Zephyr API Documentation  3.6.99
A Scalable Open Source RTOS
Loading...
Searching...
No Matches
kernel.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
15
16#if !defined(_ASMLANGUAGE)
18#include <errno.h>
19#include <limits.h>
20#include <stdbool.h>
21#include <zephyr/toolchain.h>
25
26#ifdef __cplusplus
27extern "C" {
28#endif
29
30/*
31 * Zephyr currently assumes the size of a couple standard types to simplify
32 * print string formats. Let's make sure this doesn't change without notice.
33 */
34BUILD_ASSERT(sizeof(int32_t) == sizeof(int));
35BUILD_ASSERT(sizeof(int64_t) == sizeof(long long));
36BUILD_ASSERT(sizeof(intptr_t) == sizeof(long));
37
47#define K_ANY NULL
48
49#if CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES == 0
50#error Zero available thread priorities defined!
51#endif
52
53#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
54#define K_PRIO_PREEMPT(x) (x)
55
56#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
57#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
58#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
59#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
60#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
61
62#ifdef CONFIG_POLL
63#define Z_POLL_EVENT_OBJ_INIT(obj) \
64 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
65#define Z_DECL_POLL_EVENT sys_dlist_t poll_events;
66#else
67#define Z_POLL_EVENT_OBJ_INIT(obj)
68#define Z_DECL_POLL_EVENT
69#endif
70
71struct k_thread;
72struct k_mutex;
73struct k_sem;
74struct k_msgq;
75struct k_mbox;
76struct k_pipe;
77struct k_queue;
78struct k_fifo;
79struct k_lifo;
80struct k_stack;
81struct k_mem_slab;
82struct k_timer;
83struct k_poll_event;
84struct k_poll_signal;
85struct k_mem_domain;
86struct k_mem_partition;
87struct k_futex;
88struct k_event;
89
91 K_ISR = 0,
94};
95
96/* private, used by k_poll and k_work_poll */
97struct k_work_poll;
98typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
99
105typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
106 void *user_data);
107
123void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data);
124
153 k_thread_user_cb_t user_cb, void *user_data);
154
163#endif /* !_ASMLANGUAGE */
164
165
166/*
167 * Thread user options. May be needed by assembly code. Common part uses low
168 * bits, arch-specific use high bits.
169 */
170
174#define K_ESSENTIAL (BIT(0))
175
185#define K_FP_IDX 1
186#define K_FP_REGS (BIT(K_FP_IDX))
187
194#define K_USER (BIT(2))
195
204#define K_INHERIT_PERMS (BIT(3))
205
215#define K_CALLBACK_STATE (BIT(4))
216
226#define K_DSP_IDX 6
227#define K_DSP_REGS (BIT(K_DSP_IDX))
228
237#define K_AGU_IDX 7
238#define K_AGU_REGS (BIT(K_AGU_IDX))
239
249#define K_SSE_REGS (BIT(7))
250
251/* end - thread options */
252
253#if !defined(_ASMLANGUAGE)
268__syscall k_thread_stack_t *k_thread_stack_alloc(size_t size, int flags);
269
283
332__syscall k_tid_t k_thread_create(struct k_thread *new_thread,
333 k_thread_stack_t *stack,
334 size_t stack_size,
336 void *p1, void *p2, void *p3,
337 int prio, uint32_t options, k_timeout_t delay);
338
361 void *p1, void *p2,
362 void *p3);
363
377#define k_thread_access_grant(thread, ...) \
378 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), thread, __VA_ARGS__)
379
394static inline void k_thread_heap_assign(struct k_thread *thread,
395 struct k_heap *heap)
396{
397 thread->resource_pool = heap;
398}
399
400#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
421__syscall int k_thread_stack_space_get(const struct k_thread *thread,
422 size_t *unused_ptr);
423#endif
424
425#if (K_HEAP_MEM_POOL_SIZE > 0)
438void k_thread_system_pool_assign(struct k_thread *thread);
439#endif /* (K_HEAP_MEM_POOL_SIZE > 0) */
440
460__syscall int k_thread_join(struct k_thread *thread, k_timeout_t timeout);
461
476__syscall int32_t k_sleep(k_timeout_t timeout);
477
489static inline int32_t k_msleep(int32_t ms)
490{
491 return k_sleep(Z_TIMEOUT_MS(ms));
492}
493
511
528__syscall void k_busy_wait(uint32_t usec_to_wait);
529
541bool k_can_yield(void);
542
550__syscall void k_yield(void);
551
561__syscall void k_wakeup(k_tid_t thread);
562
576__attribute_const__
578
585__attribute_const__
586static inline k_tid_t k_current_get(void)
587{
588#ifdef CONFIG_CURRENT_THREAD_USE_TLS
589
590 /* Thread-local cache of current thread ID, set in z_thread_entry() */
591 extern __thread k_tid_t z_tls_current;
592
593 return z_tls_current;
594#else
596#endif
597}
598
618__syscall void k_thread_abort(k_tid_t thread);
619
620
630__syscall void k_thread_start(k_tid_t thread);
631
632k_ticks_t z_timeout_expires(const struct _timeout *timeout);
633k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
634
635#ifdef CONFIG_SYS_CLOCK_EXISTS
636
644__syscall k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread);
645
646static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
647 const struct k_thread *thread)
648{
649 return z_timeout_expires(&thread->base.timeout);
650}
651
660
661static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
662 const struct k_thread *thread)
663{
664 return z_timeout_remaining(&thread->base.timeout);
665}
666
667#endif /* CONFIG_SYS_CLOCK_EXISTS */
668
673struct _static_thread_data {
674 struct k_thread *init_thread;
675 k_thread_stack_t *init_stack;
676 unsigned int init_stack_size;
678 void *init_p1;
679 void *init_p2;
680 void *init_p3;
681 int init_prio;
682 uint32_t init_options;
683 const char *init_name;
684#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
685 int32_t init_delay_ms;
686#else
687 k_timeout_t init_delay;
688#endif
689};
690
691#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
692#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay_ms = (ms)
693#define Z_THREAD_INIT_DELAY(thread) SYS_TIMEOUT_MS((thread)->init_delay_ms)
694#else
695#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay = SYS_TIMEOUT_MS(ms)
696#define Z_THREAD_INIT_DELAY(thread) (thread)->init_delay
697#endif
698
699#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
700 entry, p1, p2, p3, \
701 prio, options, delay, tname) \
702 { \
703 .init_thread = (thread), \
704 .init_stack = (stack), \
705 .init_stack_size = (stack_size), \
706 .init_entry = (k_thread_entry_t)entry, \
707 .init_p1 = (void *)p1, \
708 .init_p2 = (void *)p2, \
709 .init_p3 = (void *)p3, \
710 .init_prio = (prio), \
711 .init_options = (options), \
712 .init_name = STRINGIFY(tname), \
713 Z_THREAD_INIT_DELAY_INITIALIZER(delay) \
714 }
715
716/*
717 * Refer to K_THREAD_DEFINE() and K_KERNEL_THREAD_DEFINE() for
718 * information on arguments.
