an element of
     278              :  * @param field the name of the field within the struct @p ptr points to
     279              :  * @return a pointer to the structure that contains @p ptr
     280              :  */
     281            1 : #define CONTAINER_OF(ptr, type, field)                                                             \
     282              :         ({                                                                                         \
     283              :                 CONTAINER_OF_VALIDATE(ptr, type, field)                                            \
     284              :                 ((type *)(((char *)(ptr)) - offsetof(type, field)));                               \
     285              :         })
     286              : 
     287              : /**
     288              :  * @brief Report the size of a struct field in bytes.
     289              :  *
     290              :  * @param type The structure containing the field of interest.
     291              :  * @param member The field to return the size of.
     292              :  *
     293              :  * @return The field size.
     294              :  */
     295            1 : #define SIZEOF_FIELD(type, member) sizeof((((type *)0)->member))
     296              : 
     297              : /**
     298              :  * @brief Concatenate input arguments
     299              :  *
     300              :  * Concatenate provided tokens into a combined token during the preprocessor pass.
     301              :  * This can be used to, for ex., build an identifier out of multiple parts,
     302              :  * where one of those parts may be, for ex, a number, another macro, or a macro argument.
     303              :  *
     304              :  * @param ... Tokens to concatencate
     305              :  *
     306              :  * @return Concatenated token.
     307              :  */
     308            1 : #define CONCAT(...) UTIL_CAT(_CONCAT_, NUM_VA_ARGS_LESS_1(__VA_ARGS__))(__VA_ARGS__)
     309              : 
     310              : /**
     311              :  * @brief Check if @p ptr is aligned to @p align alignment
     312              :  */
     313            1 : #define IS_ALIGNED(ptr, align) (((uintptr_t)(ptr)) % (align) == 0)
     314              : 
     315              : /**
     316              :  * @brief Value of @p x rounded up to the next multiple of @p align.
     317              :  */
     318            1 : #define ROUND_UP(x, align)                                                                         \
     319              :         ((((unsigned long)(x) + ((unsigned long)(align) - 1)) / (unsigned long)(align)) *          \
     320              :          (unsigned long)(align))
     321              : 
     322              : /**
     323              :  * @brief Value of @p x rounded down to the previous multiple of @p align.
     324              :  */
     325            1 : #define ROUND_DOWN(x, align)                                                                       \
     326              :         (((unsigned long)(x) / (unsigned long)(align)) * (unsigned long)(align))
     327              : 
     328              : /** @brief Value of @p x rounded up to the next word boundary. */
     329            1 : #define WB_UP(x) ROUND_UP(x, sizeof(void *))
     330              : 
     331              : /** @brief Value of @p x rounded down to the previous word boundary. */
     332            1 : #define WB_DN(x) ROUND_DOWN(x, sizeof(void *))
     333              : 
     334              : /**
     335              :  * @brief Divide and round up.
     336              :  *
     337              :  * Example:
     338              :  * @code{.c}
     339              :  * DIV_ROUND_UP(1, 2); // 1
     340              :  * DIV_ROUND_UP(3, 2); // 2
     341              :  * @endcode
     342              :  *
     343              :  * @param n Numerator.
     344              :  * @param d Denominator.
     345              :  *
     346              :  * @return The result of @p n / @p d, rounded up.
     347              :  */
     348            1 : #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
     349              : 
     350              : /**
     351              :  * @brief Divide and round to the nearest integer.
     352              :  *
     353              :  * Example:
     354              :  * @code{.c}
     355              :  * DIV_ROUND_CLOSEST(5, 2); // 3
     356              :  * DIV_ROUND_CLOSEST(5, -2); // -3
     357              :  * DIV_ROUND_CLOSEST(5, 3); // 2
     358              :  * @endcode
     359              :  *
     360              :  * @param n Numerator.
     361              :  * @param d Denominator.
     362              :  *
     363              :  * @return The result of @p n / @p d, rounded to the nearest integer.
