Line data Source code
1 1 : /*
2 : * Copyright (c) 2011-2014, Wind River Systems, Inc.
3 : *
4 : * SPDX-License-Identifier: Apache-2.0
5 : */
6 :
7 : /**
8 : * @file
9 : * @brief Misc utilities
10 : *
11 : * Misc utilities usable by the kernel and application code.
12 : */
13 :
14 : #ifndef ZEPHYR_INCLUDE_SYS_UTIL_H_
15 : #define ZEPHYR_INCLUDE_SYS_UTIL_H_
16 :
17 : #include <zephyr/sys/util_macro.h>
18 : #include <zephyr/toolchain.h>
19 :
20 : /* needs to be outside _ASMLANGUAGE so 'true' and 'false' can turn
21 : * into '1' and '0' for asm or linker scripts
22 : */
23 : #include <stdbool.h>
24 :
25 : #ifndef _ASMLANGUAGE
26 :
27 : #include <zephyr/sys/__assert.h>
28 : #include <zephyr/types.h>
29 : #include <stddef.h>
30 : #include <stdint.h>
31 :
32 : /** @brief Number of bits that make up a type */
33 1 : #define NUM_BITS(t) (sizeof(t) * BITS_PER_BYTE)
34 :
35 : #ifdef __cplusplus
36 : extern "C" {
37 : #endif
38 :
39 : /**
40 : * @defgroup sys-util Utility Functions
41 : * @since 2.4
42 : * @version 0.1.0
43 : * @ingroup utilities
44 : * @{
45 : */
46 :
47 : /** @brief Cast @p x, a pointer, to an unsigned integer. */
48 1 : #define POINTER_TO_UINT(x) ((uintptr_t) (x))
49 : /** @brief Cast @p x, an unsigned integer, to a <tt>void*</tt>. */
50 1 : #define UINT_TO_POINTER(x) ((void *) (uintptr_t) (x))
51 : /** @brief Cast @p x, a pointer, to a signed integer. */
52 1 : #define POINTER_TO_INT(x) ((intptr_t) (x))
53 : /** @brief Cast @p x, a signed integer, to a <tt>void*</tt>. */
54 1 : #define INT_TO_POINTER(x) ((void *) (intptr_t) (x))
55 :
56 : #if !(defined(__CHAR_BIT__) && defined(__SIZEOF_LONG__) && defined(__SIZEOF_LONG_LONG__))
57 : # error Missing required predefined macros for BITS_PER_LONG calculation
58 : #endif
59 :
60 : /** Number of bits in a byte. */
61 1 : #define BITS_PER_BYTE (__CHAR_BIT__)
62 :
63 : /** Number of bits in a nibble. */
64 1 : #define BITS_PER_NIBBLE (__CHAR_BIT__ / 2)
65 :
66 : /** Number of nibbles in a byte. */
67 1 : #define NIBBLES_PER_BYTE (BITS_PER_BYTE / BITS_PER_NIBBLE)
68 :
69 : /** Number of bits in a long int. */
70 1 : #define BITS_PER_LONG (__CHAR_BIT__ * __SIZEOF_LONG__)
71 :
72 : /** Number of bits in a long long int. */
73 1 : #define BITS_PER_LONG_LONG (__CHAR_BIT__ * __SIZEOF_LONG_LONG__)
74 :
75 : /**
76 : * @brief Create a contiguous bitmask starting at bit position @p l
77 : * and ending at position @p h.
78 : */
79 1 : #define GENMASK(h, l) \
80 : (((~0UL) - (1UL << (l)) + 1) & (~0UL >> (BITS_PER_LONG - 1 - (h))))
81 :
82 : /**
83 : * @brief Create a contiguous 64-bit bitmask starting at bit position @p l
84 : * and ending at position @p h.
85 : */
86 1 : #define GENMASK64(h, l) \
87 : (((~0ULL) - (1ULL << (l)) + 1) & (~0ULL >> (BITS_PER_LONG_LONG - 1 - (h))))
88 :
89 : /** @brief 0 if @p cond is true-ish; causes a compile error otherwise. */
90 1 : #define ZERO_OR_COMPILE_ERROR(cond) ((int) sizeof(char[1 - 2 * !(cond)]) - 1)
91 :
92 : #if defined(__cplusplus)
93 :
94 : /* The built-in function used below for type checking in C is not
95 : * supported by GNU C++.