719 */
720#define Z_THREAD_COMMON_DEFINE(name, stack_size, \
721 entry, p1, p2, p3, \
722 prio, options, delay) \
723 struct k_thread _k_thread_obj_##name; \
724 STRUCT_SECTION_ITERABLE(_static_thread_data, \
725 _k_thread_data_##name) = \
726 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
727 _k_thread_stack_##name, stack_size,\
728 entry, p1, p2, p3, prio, options, \
729 delay, name); \
730 const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
731
767#define K_THREAD_DEFINE(name, stack_size, \
768 entry, p1, p2, p3, \
769 prio, options, delay) \
770 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
771 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
772 prio, options, delay)
773
804#define K_KERNEL_THREAD_DEFINE(name, stack_size, \
805 entry, p1, p2, p3, \
806 prio, options, delay) \
807 K_KERNEL_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
808 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
809 prio, options, delay)
810
820__syscall int k_thread_priority_get(k_tid_t thread);
821
847__syscall void k_thread_priority_set(k_tid_t thread, int prio);
848
849
850#ifdef CONFIG_SCHED_DEADLINE
883__syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
884#endif
885
886#ifdef CONFIG_SCHED_CPU_MASK
900
914
928
942
953int k_thread_cpu_pin(k_tid_t thread, int cpu);
954#endif
955
976__syscall void k_thread_suspend(k_tid_t thread);
977
988__syscall void k_thread_resume(k_tid_t thread);
989
1016void k_sched_time_slice_set(int32_t slice, int prio);
1017
1056void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
1057 k_thread_timeslice_fn_t expired, void *data);
1058
1077bool k_is_in_isr(void);
1078
1095__syscall int k_is_preempt_thread(void);
1096
1108static inline bool k_is_pre_kernel(void)
1109{
1110 extern bool z_sys_post_kernel; /* in init.c */
1111
1112 return !z_sys_post_kernel;
1113}
1114
1149void k_sched_lock(void);
1150
1159
1172__syscall void k_thread_custom_data_set(void *value);
1173
1181__syscall void *k_thread_custom_data_get(void);
1182
1196__syscall int k_thread_name_set(k_tid_t thread, const char *str);
1197
1206const char *k_thread_name_get(k_tid_t thread);
1207
1219__syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1220 size_t size);
1221
1234const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size);
1235
1253#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1254
1267#define K_NSEC(t) Z_TIMEOUT_NS(t)
1268
1281#define K_USEC(t) Z_TIMEOUT_US(t)
1282
1293#define K_CYC(t) Z_TIMEOUT_CYC(t)
1294
1305#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1306
1317#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1318
1329#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1330
1341#define K_MINUTES(m) K_SECONDS((m) * 60)
1342
1353#define K_HOURS(h) K_MINUTES((h) * 60)
1354
1363#define K_FOREVER Z_FOREVER
1364
1365#ifdef CONFIG_TIMEOUT_64BIT
1366
1378#define K_TIMEOUT_ABS_TICKS(t) \
1379 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)MAX(t, 0)))
1380
1392#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1393
1406#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1407
1420#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1421
1434#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1435
1436#endif
1437
1446struct k_timer {
1447 /*
1448 * _timeout structure must be first here if we want to use
1449 * dynamic timer allocation. timeout.node is used in the double-linked
1450 * list of free timers
1451 */
1452 struct _timeout timeout;
1453
1454 /* wait queue for the (single) thread waiting on this timer */
1455 _wait_q_t wait_q;
1456
1457 /* runs in ISR context */
1458 void (*expiry_fn)(struct k_timer *timer);
1459
1460 /* runs in the context of the thread that calls k_timer_stop() */
1461 void (*stop_fn)(struct k_timer *timer);
1462
1463 /* timer period */
1464 k_timeout_t period;
1465
1466 /* timer status */
1467 uint32_t status;
1468
1469 /* user-specific data, also used to support legacy features */
1470 void *user_data;
1471
1473
1474#ifdef CONFIG_OBJ_CORE_TIMER
1475 struct k_obj_core obj_core;
1476#endif
1477};
1478
1479#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1480 { \
1481 .timeout = { \
1482 .node = {},\
1483 .fn = z_timer_expiration_handler, \
1484 .dticks = 0, \
1485 }, \
1486 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1487 .expiry_fn = expiry, \
1488 .stop_fn = stop, \
1489 .status = 0, \
1490 .user_data = 0, \
1491 }
1492
1513typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1514
1529typedef void (*k_timer_stop_t)(struct k_timer *timer);
1530
1542#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1543 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1544 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1545
1555void k_timer_init(struct k_timer *timer,
1556 k_timer_expiry_t expiry_fn,
1557 k_timer_stop_t stop_fn);
1558
1573__syscall void k_timer_start(struct k_timer *timer,
1574 k_timeout_t duration, k_timeout_t period);
1575
1592__syscall void k_timer_stop(struct k_timer *timer);
1593
1606__syscall uint32_t k_timer_status_get(struct k_timer *timer);
1607
1625__syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1626
1627#ifdef CONFIG_SYS_CLOCK_EXISTS
1628
1639__syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1640
1641static inline k_ticks_t z_impl_k_timer_expires_ticks(
1642 const struct k_timer *timer)
1643{
1644 return z_timeout_expires(&timer->timeout);
1645}
1646
1654__syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1655
1656static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1657 const struct k_timer *timer)
1658{
1659 return z_timeout_remaining(&timer->timeout);
1660}
1661
1672static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
1673{
1675}
1676
1677#endif /* CONFIG_SYS_CLOCK_EXISTS */
1678
1691__syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
1692
1696static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
1697 void *user_data)
1698{
1699 timer->user_data = user_data;
1700}
1701
1709__syscall void *k_timer_user_data_get(const struct k_timer *timer);
1710
1711static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
1712{
1713 return timer->user_data;
1714}
1715
1733__syscall int64_t k_uptime_ticks(void);
1734
1748static inline int64_t k_uptime_get(void)
1749{
1751}
1752
1772static inline uint32_t k_uptime_get_32(void)
1773{
1774 return (uint32_t)k_uptime_get();
1775}
1776
1788static inline int64_t k_uptime_delta(int64_t *reftime)
1789{
1790 int64_t uptime, delta;
1791
1792 uptime = k_uptime_get();
1793 delta = uptime - *reftime;
1794 *reftime = uptime;
1795
1796 return delta;
1797}
1798
1807static inline uint32_t k_cycle_get_32(void)
1808{
1809 return arch_k_cycle_get_32();
1810}
1811
1822static inline uint64_t k_cycle_get_64(void)
1823{
1824 if (!IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
1825 __ASSERT(0, "64-bit cycle counter not enabled on this platform. "
1826 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
1827 return 0;
1828 }
1829
1830 return arch_k_cycle_get_64();
1831}
1832
1837struct k_queue {
1840 _wait_q_t wait_q;
1841
1842 Z_DECL_POLL_EVENT
1843
1845};
1846
1851#define Z_QUEUE_INITIALIZER(obj) \
1852 { \
1853 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
1854 .lock = { }, \