     364              :  */
     365            1 : #define DIV_ROUND_CLOSEST(n, d)                                                                    \
     366              :         (((((__typeof__(n))-1) < 0) && (((__typeof__(d))-1) < 0) && ((n) < 0) ^ ((d) < 0))         \
     367              :                  ? ((n) - ((d) / 2)) / (d)                                                         \
     368              :                  : ((n) + ((d) / 2)) / (d))
     369              : 
     370              : /**
     371              :  * @cond INTERNAL_HIDDEN
     372              :  */
     373              : #define Z_INTERNAL_MAX(a, b) (((a) > (b)) ? (a) : (b))
     374              : #define Z_INTERNAL_MIN(a, b) (((a) < (b)) ? (a) : (b))
     375              : 
     376              : #define _minmax_unique(op, a, b, ua, ub) ({ \
     377              :                 __typeof__(a) ua = (a);     \
     378              :                 __typeof__(b) ub = (b);     \
     379              :                 op(ua, ub);                 \
     380              :         })
     381              : 
     382              : #define _minmax_cnt(op, a, b, cnt) \
     383              :         _minmax_unique(op, a, b, UTIL_CAT(_value_a_, cnt), UTIL_CAT(_value_b_, cnt))
     384              : 
     385              : #define _minmax3_unique(op, a, b, c, ua, ub, uc) ({ \
     386              :                 __typeof__(a) ua = (a);             \
     387              :                 __typeof__(b) ub = (b);             \
     388              :                 __typeof__(c) uc = (c);             \
     389              :                 op(ua, op(ub, uc));                 \
     390              :         })
     391              : 
     392              : #define _minmax3_cnt(op, a, b, c, cnt)            \
     393              :         _minmax3_unique(op, a, b, c,              \
     394              :                         UTIL_CAT(_value_a_, cnt), \
     395              :                         UTIL_CAT(_value_b_, cnt), \
     396              :                         UTIL_CAT(_value_c_, cnt))
     397              : /**
     398              :  * @endcond
     399              :  */
     400              : 
     401              : #ifndef MAX
     402              : /**
     403              :  * @brief Obtain the maximum of two values.
     404              :  *
     405              :  * @note Arguments are evaluated twice. Use @ref max for a single evaluation
     406              :  * version.
     407              :  *
     408              :  * @param a First value.
     409              :  * @param b Second value.
     410              :  *
     411              :  * @returns Maximum value of @p a and @p b.
     412              :  */
     413            1 : #define MAX(a, b) Z_INTERNAL_MAX(a, b)
     414              : #endif
     415              : 
     416              : #ifndef __cplusplus
     417              : /** @brief Return larger value of two provided expressions.
     418              :  *
     419              :  * Macro ensures that expressions are evaluated only once.
     420              :  *
     421              :  * @note Macro has limited usage compared to the standard macro as it cannot be
     422              :  *       used:
     423              :  *       - to generate constant integer, e.g. __aligned(max(4,5))
     424              :  *       - static variable, e.g. array like static uint8_t array[max(...)];
     425              :  */
     426            1 : #define max(a, b) _minmax_cnt(Z_INTERNAL_MAX, a, b, __COUNTER__)
     427              : #endif
     428              : 
     429              : /** @brief Return larger value of three provided expressions.
     430              :  *
     431              :  * Macro ensures that expressions are evaluated only once. See @ref max for
     432              :  * macro limitations.
     433              :  */
     434            1 : #define max3(a, b, c) _minmax3_cnt(Z_INTERNAL_MAX, a, b, c, __COUNTER__)
     435              : 
     436              : #ifndef MIN
     437              : /**
     438              :  * @brief Obtain the minimum of two values.
     439              :  *
     440              :  * @note Arguments are evaluated twice. Use @ref min for a single evaluation
     441              :  * version.
     442              :  *
     443              :  * @param a First value.
     444              :  * @param b Second value.
     445              :  *
     446              :  * @returns Minimum value of @p a and @p b.
     447              :  */
     448            1 : #define MIN(a, b) Z_INTERNAL_MIN(a, b)
     449              : #endif
     450              : 
     451              : #ifndef __cplusplus
     452              : /** @brief Return smaller value of two provided expressions.
     453              :  *
     454              :  * Macro ensures that expressions are evaluated only once. See @ref max for
     455              :  * macro limitations.
     456              :  */
     457            1 : #define min(a, b) _minmax_cnt(Z_INTERNAL_MIN, a, b, __COUNTER__)
     458              : #endif
     459              : 
     460              : /** @brief Return smaller value of three provided expressions.
     461              :  *
     462              :  * Macro ensures that expressions are evaluated only once. See @ref max for
     463              :  * macro limitations.
     464              :  */
     465            1 : #define min3(a, b, c) _minmax3_cnt(Z_INTERNAL_MIN, a, b, c, __COUNTER__)
     466              : 
     467              : 
     468              : #ifndef MAX_FROM_LIST
     469              : /**
     470              :  * @brief Returns the maximum of a single value (base case).
     471              :  * @param a The value.
     472              :  * @returns The value `a`.
     473              :  */
     474              : #define Z_MAX_1(a) a
     475              : 
     476              : /**
     477              :  * @brief Returns the maximum of two values.
     478              :  *
     479              :  * @note Arguments are evaluated multiple times.
     480              :  *
     481              :  * @param a First value.
     482              :  * @param b Second value.
     483              :  * @returns Maximum value of @p a and @p b.
     484              :  */
     485              : #define Z_MAX_2(a, b) ((a) > (b) ? (a) : (b))
     486              : 
     487              : /**
     488              :  * @brief Returns the maximum of three values.