96 : */
97 : #define ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
98 :
99 : #else /* __cplusplus */
100 :
101 : /**
102 : * @brief Zero if @p array has an array type, a compile error otherwise
103 : *
104 : * This macro is available only from C, not C++.
105 : */
106 1 : #define IS_ARRAY(array) \
107 : ZERO_OR_COMPILE_ERROR( \
108 : !__builtin_types_compatible_p(__typeof__(array), \
109 : __typeof__(&(array)[0])))
110 :
111 : /**
112 : * @brief Number of elements in the given @p array
113 : *
114 : * In C++, due to language limitations, this will accept as @p array
115 : * any type that implements <tt>operator[]</tt>. The results may not be
116 : * particularly meaningful in this case.
117 : *
118 : * In C, passing a pointer as @p array causes a compile error.
119 : */
120 1 : #define ARRAY_SIZE(array) \
121 : ((size_t) (IS_ARRAY(array) + (sizeof(array) / sizeof((array)[0]))))
122 :
123 : #endif /* __cplusplus */
124 :
125 : /**
126 : * @brief Declare a flexible array member.
127 : *
128 : * This macro declares a flexible array member in a struct. The member
129 : * is named @p name and has type @p type.
130 : *
131 : * Since C99, flexible arrays are part of the C standard, but for historical
132 : * reasons many places still use an older GNU extension that is declare
133 : * zero length arrays.
134 : *
135 : * Although zero length arrays are flexible arrays, we can't blindly
136 : * replace [0] with [] because of some syntax limitations. This macro
137 : * workaround these limitations.
138 : *
139 : * It is specially useful for cases where flexible arrays are
140 : * used in unions or are not the last element in the struct.
141 : */
142 1 : #define FLEXIBLE_ARRAY_DECLARE(type, name) \
143 : struct { \
144 : struct { } __unused_##name; \
145 : type name[]; \
146 : }
147 :
148 : /**
149 : * @brief Whether @p ptr is an element of @p array
150 : *
151 : * This macro can be seen as a slightly stricter version of @ref PART_OF_ARRAY
152 : * in that it also ensures that @p ptr is aligned to an array-element boundary
153 : * of @p array.
154 : *
155 : * In C, passing a pointer as @p array causes a compile error.
156 : *
157 : * @param array the array in question
158 : * @param ptr the pointer to check
159 : *
160 : * @return 1 if @p ptr is part of @p array, 0 otherwise
161 : */
162 1 : #define IS_ARRAY_ELEMENT(array, ptr) \
163 : ((ptr) && POINTER_TO_UINT(array) <= POINTER_TO_UINT(ptr) && \
164 : POINTER_TO_UINT(ptr) < POINTER_TO_UINT(&(array)[ARRAY_SIZE(array)]) && \
165 : (POINTER_TO_UINT(ptr) - POINTER_TO_UINT(array)) % sizeof((array)[0]) == 0)
166 :
167 : /**
168 : * @brief Index of @p ptr within @p array
169 : *
170 : * With `CONFIG_ASSERT=y`, this macro will trigger a runtime assertion
171 : * when @p ptr does not fall into the range of @p array or when @p ptr
172 : * is not aligned to an array-element boundary of @p array.
173 : *
174 : * In C, passing a pointer as @p array causes a compile error.
175 : *
176 : * @param array the array in question
177 : * @param ptr pointer to an element of @p array
178 : *
179 : * @return the array index of @p ptr within @p array, on success
180 : */
181 1 : #define ARRAY_INDEX(array, ptr) \
182 : ({ \
183 : __ASSERT_NO_MSG(IS_ARRAY_ELEMENT(array, ptr)); \
184 : (__typeof__((array)[0]) *)(ptr) - (array); \
185 : })
186 :
187 : /**
188 : * @brief Check if a pointer @p ptr lies within @p array.
189 : *
190 : * In C but not C++, this causes a compile error if @p array is not an array
191 : * (e.g. if @p ptr and @p array are mixed up).
192 : *
193 : * @param array an array
194 : * @param ptr a pointer
195 : * @return 1 if @p ptr is part of @p array, 0 otherwise
196 : */
197 1 : #define PART_OF_ARRAY(array, ptr) \
198 : ((ptr) && POINTER_TO_UINT(array) <= POINTER_TO_UINT(ptr) && \
199 : POINTER_TO_UINT(ptr) < POINTER_TO_UINT(&(array)[ARRAY_SIZE(array)]))
200 :
201 : /**
202 : * @brief Array-index of @p ptr within @p array, rounded down
203 : *
204 : * This macro behaves much like @ref ARRAY_INDEX with the notable
205 : * difference that it accepts any @p ptr in the range of @p array rather than
206 : * exclusively a @p ptr aligned to an array-element boundary of @p array.