1855 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1856 Z_POLL_EVENT_OBJ_INIT(obj) \
1857 }
1858
1876__syscall void k_queue_init(struct k_queue *queue);
1877
1891__syscall void k_queue_cancel_wait(struct k_queue *queue);
1892
1905void k_queue_append(struct k_queue *queue, void *data);
1906
1923__syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
1924
1937void k_queue_prepend(struct k_queue *queue, void *data);
1938
1955__syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
1956
1970void k_queue_insert(struct k_queue *queue, void *prev, void *data);
1971
1990int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
1991
2007int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
2008
2027__syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
2028
2045bool k_queue_remove(struct k_queue *queue, void *data);
2046
2061bool k_queue_unique_append(struct k_queue *queue, void *data);
2062
2076__syscall int k_queue_is_empty(struct k_queue *queue);
2077
2078static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
2079{
2080 return (int)sys_sflist_is_empty(&queue->data_q);
2081}
2082
2092__syscall void *k_queue_peek_head(struct k_queue *queue);
2093
2103__syscall void *k_queue_peek_tail(struct k_queue *queue);
2104
2114#define K_QUEUE_DEFINE(name) \
2115 STRUCT_SECTION_ITERABLE(k_queue, name) = \
2116 Z_QUEUE_INITIALIZER(name)
2117
2120#ifdef CONFIG_USERSPACE
2130struct k_futex {
2132};
2133
2141struct z_futex_data {
2142 _wait_q_t wait_q;
2143 struct k_spinlock lock;
2144};
2145
2146#define Z_FUTEX_DATA_INITIALIZER(obj) \
2147 { \
2148 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2149 }
2150
2176__syscall int k_futex_wait(struct k_futex *futex, int expected,
2177 k_timeout_t timeout);
2178
2193__syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
2194
2196#endif
2197
2209struct k_event {
2210 _wait_q_t wait_q;
2213
2215
2216#ifdef CONFIG_OBJ_CORE_EVENT
2217 struct k_obj_core obj_core;
2218#endif
2219
2220};
2221
2222#define Z_EVENT_INITIALIZER(obj) \
2223 { \
2224 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2225 .events = 0 \
2226 }
2227
2235__syscall void k_event_init(struct k_event *event);
2236
2252__syscall uint32_t k_event_post(struct k_event *event, uint32_t events);
2253
2269__syscall uint32_t k_event_set(struct k_event *event, uint32_t events);
2270
2285__syscall uint32_t k_event_set_masked(struct k_event *event, uint32_t events,
2286 uint32_t events_mask);
2287
2298__syscall uint32_t k_event_clear(struct k_event *event, uint32_t events);
2299
2321__syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2322 bool reset, k_timeout_t timeout);
2323
2345__syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2346 bool reset, k_timeout_t timeout);
2347
2356static inline uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
2357{
2358 return k_event_wait(event, events_mask, false, K_NO_WAIT);
2359}
2360
2370#define K_EVENT_DEFINE(name) \
2371 STRUCT_SECTION_ITERABLE(k_event, name) = \
2372 Z_EVENT_INITIALIZER(name);
2373
2376struct k_fifo {
2377 struct k_queue _queue;
2378#ifdef CONFIG_OBJ_CORE_FIFO
2379 struct k_obj_core obj_core;
2380#endif
2381};
2382
2386#define Z_FIFO_INITIALIZER(obj) \
2387 { \
2388 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2389 }
2390
2408#define k_fifo_init(fifo) \
2409 ({ \
2410 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2411 k_queue_init(&(fifo)->_queue); \
2412 K_OBJ_CORE_INIT(K_OBJ_CORE(fifo), _obj_type_fifo); \
2413 K_OBJ_CORE_LINK(K_OBJ_CORE(fifo)); \
2414 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2415 })
2416
2428#define k_fifo_cancel_wait(fifo) \
2429 ({ \
2430 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2431 k_queue_cancel_wait(&(fifo)->_queue); \
2432 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2433 })
2434
2447#define k_fifo_put(fifo, data) \
2448 ({ \
2449 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, data); \
2450 k_queue_append(&(fifo)->_queue, data); \
2451 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, data); \
2452 })
2453
2470#define k_fifo_alloc_put(fifo, data) \
2471 ({ \
2472 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, data); \
2473 int fap_ret = k_queue_alloc_append(&(fifo)->_queue, data); \
2474 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, data, fap_ret); \
2475 fap_ret; \
2476 })
2477
2492#define k_fifo_put_list(fifo, head, tail) \
2493 ({ \
2494 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2495 k_queue_append_list(&(fifo)->_queue, head, tail); \
2496 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2497 })
2498
2512#define k_fifo_put_slist(fifo, list) \
2513 ({ \
2514 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2515 k_queue_merge_slist(&(fifo)->_queue, list); \
2516 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2517 })
2518
2536#define k_fifo_get(fifo, timeout) \
2537 ({ \
2538 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2539 void *fg_ret = k_queue_get(&(fifo)->_queue, timeout); \
2540 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, fg_ret); \
2541 fg_ret; \
2542 })
2543
2557#define k_fifo_is_empty(fifo) \
2558 k_queue_is_empty(&(fifo)->_queue)
2559
2573#define k_fifo_peek_head(fifo) \
2574 ({ \
2575 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2576 void *fph_ret = k_queue_peek_head(&(fifo)->_queue); \
2577 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, fph_ret); \
2578 fph_ret; \
2579 })
2580
2592#define k_fifo_peek_tail(fifo) \
2593 ({ \
2594 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2595 void *fpt_ret = k_queue_peek_tail(&(fifo)->_queue); \
2596 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, fpt_ret); \
2597 fpt_ret; \
2598 })
2599
2609#define K_FIFO_DEFINE(name) \
2610 STRUCT_SECTION_ITERABLE(k_fifo, name) = \
2611 Z_FIFO_INITIALIZER(name)
2612
2615struct k_lifo {
2616 struct k_queue _queue;
2617#ifdef CONFIG_OBJ_CORE_LIFO
2618 struct k_obj_core obj_core;
2619#endif
2620};
2621
2626#define Z_LIFO_INITIALIZER(obj) \
2627 { \
2628 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2629 }
2630
2648#define k_lifo_init(lifo) \
2649 ({ \
2650 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2651 k_queue_init(&(lifo)->_queue); \
2652 K_OBJ_CORE_INIT(K_OBJ_CORE(lifo), _obj_type_lifo); \
2653 K_OBJ_CORE_LINK(K_OBJ_CORE(lifo)); \
2654 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2655 })
2656
2669#define k_lifo_put(lifo, data) \
2670 ({ \
2671 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, data); \
2672 k_queue_prepend(&(lifo)->_queue, data); \
2673 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, data); \
2674 })
2675
2692#define k_lifo_alloc_put(lifo, data) \
2693 ({ \
2694 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, data); \
2695 int lap_ret = k_queue_alloc_prepend(&(lifo)->_queue, data); \
2696 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, data, lap_ret); \
2697 lap_ret; \
2698 })
2699
2717#define k_lifo_get(lifo, timeout) \
2718 ({ \
2719 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2720 void *lg_ret = k_queue_get(&(lifo)->_queue, timeout); \
2721 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, lg_ret); \
2722 lg_ret; \
2723 })
2724
2734#define K_LIFO_DEFINE(name) \