     489              :  * @note Arguments may be evaluated multiple times.
     490              :  * @param a First value.
     491              :  * @param b Second value.
     492              :  * @param c Third value.
     493              :  * @returns Maximum value of @p a, @p b, and @p c.
     494              :  */
     495              : #define Z_MAX_3(a, b, c) Z_MAX_2(a, Z_MAX_2(b, c))
     496              : 
     497              : /**
     498              :  * @brief Returns the maximum of four values.
     499              :  * @note Arguments may be evaluated multiple times.
     500              :  * @param a First value.
     501              :  * @param b Second value.
     502              :  * @param c Third value.
     503              :  * @param d Fourth value.
     504              :  * @returns Maximum value of @p a, @p b, @p c, and @p d.
     505              :  */
     506              : #define Z_MAX_4(a, b, c, d) Z_MAX_2(Z_MAX_2(a, b), Z_MAX_2(c, d))
     507              : 
     508              : /**
     509              :  * @brief Returns the maximum of five values.
     510              :  * @note Arguments may be evaluated multiple times.
     511              :  */
     512              : #define Z_MAX_5(a, b, c, d, e) Z_MAX_2(Z_MAX_4(a, b, c, d), e)
     513              : 
     514              : /**
     515              :  * @brief Returns the maximum of six values.
     516              :  * @note Arguments may be evaluated multiple times.
     517              :  */
     518              : #define Z_MAX_6(a, b, c, d, e, f) Z_MAX_2(Z_MAX_5(a, b, c, d, e), f)
     519              : 
     520              : /**
     521              :  * @brief Returns the maximum of seven values.
     522              :  * @note Arguments may be evaluated multiple times.
     523              :  */
     524              : #define Z_MAX_7(a, b, c, d, e, f, g) Z_MAX_2(Z_MAX_6(a, b, c, d, e, f), g)
     525              : 
     526              : /**
     527              :  * @brief Returns the maximum of eight values.
     528              :  * @note Arguments may be evaluated multiple times.
     529              :  */
     530              : #define Z_MAX_8(a, b, c, d, e, f, g, h) Z_MAX_2(Z_MAX_7(a, b, c, d, e, f, g), h)
     531              : 
     532              : /**
     533              :  * @brief Returns the maximum of nine values.
     534              :  * @note Arguments may be evaluated multiple times.
     535              :  */
     536              : #define Z_MAX_9(a, b, c, d, e, f, g, h, i) Z_MAX_2(Z_MAX_8(a, b, c, d, e, f, g, h), i)
     537              : 
     538              : /**
     539              :  * @brief Returns the maximum of ten values.
     540              :  * @note Arguments may be evaluated multiple times.
     541              :  */
     542              : #define Z_MAX_10(a, b, c, d, e, f, g, h, i, j) Z_MAX_2(Z_MAX_9(a, b, c, d, e, f, g, h, i), j)
     543              : 
     544              : /**
     545              :  * @brief Helper macro to select the correct MAX_N macro.
     546              :  *
     547              :  * This macro uses the argument-counting trick to pick the correct
     548              :  * `Z_MAX_N` macro name from the arguments provided to `MAX_FROM_LIST`.
     549              :  * The 10th argument (or 11th including `NAME`) effectively becomes the
     550              :  * macro name to use.
     551              :  *
     552              :  * @param _1 Positional argument 1.
     553              :  * @param _2 Positional argument 2.
     554              :  * @param _3 Positional argument 3.
     555              :  * @param _4 Positional argument 4.
     556              :  * @param _5 Positional argument 5.
     557              :  * @param _6 Positional argument 6.
     558              :  * @param _7 Positional argument 7.
     559              :  * @param _8 Positional argument 8.
     560              :  * @param _9 Positional argument 9.
     561              :  * @param _10 Positional argument 10.
     562              :  * @param NAME The macro name to be selected.
     563              :  * @param ... Additional arguments.
     564              :  * @returns The selected macro name `NAME`.
     565              :  */
     566              : #define Z_GET_MAX_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, NAME, ...) NAME
     567              : 
     568              : /**
     569              :  * @brief Finds the maximum value from a list of 1 to 10 arguments.
     570              :  *
     571              :  * Dispatches to the appropriate internal `Z_MAX_N` macro based on the number of
     572              :  * arguments provided.
     573              :  *
     574              :  * Example Usage:
     575              :  *   MAX_FROM_LIST(1, 5, 2)
     576              :  *   MAX_FROM_LIST(10)
     577              :  *
     578              :  * @note Arguments may be evaluated multiple times by the underlying
     579              :  *       `Z_MAX_N` macros. Avoid expressions with side effects.
     580              :  *
     581              :  * @param ... A list of 1 to 10 values to compare.