207 : *
208 : * With `CONFIG_ASSERT=y`, this macro will trigger a runtime assertion
209 : * when @p ptr does not fall into the range of @p array.
210 : *
211 : * In C, passing a pointer as @p array causes a compile error.
212 : *
213 : * @param array the array in question
214 : * @param ptr pointer to an element of @p array
215 : *
216 : * @return the array index of @p ptr within @p array, on success
217 : */
218 1 : #define ARRAY_INDEX_FLOOR(array, ptr) \
219 : ({ \
220 : __ASSERT_NO_MSG(PART_OF_ARRAY(array, ptr)); \
221 : (POINTER_TO_UINT(ptr) - POINTER_TO_UINT(array)) / sizeof((array)[0]); \
222 : })
223 :
224 : /**
225 : * @brief Iterate over members of an array using an index variable
226 : *
227 : * @param array the array in question
228 : * @param idx name of array index variable
229 : */
230 1 : #define ARRAY_FOR_EACH(array, idx) for (size_t idx = 0; (idx) < ARRAY_SIZE(array); ++(idx))
231 :
232 : /**
233 : * @brief Iterate over members of an array using a pointer
234 : *
235 : * @param array the array in question
236 : * @param ptr pointer to an element of @p array
237 : */
238 1 : #define ARRAY_FOR_EACH_PTR(array, ptr) \
239 : for (__typeof__(*(array)) *ptr = (array); (size_t)((ptr) - (array)) < ARRAY_SIZE(array); \
240 : ++(ptr))
241 :
242 : /**
243 : * @brief Validate if two entities have a compatible type
244 : *
245 : * @param a the first entity to be compared
246 : * @param b the second entity to be compared
247 : * @return 1 if the two elements are compatible, 0 if they are not
248 : */
249 1 : #define SAME_TYPE(a, b) __builtin_types_compatible_p(__typeof__(a), __typeof__(b))
250 :
251 : /**
252 : * @brief Validate CONTAINER_OF parameters, only applies to C mode.
253 : */
254 : #ifndef __cplusplus
255 1 : #define CONTAINER_OF_VALIDATE(ptr, type, field) \
256 : BUILD_ASSERT(SAME_TYPE(*(ptr), ((type *)0)->field) || \
257 : SAME_TYPE(*(ptr), void), \
258 : "pointer type mismatch in CONTAINER_OF");
259 : #else
260 : #define CONTAINER_OF_VALIDATE(ptr, type, field)
261 : #endif
262 :
263 : /**
264 : * @brief Get a pointer to a structure containing the element
265 : *
266 : * Example:
267 : *
268 : * struct foo {
269 : * int bar;
270 : * };
271 : *
272 : * struct foo my_foo;
273 : * int *ptr = &my_foo.bar;
274 : *
275 : * struct foo *container = CONTAINER_OF(ptr, struct foo, bar);
276 : *
277 : * Above, @p container points at @p my_foo.
278 : *
279 : * @param ptr pointer to a structure element
280 : * @param type name of the type that @p ptr is an element of
281 : * @param field the name of the field within the struct @p ptr points to
282 : * @return a pointer to the structure that contains @p ptr
283 : */
284 1 : #define CONTAINER_OF(ptr, type, field) \
285 : ({ \
286 : CONTAINER_OF_VALIDATE(ptr, type, field) \
287 : ((type *)(((char *)(ptr)) - offsetof(type, field))); \
288 : })
289 :
290 : /**
291 : * @brief Report the size of a struct field in bytes.
292 : *
293 : * @param type The structure containing the field of interest.
294 : * @param member The field to return the size of.
295 : *
296 : * @return The field size.
297 : */
298 1 : #define SIZEOF_FIELD(type, member) sizeof((((type *)0)->member))
299 :
300 : /**
301 : * @brief Concatenate input arguments
302 : *
303 : * Concatenate provided tokens into a combined token during the preprocessor pass.
304 : * This can be used to, for ex., build an identifier out of multiple parts,
305 : * where one of those parts may be, for ex, a number, another macro, or a macro argument.