2735 STRUCT_SECTION_ITERABLE(k_lifo, name) = \
2736 Z_LIFO_INITIALIZER(name)
2737
2743#define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
2744
2745typedef uintptr_t stack_data_t;
2746
2747struct k_stack {
2748 _wait_q_t wait_q;
2749 struct k_spinlock lock;
2750 stack_data_t *base, *next, *top;
2751
2752 uint8_t flags;
2753
2755
2756#ifdef CONFIG_OBJ_CORE_STACK
2757 struct k_obj_core obj_core;
2758#endif
2759};
2760
2761#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
2762 { \
2763 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2764 .base = stack_buffer, \
2765 .next = stack_buffer, \
2766 .top = stack_buffer + stack_num_entries, \
2767 }
2768
2788void k_stack_init(struct k_stack *stack,
2789 stack_data_t *buffer, uint32_t num_entries);
2790
2791
2806__syscall int32_t k_stack_alloc_init(struct k_stack *stack,
2807 uint32_t num_entries);
2808
2820int k_stack_cleanup(struct k_stack *stack);
2821
2835__syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
2836
2857__syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
2858 k_timeout_t timeout);
2859
2870#define K_STACK_DEFINE(name, stack_num_entries) \
2871 stack_data_t __noinit \
2872 _k_stack_buf_##name[stack_num_entries]; \
2873 STRUCT_SECTION_ITERABLE(k_stack, name) = \
2874 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
2875 stack_num_entries)
2876
2883struct k_work;
2884struct k_work_q;
2885struct k_work_queue_config;
2886extern struct k_work_q k_sys_work_q;
2887
2902struct k_mutex {
2904 _wait_q_t wait_q;
2907
2910
2913
2915
2916#ifdef CONFIG_OBJ_CORE_MUTEX
2917 struct k_obj_core obj_core;
2918#endif
2919};
2920
2924#define Z_MUTEX_INITIALIZER(obj) \
2925 { \
2926 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2927 .owner = NULL, \
2928 .lock_count = 0, \
2929 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
2930 }
2931
2945#define K_MUTEX_DEFINE(name) \
2946 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
2947 Z_MUTEX_INITIALIZER(name)
2948
2961__syscall int k_mutex_init(struct k_mutex *mutex);
2962
2963
2985__syscall int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout);
2986
3007__syscall int k_mutex_unlock(struct k_mutex *mutex);
3008
3015 _wait_q_t wait_q;
3016
3017#ifdef CONFIG_OBJ_CORE_CONDVAR
3018 struct k_obj_core obj_core;
3019#endif
3020};
3021
3022#define Z_CONDVAR_INITIALIZER(obj) \
3023 { \
3024 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3025 }
3026
3039__syscall int k_condvar_init(struct k_condvar *condvar);
3040
3047__syscall int k_condvar_signal(struct k_condvar *condvar);
3048
3056__syscall int k_condvar_broadcast(struct k_condvar *condvar);
3057
3075__syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
3076 k_timeout_t timeout);
3077
3088#define K_CONDVAR_DEFINE(name) \
3089 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
3090 Z_CONDVAR_INITIALIZER(name)
3099struct k_sem {
3100 _wait_q_t wait_q;
3101 unsigned int count;
3102 unsigned int limit;
3103
3104 Z_DECL_POLL_EVENT
3105
3107
3108#ifdef CONFIG_OBJ_CORE_SEM
3109 struct k_obj_core obj_core;
3110#endif
3111};
3112
3113#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
3114 { \
3115 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3116 .count = initial_count, \
3117 .limit = count_limit, \
3118 Z_POLL_EVENT_OBJ_INIT(obj) \
3119 }
3120
3139#define K_SEM_MAX_LIMIT UINT_MAX
3140
3156__syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
3157 unsigned int limit);
3158
3177__syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
3178
3189__syscall void k_sem_give(struct k_sem *sem);
3190
3200__syscall void k_sem_reset(struct k_sem *sem);
3201
3211__syscall unsigned int k_sem_count_get(struct k_sem *sem);
3212
3216static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
3217{
3218 return sem->count;
3219}
3220
3232#define K_SEM_DEFINE(name, initial_count, count_limit) \
3233 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3234 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3235 BUILD_ASSERT(((count_limit) != 0) && \
3236 ((initial_count) <= (count_limit)) && \
3237 ((count_limit) <= K_SEM_MAX_LIMIT));
3238
3245struct k_work_delayable;
3246struct k_work_sync;
3247
3264typedef void (*k_work_handler_t)(struct k_work *work);
3265
3279void k_work_init(struct k_work *work,
3281
3296int k_work_busy_get(const struct k_work *work);
3297
3311static inline bool k_work_is_pending(const struct k_work *work);
3312
3334 struct k_work *work);
3335
3344int k_work_submit(struct k_work *work);
3345
3370bool k_work_flush(struct k_work *work,
3371 struct k_work_sync *sync);
3372
3392int k_work_cancel(struct k_work *work);
3393
3424bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3425
3436
3457 k_thread_stack_t *stack, size_t stack_size,
3458 int prio, const struct k_work_queue_config *cfg);
3459
3469static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
3470
3494int k_work_queue_drain(struct k_work_q *queue, bool plug);
3495
3510
3526
3538static inline struct k_work_delayable *
3540
3555
3570static inline bool k_work_delayable_is_pending(
3571 const struct k_work_delayable *dwork);
3572
3587 const struct k_work_delayable *dwork);
3588
3603 const struct k_work_delayable *dwork);
3604
3631 struct k_work_delayable *dwork,
3632 k_timeout_t delay);
3633
3648 k_timeout_t delay);
3649
3686 struct k_work_delayable *dwork,
3687 k_timeout_t delay);
3688
3702 k_timeout_t delay);
3703
3729 struct k_work_sync *sync);
3730
3752
3782 struct k_work_sync *sync);
3783
3784enum {
3789 /* The atomic API is used for all work and queue flags fields to
3790 * enforce sequential consistency in SMP environments.
3791 */
3792
3793 /* Bits that represent the work item states. At least nine of the
3794 * combinations are distinct valid stable states.
3795 */
3796 K_WORK_RUNNING_BIT = 0,
3797 K_WORK_CANCELING_BIT = 1,
3798 K_WORK_QUEUED_BIT = 2,
3799 K_WORK_DELAYED_BIT = 3,
3800 K_WORK_FLUSHING_BIT = 4,
3801
3802 K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
3803 | BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT) | BIT(K_WORK_FLUSHING_BIT),
3804
3805 /* Static work flags */
3806 K_WORK_DELAYABLE_BIT = 8,
3807 K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
3808
3809 /* Dynamic work queue flags */
3810 K_WORK_QUEUE_STARTED_BIT = 0,
3811 K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
3812 K_WORK_QUEUE_BUSY_BIT = 1,
3813 K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
3814 K_WORK_QUEUE_DRAIN_BIT = 2,
3815 K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
3816 K_WORK_QUEUE_PLUGGED_BIT = 3,
3817 K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
3818
3819 /* Static work queue flags */
3820 K_WORK_QUEUE_NO_YIELD_BIT = 8,
3821 K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
3822
3826 /* Transient work flags */
3827
3833 K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
3834
3839 K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
3840
3846 K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
3847
3853 K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
3854
3859 K_WORK_FLUSHING = BIT(K_WORK_FLUSHING_BIT),
3860};
3861
3863struct k_work {
3864 /* All fields are protected by the work module spinlock. No fields
3865 * are to be accessed except through kernel API.