     582              :  * @returns The maximum value among the arguments.
     583              :  */
     584            1 : #define MAX_FROM_LIST(...)                                                                         \
     585              :         Z_GET_MAX_MACRO(__VA_ARGS__, Z_MAX_10, Z_MAX_9, Z_MAX_8, Z_MAX_7, Z_MAX_6, Z_MAX_5,        \
     586              :                         Z_MAX_4, Z_MAX_3, Z_MAX_2, Z_MAX_1)(__VA_ARGS__)
     587              : #endif
     588              : 
     589              : #ifndef CLAMP
     590              : /**
     591              :  * @brief Clamp a value to a given range.
     592              :  *
     593              :  * @note Arguments are evaluated multiple times. Use @ref clamp for a single
     594              :  * evaluation version.
     595              :  *
     596              :  * @param val Value to be clamped.
     597              :  * @param low Lowest allowed value (inclusive).
     598              :  * @param high Highest allowed value (inclusive).
     599              :  *
     600              :  * @returns Clamped value.
     601              :  */
     602            1 : #define CLAMP(val, low, high) (((val) <= (low)) ? (low) : Z_INTERNAL_MIN(val, high))
     603              : #endif
     604              : 
     605              : #ifndef __cplusplus
     606              : /** @brief Return a value clamped to a given range.
     607              :  *
     608              :  * Macro ensures that expressions are evaluated only once. See @ref max for
     609              :  * macro limitations.
     610              :  */
     611            1 : #define clamp(val, low, high) ({                                               \
     612              :                 /* random suffix to avoid naming conflict */                   \
     613              :                 __typeof__(val) _value_val_ = (val);                           \
     614              :                 __typeof__(low) _value_low_ = (low);                           \
     615              :                 __typeof__(high) _value_high_ = (high);                        \
     616              :                 (_value_val_ < _value_low_)  ? _value_low_ :                   \
     617              :                 (_value_val_ > _value_high_) ? _value_high_ :                  \
     618              :                                                _value_val_;                    \
     619              :         })
     620              : #endif
     621              : 
     622              : /**
     623              :  * @brief Checks if a value is within range.
     624              :  *
     625              :  * @note @p val is evaluated twice.
     626              :  *
     627              :  * @param val Value to be checked.
     628              :  * @param min Lower bound (inclusive).
     629              :  * @param max Upper bound (inclusive).
     630              :  *
     631              :  * @retval true If value is within range
     632              :  * @retval false If the value is not within range
     633              :  */
     634            1 : #define IN_RANGE(val, min, max) ((val) >= (min) && (val) <= (max))
     635              : 
     636              : /**
     637              :  * Find number of contiguous bits which are not set in the bit mask (32 bits).
     638              :  *
     639              :  * It is possible to return immediately when requested number of bits is found or
     640              :  * iterate over whole mask and return the best fit (smallest from available options).
     641              :  *
     642              :  * @param[in] mask 32 bit mask.
     643              :  * @param[in] num_bits Number of bits to find.
     644              :  * @param[in] total_bits Total number of LSB bits that can be used in the mask.
     645              :  * @param[in] first_match If true returns when first match is found, else returns the best fit.
     646              :  *
     647              :  * @retval -1 Contiguous bits not found.
     648              :  * @retval non-negative Starting index of the bits group.
     649              :  */
     650            1 : int bitmask_find_gap(uint32_t mask, size_t num_bits, size_t total_bits, bool first_match);
     651              : 
     652              : /**
     653              :  * @brief Is @p x a power of two?
     654              :  * @param x value to check
     655              :  * @return true if @p x is a power of two, false otherwise
     656              :  */
     657            1 : static inline bool is_power_of_two(unsigned int x)
     658              : {
     659              :         return IS_POWER_OF_TWO(x);
     660              : }
     661              : 
     662              : /**
     663              :  * @brief Is @p p equal to ``NULL``?
     664              :  *
     665              :  * Some macros may need to check their arguments against NULL to support
     666              :  * multiple use-cases, but NULL checks can generate warnings if such a macro
     667              :  * is used in contexts where that particular argument can never be NULL.
     668              :  *
     669              :  * The warnings can be triggered if:
     670              :  * a) all macros are expanded (e.g. when using CONFIG_COMPILER_SAVE_TEMPS=y)
     671              :  * or
     672              :  * b) tracking of macro expansions are turned off (-ftrack-macro-expansion=0)
     673              :  *
     674              :  * The warnings can be circumvented by using this inline function for doing
     675              :  * the NULL check within the macro. The compiler is still able to optimize the
     676              :  * NULL check out at a later stage.