306 : *
307 : * @param ... Tokens to concatencate
308 : *
309 : * @return Concatenated token.
310 : */
311 1 : #define CONCAT(...) \
312 : UTIL_CAT(_CONCAT_, NUM_VA_ARGS_LESS_1(__VA_ARGS__))(__VA_ARGS__)
313 :
314 : /**
315 : * @brief Check if @p ptr is aligned to @p align alignment
316 : */
317 1 : #define IS_ALIGNED(ptr, align) (((uintptr_t)(ptr)) % (align) == 0)
318 :
319 : /**
320 : * @brief Value of @p x rounded up to the next multiple of @p align.
321 : */
322 1 : #define ROUND_UP(x, align) \
323 : ((((unsigned long)(x) + ((unsigned long)(align) - 1)) / \
324 : (unsigned long)(align)) * (unsigned long)(align))
325 :
326 : /**
327 : * @brief Value of @p x rounded down to the previous multiple of @p align.
328 : */
329 1 : #define ROUND_DOWN(x, align) \
330 : (((unsigned long)(x) / (unsigned long)(align)) * (unsigned long)(align))
331 :
332 : /** @brief Value of @p x rounded up to the next word boundary. */
333 1 : #define WB_UP(x) ROUND_UP(x, sizeof(void *))
334 :
335 : /** @brief Value of @p x rounded down to the previous word boundary. */
336 1 : #define WB_DN(x) ROUND_DOWN(x, sizeof(void *))
337 :
338 : /**
339 : * @brief Divide and round up.
340 : *
341 : * Example:
342 : * @code{.c}
343 : * DIV_ROUND_UP(1, 2); // 1
344 : * DIV_ROUND_UP(3, 2); // 2
345 : * @endcode
346 : *
347 : * @param n Numerator.
348 : * @param d Denominator.
349 : *
350 : * @return The result of @p n / @p d, rounded up.
351 : */
352 1 : #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
353 :
354 : /**
355 : * @brief Divide and round to the nearest integer.
356 : *
357 : * Example:
358 : * @code{.c}
359 : * DIV_ROUND_CLOSEST(5, 2); // 3
360 : * DIV_ROUND_CLOSEST(5, -2); // -3
361 : * DIV_ROUND_CLOSEST(5, 3); // 2
362 : * @endcode
363 : *
364 : * @param n Numerator.
365 : * @param d Denominator.
366 : *
367 : * @return The result of @p n / @p d, rounded to the nearest integer.
368 : */
369 1 : #define DIV_ROUND_CLOSEST(n, d) \
370 : (((((__typeof__(n))-1) < 0) && (((__typeof__(d))-1) < 0) && ((n) < 0) ^ ((d) < 0)) \
371 : ? ((n) - ((d) / 2)) / (d) \
372 : : ((n) + ((d) / 2)) / (d))
373 :
374 : #ifndef MAX
375 : /**
376 : * @brief Obtain the maximum of two values.
377 : *
378 : * @note Arguments are evaluated twice. Use Z_MAX for a GCC-only, single
379 : * evaluation version
380 : *
381 : * @param a First value.
382 : * @param b Second value.
383 : *
384 : * @returns Maximum value of @p a and @p b.
385 : */
386 1 : #define MAX(a, b) (((a) > (b)) ? (a) : (b))
387 : #endif
388 :
389 : #ifndef MIN
390 : /**
391 : * @brief Obtain the minimum of two values.
392 : *
393 : * @note Arguments are evaluated twice. Use Z_MIN for a GCC-only, single
394 : * evaluation version
395 : *
396 : * @param a First value.
397 : * @param b Second value.
398 : *
399 : * @returns Minimum value of @p a and @p b.
400 : */
401 1 : #define MIN(a, b) (((a) < (b)) ? (a) : (b))
402 : #endif
403 :
404 : #ifndef CLAMP
405 : /**
406 : * @brief Clamp a value to a given range.
407 : *
408 : * @note Arguments are evaluated multiple times. Use Z_CLAMP for a GCC-only,
409 : * single evaluation version.
410 : *
411 : * @param val Value to be clamped.
412 : * @param low Lowest allowed value (inclusive).
413 : * @param high Highest allowed value (inclusive).
414 : *
415 : * @returns Clamped value.
416 : */
417 1 : #define CLAMP(val, low, high) (((val) <= (low)) ? (low) : MIN(val, high))
418 : #endif
419 :
420 : /**
421 : * @brief Checks if a value is within range.