3866 */
3867
3868 /* Node to link into k_work_q pending list. */
3870
3871 /* The function to be invoked by the work queue thread. */
3873
3874 /* The queue on which the work item was last submitted. */
3876
3877 /* State of the work item.
3878 *
3879 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
3880 *
3881 * It can be RUNNING and CANCELING simultaneously.
3882 */
3884};
3885
3886#define Z_WORK_INITIALIZER(work_handler) { \
3887 .handler = work_handler, \
3888}
3889
3892 /* The work item. */
3893 struct k_work work;
3894
3895 /* Timeout used to submit work after a delay. */
3896 struct _timeout timeout;
3897
3898 /* The queue to which the work should be submitted. */
3900};
3901
3902#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
3903 .work = { \
3904 .handler = work_handler, \
3905 .flags = K_WORK_DELAYABLE, \
3906 }, \
3907}
3908
3925#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
3926 struct k_work_delayable work \
3927 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
3928
3933/* Record used to wait for work to flush.
3934 *
3935 * The work item is inserted into the queue that will process (or is
3936 * processing) the item, and will be processed as soon as the item
3937 * completes. When the flusher is processed the semaphore will be
3938 * signaled, releasing the thread waiting for the flush.
3939 */
3940struct z_work_flusher {
3941 struct k_work work;
3942 struct k_sem sem;
3943};
3944
3945/* Record used to wait for work to complete a cancellation.
3946 *
3947 * The work item is inserted into a global queue of pending cancels.
3948 * When a cancelling work item goes idle any matching waiters are
3949 * removed from pending_cancels and are woken.
3950 */
3951struct z_work_canceller {
3952 sys_snode_t node;
3953 struct k_work *work;
3954 struct k_sem sem;
3955};
3956
3975 union {
3976 struct z_work_flusher flusher;
3977 struct z_work_canceller canceller;
3978 };
3979};
3980
3992 const char *name;
3993
4007};
4008
4010struct k_work_q {
4011 /* The thread that animates the work. */
4013
4014 /* All the following fields must be accessed only while the
4015 * work module spinlock is held.
4016 */
4017
4018 /* List of k_work items to be worked. */
4020
4021 /* Wait queue for idle work thread. */
4022 _wait_q_t notifyq;
4023
4024 /* Wait queue for threads waiting for the queue to drain. */
4025 _wait_q_t drainq;
4026
4027 /* Flags describing queue state. */
4029};
4030
4031/* Provide the implementation for inline functions declared above */
4032
4033static inline bool k_work_is_pending(const struct k_work *work)
4034{
4035 return k_work_busy_get(work) != 0;
4036}
4037
4038static inline struct k_work_delayable *
4040{
4041 return CONTAINER_OF(work, struct k_work_delayable, work);
4042}
4043
4045 const struct k_work_delayable *dwork)
4046{
4047 return k_work_delayable_busy_get(dwork) != 0;
4048}
4049
4051 const struct k_work_delayable *dwork)
4052{
4053 return z_timeout_expires(&dwork->timeout);
4054}
4055
4057 const struct k_work_delayable *dwork)
4058{
4059 return z_timeout_remaining(&dwork->timeout);
4060}
4061
4063{
4064 return &queue->thread;
4065}
4066
4069struct k_work_user;
4070
4085typedef void (*k_work_user_handler_t)(struct k_work_user *work);
4086
4091struct k_work_user_q {
4092 struct k_queue queue;
4093 struct k_thread thread;
4094};
4095
4096enum {
4097 K_WORK_USER_STATE_PENDING, /* Work item pending state */
4098};
4099
4100struct k_work_user {
4101 void *_reserved; /* Used by k_queue implementation. */
4102 k_work_user_handler_t handler;
4104};
4105
4110#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
4111#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
4112#else
4113#define Z_WORK_USER_INITIALIZER(work_handler) \
4114 { \
4115 ._reserved = NULL, \
4116 .handler = work_handler, \
4117 .flags = 0 \
4118 }
4119#endif
4120
4132#define K_WORK_USER_DEFINE(work, work_handler) \
4133 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4134
4144static inline void k_work_user_init(struct k_work_user *work,
4145 k_work_user_handler_t handler)
4146{
4147 *work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
4148}
4149
4166static inline bool k_work_user_is_pending(struct k_work_user *work)
4167{
4168 return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
4169}
4170
4189static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
4190 struct k_work_user *work)
4191{
4192 int ret = -EBUSY;
4193
4194 if (!atomic_test_and_set_bit(&work->flags,
4195 K_WORK_USER_STATE_PENDING)) {
4196 ret = k_queue_alloc_append(&work_q->queue, work);
4197
4198 /* Couldn't insert into the queue. Clear the pending bit
4199 * so the work item can be submitted again
4200 */
4201 if (ret != 0) {
4202 atomic_clear_bit(&work->flags,
4203 K_WORK_USER_STATE_PENDING);
4204 }
4205 }
4206
4207 return ret;
4208}
4209
4229void k_work_user_queue_start(struct k_work_user_q *work_q,
4230 k_thread_stack_t *stack,
4231 size_t stack_size, int prio,
4232 const char *name);
4233
4244static inline k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
4245{
4246 return &work_q->thread;
4247}
4248
4255struct k_work_poll {
4256 struct k_work work;
4257 struct k_work_q *workq;
4258 struct z_poller poller;
4259 struct k_poll_event *events;
4260 int num_events;
4261 k_work_handler_t real_handler;
4262 struct _timeout timeout;
4263 int poll_result;
4264};
4265
4286#define K_WORK_DEFINE(work, work_handler) \
4287 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4288
4298void k_work_poll_init(struct k_work_poll *work,
4299 k_work_handler_t handler);
4300
4336 struct k_work_poll *work,
4337 struct k_poll_event *events,
4338 int num_events,
4339 k_timeout_t timeout);
4340
4372int k_work_poll_submit(struct k_work_poll *work,
4373 struct k_poll_event *events,
4374 int num_events,
4375 k_timeout_t timeout);
4376
4391int k_work_poll_cancel(struct k_work_poll *work);
4392
4404struct k_msgq {
4406 _wait_q_t wait_q;
4410 size_t msg_size;
4423
4424 Z_DECL_POLL_EVENT
4425
4428
4430
4431#ifdef CONFIG_OBJ_CORE_MSGQ
4432 struct k_obj_core obj_core;
4433#endif
4434};
4440#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4441 { \
4442 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4443 .msg_size = q_msg_size, \
4444 .max_msgs = q_max_msgs, \
4445 .buffer_start = q_buffer, \
4446 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4447 .read_ptr = q_buffer, \
4448 .write_ptr = q_buffer, \
4449 .used_msgs = 0, \
4450 Z_POLL_EVENT_OBJ_INIT(obj) \
4451 }
4452
4458#define K_MSGQ_FLAG_ALLOC BIT(0)
4459
4465 size_t msg_size;
4470};
4471
4472
4491#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4492 static char __noinit __aligned(q_align) \
4493 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4494 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4495 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4496 (q_msg_size), (q_max_msgs))
4497
4512void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
4513 uint32_t max_msgs);
4514
4534__syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
4535 uint32_t max_msgs);
4536
4547int k_msgq_cleanup(struct k_msgq *msgq);
4548
4570__syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
4571
4592__syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
4593
4608__syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