     677              :  *
     678              :  * @param p Pointer to check
     679              :  * @return true if @p p is equal to ``NULL``, false otherwise
     680              :  */
     681            1 : static ALWAYS_INLINE bool is_null_no_warn(void *p)
     682              : {
     683              :         return p == NULL;
     684              : }
     685              : 
     686              : /**
     687              :  * @brief Arithmetic shift right
     688              :  * @param value value to shift
     689              :  * @param shift number of bits to shift
     690              :  * @return @p value shifted right by @p shift; opened bit positions are
     691              :  *         filled with the sign bit
     692              :  */
     693            1 : static inline int64_t arithmetic_shift_right(int64_t value, uint8_t shift)
     694              : {
     695              :         int64_t sign_ext;
     696              : 
     697              :         if (shift == 0U) {
     698              :                 return value;
     699              :         }
     700              : 
     701              :         /* extract sign bit */
     702              :         sign_ext = (value >> 63) & 1;
     703              : 
     704              :         /* make all bits of sign_ext be the same as the value's sign bit */
     705              :         sign_ext = -sign_ext;
     706              : 
     707              :         /* shift value and fill opened bit positions with sign bit */
     708              :         return (value >> shift) | (sign_ext << (64 - shift));
     709              : }
     710              : 
     711              : /**
     712              :  * @brief byte by byte memcpy.
     713              :  *
     714              :  * Copy `size` bytes of `src` into `dest`. This is guaranteed to be done byte by byte.
     715              :  *
     716              :  * @param dst Pointer to the destination memory.
     717              :  * @param src Pointer to the source of the data.
     718              :  * @param size The number of bytes to copy.
     719              :  */
     720            1 : static inline void bytecpy(void *dst, const void *src, size_t size)
     721              : {
     722              :         size_t i;
     723              : 
     724              :         for (i = 0; i < size; ++i) {
     725              :                 ((volatile uint8_t *)dst)[i] = ((volatile const uint8_t *)src)[i];
     726              :         }
     727              : }
     728              : 
     729              : /**
     730              :  * @brief byte by byte swap.
     731              :  *
     732              :  * Swap @a size bytes between memory regions @a a and @a b. This is
     733              :  * guaranteed to be done byte by byte.
     734              :  *
     735              :  * @param a Pointer to the first memory region.
     736              :  * @param b Pointer to the second memory region.
     737              :  * @param size The number of bytes to swap.
     738              :  */
     739            1 : static inline void byteswp(void *a, void *b, size_t size)
     740              : {
     741              :         uint8_t t;
     742              :         uint8_t *aa = (uint8_t *)a;
     743              :         uint8_t *bb = (uint8_t *)b;
     744              : 
     745              :         for (; size > 0; --size) {
     746              :                 t = *aa;
     747              :                 *aa++ = *bb;
     748              :                 *bb++ = t;
     749              :         }
     750              : }
     751              : 
     752              : /**
     753              :  * @brief      Convert a single character into a hexadecimal nibble.
     754              :  *
     755              :  * @param c     The character to convert
     756              :  * @param x     The address of storage for the converted number.
     757              :  *
     758              :  *  @return Zero on success or (negative) error code otherwise.
     759              :  */
     760            1 : int char2hex(char c, uint8_t *x);
     761              : 
     762              : /**
     763              :  * @brief      Convert a single hexadecimal nibble into a character.
     764              :  *
     765              :  * @param c     The number to convert
     766              :  * @param x     The address of storage for the converted character.
     767              :  *
     768              :  *  @return Zero on success or (negative) error code otherwise.
     769              :  */
     770            1 : int hex2char(uint8_t x, char *c);
     771              : 
     772              : /**
     773              :  * @brief      Convert a binary array into string representation.
     774              :  *
     775              :  * @param buf     The binary array to convert
     776              :  * @param buflen  The length of the binary array to convert
     777              :  * @param hex     Address of where to store the string representation.
     778              :  * @param hexlen  Size of the storage area for string representation.
     779              :  *
     780              :  * @return     The length of the converted string, or 0 if an error occurred.
     781              :  */
     782            1 : size_t bin2hex(const uint8_t *buf, size_t buflen, char *hex, size_t hexlen);
     783              : 
     784              : /**
     785              :  * @brief      Convert a hexadecimal string into a binary array.
     786              :  *
     787              :  * @param hex     The hexadecimal string to convert
     788              :  * @param hexlen  The length of the hexadecimal string to convert.
     789              :  * @param buf     Address of where to store the binary data
     790              :  * @param buflen  Size of the storage area for binary data
     791              :  *
     792              :  * @return     The length of the binary array, or 0 if an error occurred.
     793              :  */
     794            1 : size_t hex2bin(const char *hex, size_t hexlen, uint8_t *buf, size_t buflen);
     795              : 
     796              : /**
     797              :  * @brief Convert a binary coded decimal (BCD 8421) value to binary.