422 : *
423 : * @note @p val is evaluated twice.
424 : *
425 : * @param val Value to be checked.
426 : * @param min Lower bound (inclusive).
427 : * @param max Upper bound (inclusive).
428 : *
429 : * @retval true If value is within range
430 : * @retval false If the value is not within range
431 : */
432 1 : #define IN_RANGE(val, min, max) ((val) >= (min) && (val) <= (max))
433 :
434 : /**
435 : * @brief Is @p x a power of two?
436 : * @param x value to check
437 : * @return true if @p x is a power of two, false otherwise
438 : */
439 1 : static inline bool is_power_of_two(unsigned int x)
440 : {
441 : return IS_POWER_OF_TWO(x);
442 : }
443 :
444 : /**
445 : * @brief Is @p p equal to ``NULL``?
446 : *
447 : * Some macros may need to check their arguments against NULL to support
448 : * multiple use-cases, but NULL checks can generate warnings if such a macro
449 : * is used in contexts where that particular argument can never be NULL.
450 : *
451 : * The warnings can be triggered if:
452 : * a) all macros are expanded (e.g. when using CONFIG_COMPILER_SAVE_TEMPS=y)
453 : * or
454 : * b) tracking of macro expansions are turned off (-ftrack-macro-expansion=0)
455 : *
456 : * The warnings can be circumvented by using this inline function for doing
457 : * the NULL check within the macro. The compiler is still able to optimize the
458 : * NULL check out at a later stage.
459 : *
460 : * @param p Pointer to check
461 : * @return true if @p p is equal to ``NULL``, false otherwise
462 : */
463 1 : static ALWAYS_INLINE bool is_null_no_warn(void *p)
464 : {
465 : return p == NULL;
466 : }
467 :
468 : /**
469 : * @brief Arithmetic shift right
470 : * @param value value to shift
471 : * @param shift number of bits to shift
472 : * @return @p value shifted right by @p shift; opened bit positions are
473 : * filled with the sign bit
474 : */
475 1 : static inline int64_t arithmetic_shift_right(int64_t value, uint8_t shift)
476 : {
477 : int64_t sign_ext;
478 :
479 : if (shift == 0U) {
480 : return value;
481 : }
482 :
483 : /* extract sign bit */
484 : sign_ext = (value >> 63) & 1;
485 :
486 : /* make all bits of sign_ext be the same as the value's sign bit */
487 : sign_ext = -sign_ext;
488 :
489 : /* shift value and fill opened bit positions with sign bit */
490 : return (value >> shift) | (sign_ext << (64 - shift));
491 : }
492 :
493 : /**
494 : * @brief byte by byte memcpy.
495 : *
496 : * Copy `size` bytes of `src` into `dest`. This is guaranteed to be done byte by byte.
497 : *
498 : * @param dst Pointer to the destination memory.
499 : * @param src Pointer to the source of the data.
500 : * @param size The number of bytes to copy.
501 : */
502 1 : static inline void bytecpy(void *dst, const void *src, size_t size)
503 : {
504 : size_t i;
505 :
506 : for (i = 0; i < size; ++i) {
507 : ((volatile uint8_t *)dst)[i] = ((volatile const uint8_t *)src)[i];
508 : }
509 : }
510 :
511 : /**
512 : * @brief byte by byte swap.
513 : *
514 : * Swap @a size bytes between memory regions @a a and @a b. This is
515 : * guaranteed to be done byte by byte.
516 : *
517 : * @param a Pointer to the first memory region.
518 : * @param b Pointer to the second memory region.
519 : * @param size The number of bytes to swap.
520 : */
521 1 : static inline void byteswp(void *a, void *b, size_t size)
522 : {
523 : uint8_t t;
524 : uint8_t *aa = (uint8_t *)a;
525 : uint8_t *bb = (uint8_t *)b;
526 :
527 : for (; size > 0; --size) {
528 : t = *aa;
529 : *aa++ = *bb;
530 : *bb++ = t;
531 : }
532 : }
533 :
534 : /**
535 : * @brief Convert a single character into a hexadecimal nibble.
536 : *
537 : * @param c The character to convert
538 : * @param x The address of storage for the converted number.
539 : *
540 : * @return Zero on success or (negative) error code otherwise.
541 : */
542 1 : int char2hex(char c, uint8_t *x);
543 :
544 : /**
545 : * @brief Convert a single hexadecimal nibble into a character.