4609
4626__syscall int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx);
4627
4637__syscall void k_msgq_purge(struct k_msgq *msgq);
4638
4649__syscall uint32_t k_msgq_num_free_get(struct k_msgq *msgq);
4650
4659__syscall void k_msgq_get_attrs(struct k_msgq *msgq,
4660 struct k_msgq_attrs *attrs);
4661
4662
4663static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
4664{
4665 return msgq->max_msgs - msgq->used_msgs;
4666}
4667
4677__syscall uint32_t k_msgq_num_used_get(struct k_msgq *msgq);
4678
4679static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
4680{
4681 return msgq->used_msgs;
4682}
4683
4698 size_t size;
4702 void *tx_data;
4708 k_tid_t _syncing_thread;
4709#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
4711 struct k_sem *_async_sem;
4712#endif
4713};
4718struct k_mbox {
4720 _wait_q_t tx_msg_queue;
4722 _wait_q_t rx_msg_queue;
4724
4726
4727#ifdef CONFIG_OBJ_CORE_MAILBOX
4728 struct k_obj_core obj_core;
4729#endif
4730};
4735#define Z_MBOX_INITIALIZER(obj) \
4736 { \
4737 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
4738 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
4739 }
4740
4754#define K_MBOX_DEFINE(name) \
4755 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
4756 Z_MBOX_INITIALIZER(name) \
4757
4765void k_mbox_init(struct k_mbox *mbox);
4766
4786int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4787 k_timeout_t timeout);
4788
4802void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4803 struct k_sem *sem);
4804
4822int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
4823 void *buffer, k_timeout_t timeout);
4824
4838void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
4839
4849struct k_pipe {
4850 unsigned char *buffer;
4851 size_t size;
4852 size_t bytes_used;
4853 size_t read_index;
4857 struct {
4858 _wait_q_t readers;
4859 _wait_q_t writers;
4862 Z_DECL_POLL_EVENT
4863
4867
4868#ifdef CONFIG_OBJ_CORE_PIPE
4869 struct k_obj_core obj_core;
4870#endif
4871};
4872
4876#define K_PIPE_FLAG_ALLOC BIT(0)
4878#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
4879 { \
4880 .buffer = pipe_buffer, \
4881 .size = pipe_buffer_size, \
4882 .bytes_used = 0, \
4883 .read_index = 0, \
4884 .write_index = 0, \
4885 .lock = {}, \
4886 .wait_q = { \
4887 .readers = Z_WAIT_Q_INIT(&obj.wait_q.readers), \
4888 .writers = Z_WAIT_Q_INIT(&obj.wait_q.writers) \
4889 }, \
4890 Z_POLL_EVENT_OBJ_INIT(obj) \
4891 .flags = 0, \
4892 }
4893
4911#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
4912 static unsigned char __noinit __aligned(pipe_align) \
4913 _k_pipe_buf_##name[pipe_buffer_size]; \
4914 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
4915 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
4916
4928void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size);
4929
4941int k_pipe_cleanup(struct k_pipe *pipe);
4942
4958__syscall int k_pipe_alloc_init(struct k_pipe *pipe, size_t size);
4959
4978__syscall int k_pipe_put(struct k_pipe *pipe, const void *data,
4979 size_t bytes_to_write, size_t *bytes_written,
4980 size_t min_xfer, k_timeout_t timeout);
4981
5001__syscall int k_pipe_get(struct k_pipe *pipe, void *data,
5002 size_t bytes_to_read, size_t *bytes_read,
5003 size_t min_xfer, k_timeout_t timeout);
5004
5013__syscall size_t k_pipe_read_avail(struct k_pipe *pipe);
5014
5023__syscall size_t k_pipe_write_avail(struct k_pipe *pipe);
5024
5035__syscall void k_pipe_flush(struct k_pipe *pipe);
5036
5048__syscall void k_pipe_buffer_flush(struct k_pipe *pipe);
5049
5056struct k_mem_slab_info {
5057 uint32_t num_blocks;
5058 size_t block_size;
5059 uint32_t num_used;
5060#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5061 uint32_t max_used;
5062#endif
5063};
5064
5065struct k_mem_slab {
5066 _wait_q_t wait_q;
5067 struct k_spinlock lock;
5068 char *buffer;
5069 char *free_list;
5070 struct k_mem_slab_info info;
5071
5073
5074#ifdef CONFIG_OBJ_CORE_MEM_SLAB
5075 struct k_obj_core obj_core;
5076#endif
5077};
5078
5079#define Z_MEM_SLAB_INITIALIZER(_slab, _slab_buffer, _slab_block_size, \
5080 _slab_num_blocks) \
5081 { \
5082 .wait_q = Z_WAIT_Q_INIT(&(_slab).wait_q), \
5083 .lock = {}, \
5084 .buffer = _slab_buffer, \
5085 .free_list = NULL, \
5086 .info = {_slab_num_blocks, _slab_block_size, 0} \
5087 }
5088
5089
5123#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
5124 char __noinit_named(k_mem_slab_buf_##name) \
5125 __aligned(WB_UP(slab_align)) \
5126 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5127 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5128 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5129 WB_UP(slab_block_size), slab_num_blocks)
5130
5145#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
5146 static char __noinit_named(k_mem_slab_buf_##name) \
5147 __aligned(WB_UP(slab_align)) \
5148 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5149 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5150 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5151 WB_UP(slab_block_size), slab_num_blocks)
5152
5174int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
5175 size_t block_size, uint32_t num_blocks);
5176
5199int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
5200 k_timeout_t timeout);
5201
5211void k_mem_slab_free(struct k_mem_slab *slab, void *mem);
5212
5223static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
5224{
5225 return slab->info.num_used;
5226}
5227
5238static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5239{
5240#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5241 return slab->info.max_used;
5242#else
5243 ARG_UNUSED(slab);
5244 return 0;
5245#endif
5246}
5247
5258static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5259{
5260 return slab->info.num_blocks - slab->info.num_used;
5261}
5262
5275int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats);
5276
5288int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab);
5289
5297/* kernel synchronized heap struct */
5298
5299struct k_heap {
5301 _wait_q_t wait_q;
5303};
5304
5318void k_heap_init(struct k_heap *h, void *mem,
5319 size_t bytes) __attribute_nonnull(1);
5320
5340void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5341 k_timeout_t timeout) __attribute_nonnull(1);
5342
5364void *k_heap_alloc(struct k_heap *h, size_t bytes,
5365 k_timeout_t timeout) __attribute_nonnull(1);
5366
5377void k_heap_free(struct k_heap *h, void *mem) __attribute_nonnull(1);
5378
5379/* Hand-calculated minimum heap sizes needed to return a successful
5380 * 1-byte allocation. See details in lib/os/heap.[ch]
5381 */
5382#define Z_HEAP_MIN_SIZE (sizeof(void *) > 4 ? 56 : 44)
5383
5400#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5401 char in_section \
5402 __aligned(8) /* CHUNK_UNIT */ \
5403 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5404 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5405 .heap = { \
5406 .init_mem = kheap_##name, \
5407 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5408 }, \
5409 }
5410
5425#define K_HEAP_DEFINE(name, bytes) \
5426 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5427 __noinit_named(kheap_buf_##name))
5428
5443#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5444 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5445
5474void *k_aligned_alloc(size_t align, size_t size);