     798              :  *
     799              :  * @param bcd BCD 8421 value to convert.
     800              :  *
     801              :  * @return Binary representation of input value.
     802              :  */
     803            1 : static inline uint8_t bcd2bin(uint8_t bcd)
     804              : {
     805              :         return ((10 * (bcd >> 4)) + (bcd & 0x0F));
     806              : }
     807              : 
     808              : /**
     809              :  * @brief Convert a binary value to binary coded decimal (BCD 8421).
     810              :  *
     811              :  * @param bin Binary value to convert.
     812              :  *
     813              :  * @return BCD 8421 representation of input value.
     814              :  */
     815            1 : static inline uint8_t bin2bcd(uint8_t bin)
     816              : {
     817              :         return (((bin / 10) << 4) | (bin % 10));
     818              : }
     819              : 
     820              : /**
     821              :  * @brief      Convert a uint8_t into a decimal string representation.
     822              :  *
     823              :  * Convert a uint8_t value into its ASCII decimal string representation.
     824              :  * The string is terminated if there is enough space in buf.
     825              :  *
     826              :  * @param buf     Address of where to store the string representation.
     827              :  * @param buflen  Size of the storage area for string representation.
     828              :  * @param value   The value to convert to decimal string
     829              :  *
     830              :  * @return     The length of the converted string (excluding terminator if
     831              :  *             any), or 0 if an error occurred.
     832              :  */
     833            1 : uint8_t u8_to_dec(char *buf, uint8_t buflen, uint8_t value);
     834              : 
     835              : /**
     836              :  * @brief Sign extend an 8, 16 or 32 bit value using the index bit as sign bit.
     837              :  *
     838              :  * @param value The value to sign expand.
     839              :  * @param index 0 based bit index to sign bit (0 to 31)
     840              :  */
     841            1 : static inline int32_t sign_extend(uint32_t value, uint8_t index)
     842              : {
     843              :         __ASSERT_NO_MSG(index <= 31);
     844              : 
     845              :         uint8_t shift = 31 - index;
     846              : 
     847              :         return (int32_t)(value << shift) >> shift;
     848              : }
     849              : 
     850              : /**
     851              :  * @brief Sign extend a 64 bit value using the index bit as sign bit.
     852              :  *
     853              :  * @param value The value to sign expand.
     854              :  * @param index 0 based bit index to sign bit (0 to 63)
     855              :  */
     856            1 : static inline int64_t sign_extend_64(uint64_t value, uint8_t index)
     857              : {
     858              :         __ASSERT_NO_MSG(index <= 63);
     859              : 
     860              :         uint8_t shift = 63 - index;
     861              : 
     862              :         return (int64_t)(value << shift) >> shift;
     863              : }
     864              : 
     865              : #define __z_log2d(x) (32 - __builtin_clz(x) - 1)
     866              : #define __z_log2q(x) (64 - __builtin_clzll(x) - 1)
     867              : #define __z_log2(x)  (sizeof(__typeof__(x)) > 4 ? __z_log2q(x) : __z_log2d(x))
     868              : 
     869              : /**
     870              :  * @brief Compute log2(x)
     871              :  *
     872              :  * @note This macro expands its argument multiple times (to permit use
     873              :  *       in constant expressions), which must not have side effects.
     874              :  *
     875              :  * @param x An unsigned integral value to compute logarithm of (positive only)
     876              :  *
     877              :  * @return log2(x) when 1 <= x <= max(x), -1 when x < 1
     878              :  */
     879            1 : #define LOG2(x) ((x) < 1 ? -1 : __z_log2(x))
     880              : 
     881              : /**
     882              :  * @brief Compute ceil(log2(x))
     883              :  *
     884              :  * @note This macro expands its argument multiple times (to permit use
     885              :  *       in constant expressions), which must not have side effects.
     886              :  *
     887              :  * @param x An unsigned integral value
     888              :  *
     889              :  * @return ceil(log2(x)) when 1 <= x <= max(type(x)), 0 when x < 1
     890              :  */
     891            1 : #define LOG2CEIL(x) ((x) <= 1 ? 0 : __z_log2((x) - 1) + 1)
     892              : 
     893              : /**
     894              :  * @brief Compute next highest power of two
     895              :  *
     896              :  * Equivalent to 2^ceil(log2(x))
     897              :  *
     898              :  * @note This macro expands its argument multiple times (to permit use
     899              :  *       in constant expressions), which must not have side effects.