546 : *
547 : * @param c The number to convert
548 : * @param x The address of storage for the converted character.
549 : *
550 : * @return Zero on success or (negative) error code otherwise.
551 : */
552 1 : int hex2char(uint8_t x, char *c);
553 :
554 : /**
555 : * @brief Convert a binary array into string representation.
556 : *
557 : * @param buf The binary array to convert
558 : * @param buflen The length of the binary array to convert
559 : * @param hex Address of where to store the string representation.
560 : * @param hexlen Size of the storage area for string representation.
561 : *
562 : * @return The length of the converted string, or 0 if an error occurred.
563 : */
564 1 : size_t bin2hex(const uint8_t *buf, size_t buflen, char *hex, size_t hexlen);
565 :
566 : /**
567 : * @brief Convert a hexadecimal string into a binary array.
568 : *
569 : * @param hex The hexadecimal string to convert
570 : * @param hexlen The length of the hexadecimal string to convert.
571 : * @param buf Address of where to store the binary data
572 : * @param buflen Size of the storage area for binary data
573 : *
574 : * @return The length of the binary array, or 0 if an error occurred.
575 : */
576 1 : size_t hex2bin(const char *hex, size_t hexlen, uint8_t *buf, size_t buflen);
577 :
578 : /**
579 : * @brief Convert a binary coded decimal (BCD 8421) value to binary.
580 : *
581 : * @param bcd BCD 8421 value to convert.
582 : *
583 : * @return Binary representation of input value.
584 : */
585 1 : static inline uint8_t bcd2bin(uint8_t bcd)
586 : {
587 : return ((10 * (bcd >> 4)) + (bcd & 0x0F));
588 : }
589 :
590 : /**
591 : * @brief Convert a binary value to binary coded decimal (BCD 8421).
592 : *
593 : * @param bin Binary value to convert.
594 : *
595 : * @return BCD 8421 representation of input value.
596 : */
597 1 : static inline uint8_t bin2bcd(uint8_t bin)
598 : {
599 : return (((bin / 10) << 4) | (bin % 10));
600 : }
601 :
602 : /**
603 : * @brief Convert a uint8_t into a decimal string representation.
604 : *
605 : * Convert a uint8_t value into its ASCII decimal string representation.
606 : * The string is terminated if there is enough space in buf.
607 : *
608 : * @param buf Address of where to store the string representation.
609 : * @param buflen Size of the storage area for string representation.
610 : * @param value The value to convert to decimal string
611 : *
612 : * @return The length of the converted string (excluding terminator if
613 : * any), or 0 if an error occurred.
614 : */
615 1 : uint8_t u8_to_dec(char *buf, uint8_t buflen, uint8_t value);
616 :
617 : /**
618 : * @brief Sign extend an 8, 16 or 32 bit value using the index bit as sign bit.
619 : *
620 : * @param value The value to sign expand.
621 : * @param index 0 based bit index to sign bit (0 to 31)
622 : */
623 1 : static inline int32_t sign_extend(uint32_t value, uint8_t index)
624 : {
625 : __ASSERT_NO_MSG(index <= 31);
626 :
627 : uint8_t shift = 31 - index;
628 :
629 : return (int32_t)(value << shift) >> shift;
630 : }
631 :
632 : /**
633 : * @brief Sign extend a 64 bit value using the index bit as sign bit.
634 : *
635 : * @param value The value to sign expand.
636 : * @param index 0 based bit index to sign bit (0 to 63)
637 : */
638 1 : static inline int64_t sign_extend_64(uint64_t value, uint8_t index)
639 : {
640 : __ASSERT_NO_MSG(index <= 63);
641 :
642 : uint8_t shift = 63 - index;
643 :
644 : return (int64_t)(value << shift) >> shift;
645 : }
646 :
647 : /**
648 : * @brief Properly truncate a NULL-terminated UTF-8 string
649 : *
650 : * Take a NULL-terminated UTF-8 string and ensure that if the string has been
651 : * truncated (by setting the NULL terminator) earlier by other means, that
652 : * the string ends with a properly formatted UTF-8 character (1-4 bytes).