5475
5487void *k_malloc(size_t size);
5488
5499void k_free(void *ptr);
5500
5512void *k_calloc(size_t nmemb, size_t size);
5513
5516/* polling API - PRIVATE */
5517
5518#ifdef CONFIG_POLL
5519#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
5520#else
5521#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
5522#endif
5523
5524/* private - types bit positions */
5525enum _poll_types_bits {
5526 /* can be used to ignore an event */
5527 _POLL_TYPE_IGNORE,
5528
5529 /* to be signaled by k_poll_signal_raise() */
5530 _POLL_TYPE_SIGNAL,
5531
5532 /* semaphore availability */
5533 _POLL_TYPE_SEM_AVAILABLE,
5534
5535 /* queue/FIFO/LIFO data availability */
5536 _POLL_TYPE_DATA_AVAILABLE,
5537
5538 /* msgq data availability */
5539 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
5540
5541 /* pipe data availability */
5542 _POLL_TYPE_PIPE_DATA_AVAILABLE,
5543
5544 _POLL_NUM_TYPES
5545};
5546
5547#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
5548
5549/* private - states bit positions */
5550enum _poll_states_bits {
5551 /* default state when creating event */
5552 _POLL_STATE_NOT_READY,
5553
5554 /* signaled by k_poll_signal_raise() */
5555 _POLL_STATE_SIGNALED,
5556
5557 /* semaphore is available */
5558 _POLL_STATE_SEM_AVAILABLE,
5559
5560 /* data is available to read on queue/FIFO/LIFO */
5561 _POLL_STATE_DATA_AVAILABLE,
5562
5563 /* queue/FIFO/LIFO wait was cancelled */
5564 _POLL_STATE_CANCELLED,
5565
5566 /* data is available to read on a message queue */
5567 _POLL_STATE_MSGQ_DATA_AVAILABLE,
5568
5569 /* data is available to read from a pipe */
5570 _POLL_STATE_PIPE_DATA_AVAILABLE,
5571
5572 _POLL_NUM_STATES
5573};
5574
5575#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
5576
5577#define _POLL_EVENT_NUM_UNUSED_BITS \
5578 (32 - (0 \
5579 + 8 /* tag */ \
5580 + _POLL_NUM_TYPES \
5581 + _POLL_NUM_STATES \
5582 + 1 /* modes */ \
5583 ))
5584
5585/* end of polling API - PRIVATE */
5586
5587
5594/* Public polling API */
5595
5596/* public - values for k_poll_event.type bitfield */
5597#define K_POLL_TYPE_IGNORE 0
5598#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
5599#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
5600#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
5601#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
5602#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
5603#define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
5604
5605/* public - polling modes */
5607 /* polling thread does not take ownership of objects when available */
5609
5612
5613/* public - values for k_poll_event.state bitfield */
5614#define K_POLL_STATE_NOT_READY 0
5615#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
5616#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
5617#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
5618#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
5619#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
5620#define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
5621#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
5622
5623/* public - poll signal object */
5627
5632 unsigned int signaled;
5633
5636};
5637
5638#define K_POLL_SIGNAL_INITIALIZER(obj) \
5639 { \
5640 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
5641 .signaled = 0, \
5642 .result = 0, \
5643 }
5650 sys_dnode_t _node;
5651
5653 struct z_poller *poller;
5654
5657
5659 uint32_t type:_POLL_NUM_TYPES;
5660
5662 uint32_t state:_POLL_NUM_STATES;
5663
5666
5668 uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
5669
5671 union {
5672 void *obj;
5674 struct k_sem *sem;
5675 struct k_fifo *fifo;
5677 struct k_msgq *msgq;
5678#ifdef CONFIG_PIPES
5679 struct k_pipe *pipe;
5680#endif
5681 };
5682};
5683
5684#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
5685 { \
5686 .poller = NULL, \
5687 .type = _event_type, \
5688 .state = K_POLL_STATE_NOT_READY, \
5689 .mode = _event_mode, \
5690 .unused = 0, \
5691 { \
5692 .obj = _event_obj, \
5693 }, \
5694 }
5695
5696#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
5697 event_tag) \
5698 { \
5699 .tag = event_tag, \
5700 .type = _event_type, \
5701 .state = K_POLL_STATE_NOT_READY, \
5702 .mode = _event_mode, \
5703 .unused = 0, \
5704 { \
5705 .obj = _event_obj, \
5706 }, \
5707 }
5708
5724void k_poll_event_init(struct k_poll_event *event, uint32_t type,
5725 int mode, void *obj);
5726
5770__syscall int k_poll(struct k_poll_event *events, int num_events,
5771 k_timeout_t timeout);
5772
5781__syscall void k_poll_signal_init(struct k_poll_signal *sig);
5782
5783/*
5784 * @brief Reset a poll signal object's state to unsignaled.
5785 *
5786 * @param sig A poll signal object
5787 */
5788__syscall void k_poll_signal_reset(struct k_poll_signal *sig);
5789
5800__syscall void k_poll_signal_check(struct k_poll_signal *sig,
5801 unsigned int *signaled, int *result);
5802
5827__syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
5828
5849static inline void k_cpu_idle(void)
5850{
5851 arch_cpu_idle();
5852}
5853
5868static inline void k_cpu_atomic_idle(unsigned int key)
5869{
5871}
5872
5881#ifdef ARCH_EXCEPT
5882/* This architecture has direct support for triggering a CPU exception */
5883#define z_except_reason(reason) ARCH_EXCEPT(reason)
5884#else
5885
5886#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
5887#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
5888#else
5889#define __EXCEPT_LOC()
5890#endif
5891
5892/* NOTE: This is the implementation for arches that do not implement
5893 * ARCH_EXCEPT() to generate a real CPU exception.
5894 *
5895 * We won't have a real exception frame to determine the PC value when
5896 * the oops occurred, so print file and line number before we jump into
5897 * the fatal error handler.
5898 */
5899#define z_except_reason(reason) do { \
5900 __EXCEPT_LOC(); \
5901 z_fatal_error(reason, NULL); \
5902 } while (false)
5903
5904#endif /* _ARCH__EXCEPT */
5920#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
5921
5930#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
5931
5936/*
5937 * private APIs that are utilized by one or more public APIs
5938 */
5939
5943void z_timer_expiration_handler(struct _timeout *timeout);
5948#ifdef CONFIG_PRINTK
5956__syscall void k_str_out(char *c, size_t n);
5957#endif
5958
5985__syscall int k_float_disable(struct k_thread *thread);
5986
6025__syscall int k_float_enable(struct k_thread *thread, unsigned int options);
6026
6040
6048
6059
6070
6079
6088
6089#ifdef __cplusplus
6090}
6091#endif
6092
6093#include <zephyr/tracing/tracing.h>
6094#include <syscalls/kernel.h>
6095
6096#endif /* !_ASMLANGUAGE */
6097
6098#endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
static uint32_t arch_k_cycle_get_32(void)
Definition: misc.h:26
static uint64_t arch_k_cycle_get_64(void)
Definition: misc.h:33
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition: arch_interface.h:45
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition: arch_interface.h:47
long atomic_t
Definition: atomic_types.h:15
System error numbers.
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically test a bit.
Definition: atomic.h:127
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition: atomic.h:191
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit.