     900              :  *
     901              :  * @param x An unsigned integral value
     902              :  *
     903              :  * @return 2^ceil(log2(x)) or 0 if 2^ceil(log2(x)) would saturate 64-bits
     904              :  */
     905            1 : #define NHPOT(x) ((x) < 1 ? 1 : ((x) > (1ULL << 63) ? 0 : 1ULL << LOG2CEIL(x)))
     906              : 
     907              : /**
     908              :  * @brief Determine if a buffer exceeds highest address
     909              :  *
     910              :  * This macro determines if a buffer identified by a starting address @a addr
     911              :  * and length @a buflen spans a region of memory that goes beyond the highest
     912              :  * possible address (thereby resulting in a pointer overflow).
     913              :  *
     914              :  * @param addr Buffer starting address
     915              :  * @param buflen Length of the buffer
     916              :  *
     917              :  * @return true if pointer overflow detected, false otherwise
     918              :  */
     919              : #define Z_DETECT_POINTER_OVERFLOW(addr, buflen)                                                    \
     920              :         (((buflen) != 0) && ((UINTPTR_MAX - (uintptr_t)(addr)) <= ((uintptr_t)((buflen) - 1))))
     921              : 
     922              : /**
     923              :  * @brief XOR n bytes
     924              :  *
     925              :  * @param dst  Destination of where to store result. Shall be @p len bytes.
     926              :  * @param src1 First source. Shall be @p len bytes.
     927              :  * @param src2 Second source. Shall be @p len bytes.
     928              :  * @param len  Number of bytes to XOR.
     929              :  */
     930            1 : static inline void mem_xor_n(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, size_t len)
     931              : {
     932              :         while (len--) {
     933              :                 *dst++ = *src1++ ^ *src2++;
     934              :         }
     935              : }
     936              : 
     937              : /**
     938              :  * @brief XOR 32 bits
     939              :  *
     940              :  * @param dst  Destination of where to store result. Shall be 32 bits.
     941              :  * @param src1 First source. Shall be 32 bits.
     942              :  * @param src2 Second source. Shall be 32 bits.
     943              :  */
     944            1 : static inline void mem_xor_32(uint8_t dst[4], const uint8_t src1[4], const uint8_t src2[4])
     945              : {
     946              :         mem_xor_n(dst, src1, src2, 4U);
     947              : }
     948              : 
     949              : /**
     950              :  * @brief XOR 128 bits
     951              :  *
     952              :  * @param dst  Destination of where to store result. Shall be 128 bits.
     953              :  * @param src1 First source. Shall be 128 bits.
     954              :  * @param src2 Second source. Shall be 128 bits.
     955              :  */
     956            1 : static inline void mem_xor_128(uint8_t dst[16], const uint8_t src1[16], const uint8_t src2[16])
     957              : {
     958              :         mem_xor_n(dst, src1, src2, 16);
     959              : }
     960              : 
     961              : /**
     962              :  * @brief Compare memory areas. The same way as `memcmp` it assume areas to be
     963              :  * the same length
     964              :  *
     965              :  * @param m1 First memory area to compare, cannot be NULL even if length is 0
     966              :  * @param m2 Second memory area to compare, cannot be NULL even if length is 0
     967              :  * @param n First n bytes of @p m1 and @p m2 to compares
     968              :  *
     969              :  * @returns true if the @p n first bytes of @p m1 and @p m2 are the same, else
     970              :  * false
     971              :  */
     972            1 : static inline bool util_memeq(const void *m1, const void *m2, size_t n)
     973              : {
     974              :         return memcmp(m1, m2, n) == 0;
     975              : }
     976              : 
     977              : /**
     978              :  * @brief Compare memory areas and their length
     979              :  *
     980              :  * If the length are 0, return true.
     981              :  *
     982              :  * @param m1 First memory area to compare, cannot be NULL even if length is 0
     983              :  * @param len1 Length of the first memory area to compare
     984              :  * @param m2 Second memory area to compare, cannot be NULL even if length is 0
     985              :  * @param len2 Length of the second memory area to compare
     986              :  *
     987              :  * @returns true if both the length of the memory areas and their content are
     988              :  * equal else false
     989              :  */
     990            1 : static inline bool util_eq(const void *m1, size_t len1, const void *m2, size_t len2)
     991              : {
     992              :         return len1 == len2 && (m1 == m2 || util_memeq(m1, m2, len1));
     993              : }
     994              : 
     995              : /**
     996              :  * @brief Returns the number of bits set in a value
     997              :  *
     998              :  * @param value The value to count number of bits set of
     999              :  * @param len The number of octets in @p value
    1000              :  */
    1001            1 : static inline size_t sys_count_bits(const void *value, size_t len)
    1002              : {
    1003              :         size_t cnt = 0U;
    1004              :         size_t i = 0U;
    1005              : 
    1006              : #ifdef POPCOUNT
    1007              :         for (; i < len / sizeof(unsigned int); i++) {
    1008              :                 unsigned int val;
    1009              :                 (void)memcpy(&val, (const uint8_t *)value + i * sizeof(unsigned int),
    1010              :                              sizeof(unsigned int));
    1011              : 
    1012              :                 cnt += POPCOUNT(val);
    1013              :         }
    1014              :         i *= sizeof(unsigned int); /* convert to a uint8_t index for the remainder (if any) */
    1015              : #endif
    1016              : 
    1017              :         for (; i < len; i++) {
    1018              :                 uint8_t value_u8 = ((const uint8_t *)value)[i];
    1019              : 
    1020              :                 /* Implements Brian Kernighan’s Algorithm to count bits */
    1021              :                 while (value_u8) {
    1022              :                         value_u8 &= (value_u8 - 1);
    1023              :                         cnt++;
    1024              :                 }
    1025              :         }
    1026              : 
    1027              :         return cnt;
    1028              : }
    1029              : 
    1030              : #ifdef __cplusplus
    1031              : }
    1032              : #endif
    1033              : 
    1034              : /* This file must be included at the end of the !_ASMLANGUAGE guard.