653 : *
654 : * @htmlonly
655 : * Example:
656 : * char test_str[] = "€€€";
657 : * char trunc_utf8[8];
658 : *
659 : * printf("Original : %s\n", test_str); // €€€
660 : * strncpy(trunc_utf8, test_str, sizeof(trunc_utf8));
661 : * trunc_utf8[sizeof(trunc_utf8) - 1] = '\0';
662 : * printf("Bad : %s\n", trunc_utf8); // €€�
663 : * utf8_trunc(trunc_utf8);
664 : * printf("Truncated: %s\n", trunc_utf8); // €€
665 : * @endhtmlonly
666 : *
667 : * @param utf8_str NULL-terminated string
668 : *
669 : * @return Pointer to the @p utf8_str
670 : */
671 1 : char *utf8_trunc(char *utf8_str);
672 :
673 : /**
674 : * @brief Copies a UTF-8 encoded string from @p src to @p dst
675 : *
676 : * The resulting @p dst will always be NULL terminated if @p n is larger than 0,
677 : * and the @p dst string will always be properly UTF-8 truncated.
678 : *
679 : * @param dst The destination of the UTF-8 string.
680 : * @param src The source string
681 : * @param n The size of the @p dst buffer. Maximum number of characters copied
682 : * is @p n - 1. If 0 nothing will be done, and the @p dst will not be
683 : * NULL terminated.
684 : *
685 : * @return Pointer to the @p dst
686 : */
687 1 : char *utf8_lcpy(char *dst, const char *src, size_t n);
688 :
689 : #define __z_log2d(x) (32 - __builtin_clz(x) - 1)
690 : #define __z_log2q(x) (64 - __builtin_clzll(x) - 1)
691 : #define __z_log2(x) (sizeof(__typeof__(x)) > 4 ? __z_log2q(x) : __z_log2d(x))
692 :
693 : /**
694 : * @brief Compute log2(x)
695 : *
696 : * @note This macro expands its argument multiple times (to permit use
697 : * in constant expressions), which must not have side effects.
698 : *
699 : * @param x An unsigned integral value to compute logarithm of (positive only)
700 : *
701 : * @return log2(x) when 1 <= x <= max(x), -1 when x < 1
702 : */
703 1 : #define LOG2(x) ((x) < 1 ? -1 : __z_log2(x))
704 :
705 : /**
706 : * @brief Compute ceil(log2(x))
707 : *
708 : * @note This macro expands its argument multiple times (to permit use
709 : * in constant expressions), which must not have side effects.
710 : *
711 : * @param x An unsigned integral value
712 : *
713 : * @return ceil(log2(x)) when 1 <= x <= max(type(x)), 0 when x < 1
714 : */
715 1 : #define LOG2CEIL(x) ((x) <= 1 ? 0 : __z_log2((x)-1) + 1)
716 :
717 : /**
718 : * @brief Compute next highest power of two
719 : *
720 : * Equivalent to 2^ceil(log2(x))
721 : *
722 : * @note This macro expands its argument multiple times (to permit use
723 : * in constant expressions), which must not have side effects.
724 : *
725 : * @param x An unsigned integral value
726 : *
727 : * @return 2^ceil(log2(x)) or 0 if 2^ceil(log2(x)) would saturate 64-bits
728 : */
729 1 : #define NHPOT(x) ((x) < 1 ? 1 : ((x) > (1ULL<<63) ? 0 : 1ULL << LOG2CEIL(x)))
730 :
731 : /**
732 : * @brief Determine if a buffer exceeds highest address
733 : *
734 : * This macro determines if a buffer identified by a starting address @a addr
735 : * and length @a buflen spans a region of memory that goes beyond the highest
736 : * possible address (thereby resulting in a pointer overflow).
737 : *
738 : * @param addr Buffer starting address
739 : * @param buflen Length of the buffer
740 : *
741 : * @return true if pointer overflow detected, false otherwise
742 : */
743 : #define Z_DETECT_POINTER_OVERFLOW(addr, buflen) \
744 : (((buflen) != 0) && \
745 : ((UINTPTR_MAX - (uintptr_t)(addr)) <= ((uintptr_t)((buflen) - 1))))
746 :
747 : /**
748 : * @brief XOR n bytes
749 : *
750 : * @param dst Destination of where to store result. Shall be @p len bytes.
751 : * @param src1 First source. Shall be @p len bytes.
752 : * @param src2 Second source. Shall be @p len bytes.
753 : * @param len Number of bytes to XOR.