    1035              :  * It depends on macros defined in this file above which cannot be forward declared.
    1036              :  */
    1037              : #include <zephyr/sys/time_units.h>
    1038              : 
    1039              : #endif /* !_ASMLANGUAGE */
    1040              : 
    1041              : /** @brief Number of bytes in @p x kibibytes */
    1042              : #ifdef _LINKER
    1043              : /* This is used in linker scripts so need to avoid type casting there */
    1044            1 : #define KB(x) ((x) << 10)
    1045              : #else
    1046              : #define KB(x) (((size_t)(x)) << 10)
    1047              : #endif
    1048              : /** @brief Number of bytes in @p x mebibytes */
    1049            1 : #define MB(x) (KB(x) << 10)
    1050              : /** @brief Number of bytes in @p x gibibytes */
    1051            1 : #define GB(x) (MB(x) << 10)
    1052              : 
    1053              : /** @brief Number of Hz in @p x kHz */
    1054            1 : #define KHZ(x) ((x) * 1000)
    1055              : /** @brief Number of Hz in @p x MHz */
    1056            1 : #define MHZ(x) (KHZ(x) * 1000)
    1057              : 
    1058              : /**
    1059              :  * @brief For the POSIX architecture add a minimal delay in a busy wait loop.
    1060              :  * For other architectures this is a no-op.
    1061              :  *
    1062              :  * In the POSIX ARCH, code takes zero simulated time to execute,
    1063              :  * so busy wait loops become infinite loops, unless we
    1064              :  * force the loop to take a bit of time.
    1065              :  * Include this macro in all busy wait/spin loops
    1066              :  * so they will also work when building for the POSIX architecture.
    1067              :  *
    1068              :  * @param t Time in microseconds we will busy wait
    1069              :  */
    1070              : #if defined(CONFIG_ARCH_POSIX)
    1071              : #define Z_SPIN_DELAY(t) k_busy_wait(t)
    1072              : #else
    1073              : #define Z_SPIN_DELAY(t)
    1074              : #endif
    1075              : 
    1076              : /**
    1077              :  * @brief Wait for an expression to return true with a timeout
    1078              :  *
    1079              :  * Spin on an expression with a timeout and optional delay between iterations
    1080              :  *
    1081              :  * Commonly needed when waiting on hardware to complete an asynchronous
    1082              :  * request to read/write/initialize/reset, but useful for any expression.
    1083              :  *
    1084              :  * @param expr Truth expression upon which to poll, e.g.: XYZREG & XYZREG_EN
    1085              :  * @param timeout Timeout to wait for in microseconds, e.g.: 1000 (1ms)
    1086              :  * @param delay_stmt Delay statement to perform each poll iteration
    1087              :  *                   e.g.: NULL, k_yield(), k_msleep(1) or k_busy_wait(1)
    1088              :  *
    1089              :  * @retval expr As a boolean return, if false then it has timed out.
    1090              :  */
    1091            1 : #define WAIT_FOR(expr, timeout, delay_stmt)                                                        \
    1092              :         ({                                                                                         \
    1093              :                 uint32_t _wf_cycle_count = k_us_to_cyc_ceil32(timeout);                            \
    1094              :                 uint32_t _wf_start = k_cycle_get_32();                                             \
    1095              :                 while (!(expr) && (_wf_cycle_count > (k_cycle_get_32() - _wf_start))) {            \
    1096              :                         delay_stmt;                                                                \
    1097              :                         Z_SPIN_DELAY(10);                                                          \
    1098              :                 }                                                                                  \
    1099              :                 (expr);                                                                            \
    1100              :         })
    1101              : 
    1102              : /**
    1103              :  * @}
    1104              :  */
    1105              : 
    1106              : #endif /* ZEPHYR_INCLUDE_SYS_UTIL_H_ */
        

Generated by: LCOV version 2.0-1