754 : */
755 1 : static inline void mem_xor_n(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, size_t len)
756 : {
757 : while (len--) {
758 : *dst++ = *src1++ ^ *src2++;
759 : }
760 : }
761 :
762 : /**
763 : * @brief XOR 32 bits
764 : *
765 : * @param dst Destination of where to store result. Shall be 32 bits.
766 : * @param src1 First source. Shall be 32 bits.
767 : * @param src2 Second source. Shall be 32 bits.
768 : */
769 1 : static inline void mem_xor_32(uint8_t dst[4], const uint8_t src1[4], const uint8_t src2[4])
770 : {
771 : mem_xor_n(dst, src1, src2, 4U);
772 : }
773 :
774 : /**
775 : * @brief XOR 128 bits
776 : *
777 : * @param dst Destination of where to store result. Shall be 128 bits.
778 : * @param src1 First source. Shall be 128 bits.
779 : * @param src2 Second source. Shall be 128 bits.
780 : */
781 1 : static inline void mem_xor_128(uint8_t dst[16], const uint8_t src1[16], const uint8_t src2[16])
782 : {
783 : mem_xor_n(dst, src1, src2, 16);
784 : }
785 :
786 : #ifdef __cplusplus
787 : }
788 : #endif
789 :
790 : /* This file must be included at the end of the !_ASMLANGUAGE guard.
791 : * It depends on macros defined in this file above which cannot be forward declared.
792 : */
793 : #include <zephyr/sys/time_units.h>
794 :
795 : #endif /* !_ASMLANGUAGE */
796 :
797 : /** @brief Number of bytes in @p x kibibytes */
798 : #ifdef _LINKER
799 : /* This is used in linker scripts so need to avoid type casting there */
800 1 : #define KB(x) ((x) << 10)
801 : #else
802 : #define KB(x) (((size_t)(x)) << 10)
803 : #endif
804 : /** @brief Number of bytes in @p x mebibytes */
805 1 : #define MB(x) (KB(x) << 10)
806 : /** @brief Number of bytes in @p x gibibytes */
807 1 : #define GB(x) (MB(x) << 10)
808 :
809 : /** @brief Number of Hz in @p x kHz */
810 1 : #define KHZ(x) ((x) * 1000)
811 : /** @brief Number of Hz in @p x MHz */
812 1 : #define MHZ(x) (KHZ(x) * 1000)
813 :
814 : /**
815 : * @brief For the POSIX architecture add a minimal delay in a busy wait loop.
816 : * For other architectures this is a no-op.
817 : *
818 : * In the POSIX ARCH, code takes zero simulated time to execute,
819 : * so busy wait loops become infinite loops, unless we
820 : * force the loop to take a bit of time.
821 : * Include this macro in all busy wait/spin loops
822 : * so they will also work when building for the POSIX architecture.
823 : *
824 : * @param t Time in microseconds we will busy wait
825 : */
826 : #if defined(CONFIG_ARCH_POSIX)
827 : #define Z_SPIN_DELAY(t) k_busy_wait(t)
828 : #else
829 : #define Z_SPIN_DELAY(t)
830 : #endif
831 :
832 : /**
833 : * @brief Wait for an expression to return true with a timeout
834 : *
835 : * Spin on an expression with a timeout and optional delay between iterations
836 : *
837 : * Commonly needed when waiting on hardware to complete an asynchronous
838 : * request to read/write/initialize/reset, but useful for any expression.
839 : *
840 : * @param expr Truth expression upon which to poll, e.g.: XYZREG & XYZREG_EN
841 : * @param timeout Timeout to wait for in microseconds, e.g.: 1000 (1ms)
842 : * @param delay_stmt Delay statement to perform each poll iteration
843 : * e.g.: NULL, k_yield(), k_msleep(1) or k_busy_wait(1)
844 : *
845 : * @retval expr As a boolean return, if false then it has timed out.
846 : */
847 1 : #define WAIT_FOR(expr, timeout, delay_stmt) \
848 : ({ \
849 : uint32_t _wf_cycle_count = k_us_to_cyc_ceil32(timeout); \
850 : uint32_t _wf_start = k_cycle_get_32(); \
851 : while (!(expr) && (_wf_cycle_count > (k_cycle_get_32() - _wf_start))) { \
852 : delay_stmt; \
853 : Z_SPIN_DELAY(10); \
854 : } \
855 : (expr); \
856 : })
857 :
858 : /**
859 : * @}
860 : */
861 :
862 : #endif /* ZEPHYR_INCLUDE_SYS_UTIL_H_ */
|