Definition: atomic.h:170
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition: kernel.h:1807
#define K_NO_WAIT
Generate null timeout delay.
Definition: kernel.h:1253
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition: kernel.h:1772
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition: sys_clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition: kernel.h:1788
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition: kernel.h:1822
static int64_t k_uptime_get(void)
Get system uptime.
Definition: kernel.h:1748
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition: kernel.h:5849
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition: kernel.h:5868
struct _dnode sys_dnode_t
Doubly-linked list node structure.
Definition: dlist.h:54
struct _dnode sys_dlist_t
Doubly-linked list structure.
Definition: dlist.h:50
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
uint32_t k_event_set_masked(struct k_event *event, uint32_t events, uint32_t events_mask)
Set or clear the events in an event object.
static uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
Test the events currently tracked in the event object.
Definition: kernel.h:2356
uint32_t k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
uint32_t k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_clear(struct k_event *event, uint32_t events)
Clear the events in an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events.
struct _sflist sys_sflist_t
Flagged single-linked list structure.
Definition: sflist.h:60
static bool sys_sflist_is_empty(sys_sflist_t *list)
Test if the given list is empty.
Definition: sflist.h:335
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition: kernel.h:1108
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void *mem)
Free memory allocated from a memory slab.
int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats)
Get the memory stats for a memory slab.
int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
Reset the maximum memory usage for a slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition: kernel.h:5223
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition: kernel.h:5238
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition: kernel.h:5258
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to a message queue.
int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx)
Peek/read a message from a message queue at the specified index.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
size_t k_pipe_read_avail(struct k_pipe *pipe)
Query the number of bytes that may be read from pipe.
int k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
Initialize a pipe and allocate a buffer for it.
void k_pipe_flush(struct k_pipe *pipe)
Flush the pipe of write data.
void k_pipe_buffer_flush(struct k_pipe *pipe)
Flush the pipe's internal buffer.
int k_pipe_cleanup(struct k_pipe *pipe)
Release a pipe's allocated buffer.
int k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
Read data from a pipe.
void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)
Initialize a pipe.
size_t k_pipe_write_avail(struct k_pipe *pipe)
Query the number of bytes that may be written to pipe.
int k_pipe_put(struct k_pipe *pipe, const void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, k_timeout_t timeout)
Write data to a pipe.
void k_poll_signal_reset(struct k_poll_signal *sig)
k_poll_modes
Definition: kernel.h:5606
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition: kernel.h:5608
@ K_POLL_NUM_MODES
Definition: kernel.h:5610
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
struct _slist sys_slist_t
Single-linked list structure.
Definition: slist.h:49
struct _snode sys_snode_t
Single-linked list node structure.
Definition: slist.h:39
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition: tracing_macros.h:354
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition: util_macro.h:124
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition: util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition: util.h:268
#define EBUSY
Mount device busy.
Definition: errno.h:55
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
const char * k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
bool k_can_yield(void)
Check whether it is possible to yield in the current context.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition: kernel.h:394
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *thread)
Get time remaining before a thread wakes up, in system ticks.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition: kernel.h:489
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, k_thread_timeslice_fn_t expired, void *data)
Set thread time slice.
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition: kernel.h:586
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
void k_thread_start(k_tid_t thread)
Start an inactive thread.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
int k_thread_stack_free(k_thread_stack_t *stack)
Free a dynamically allocated thread stack.
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread)
Get time when a thread wakes up, in system ticks.
__attribute_const__ k_tid_t k_sched_current_thread_query(void)
Query thread ID of the current thread.
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition: kernel.h:105
k_thread_stack_t * k_thread_stack_alloc(size_t size, int flags)
Dynamically allocate a thread stack.
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition: kernel.h:1529
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition: kernel.h:1513
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition: kernel.h:1672
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
#define k_ticks_to_ms_floor32(t)
Convert ticks to milliseconds.
Definition: time_units.h:1254
#define k_ticks_to_ms_floor64(t)
Convert ticks to milliseconds.
Definition: time_units.h:1269
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition: kernel.h:4062
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition: kernel.h:4033
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition: kernel.h:4050
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition: kernel.h:4189
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition: kernel.h:4166
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition: kernel.h:3264
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition: kernel.h:4044
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition: kernel.h:4144
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
static k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
Access the user mode thread that animates a work queue.
Definition: kernel.h:4244
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition: kernel.h:4039
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition: kernel.h:4056
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition: kernel.h:4085
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition: kernel.h:3839
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition: kernel.h:3846
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition: kernel.h:3853
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition: kernel.h:3833
@ K_WORK_FLUSHING
Flag indicating a synced work item that is being flushed.
Definition: kernel.h:3859
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
execution_context_types
Definition: kernel.h:90
@ K_ISR
Definition: kernel.h:91
@ K_COOP_THREAD
Definition: kernel.h:92
@ K_PREEMPT_THREAD
Definition: kernel.h:93
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
Header files included by kernel.h.
void(* k_thread_timeslice_fn_t)(struct k_thread *thread, void *data)
Definition: kernel_structs.h:317
Memory Statistics.
flags
Definition: parser.h:96
state
Definition: parser_state.h:29
__UINT32_TYPE__ uint32_t
Definition: stdint.h:90
__INTPTR_TYPE__ intptr_t
Definition: stdint.h:104
__INT32_TYPE__ int32_t
Definition: stdint.h:74
__UINT64_TYPE__ uint64_t
Definition: stdint.h:91
__UINT8_TYPE__ uint8_t
Definition: stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition: stdint.h:105
__INT64_TYPE__ int64_t
Definition: stdint.h:75
Structure to store initialization entry information.
Definition: init.h:103
Definition: kernel.h:3014
_wait_q_t wait_q
Definition: kernel.h:3015
Event Structure.
Definition: kernel.h:2209
struct k_spinlock lock
Definition: kernel.h:2212
uint32_t events
Definition: kernel.h:2211
_wait_q_t wait_q
Definition: kernel.h:2210
Definition: kernel.h:2376
futex structure
Definition: kernel.h:2130
atomic_t val
Definition: kernel.h:2131
Definition: kernel.h:5299
struct k_spinlock lock
Definition: kernel.h:5302
struct sys_heap heap
Definition: kernel.h:5300
_wait_q_t wait_q
Definition: kernel.h:5301
Definition: kernel.h:2615
Mailbox Message Structure.
Definition: kernel.h:4696
k_tid_t tx_target_thread
target thread id
Definition: kernel.h:4706
void * tx_data
sender's message data buffer
Definition: kernel.h:4702
k_tid_t rx_source_thread
source thread id
Definition: kernel.h:4704
uint32_t info
application-defined information value
Definition: kernel.h:4700
size_t size
size of message (in bytes)
Definition: kernel.h:4698
Mailbox Structure.
Definition: kernel.h:4718
_wait_q_t tx_msg_queue
Transmit messages queue.
Definition: kernel.h:4720
struct k_spinlock lock
Definition: kernel.h:4723
_wait_q_t rx_msg_queue
Receive message queue.
Definition: kernel.h:4722
Memory Domain.
Definition: mem_domain.h:80
Memory Partition.
Definition: mem_domain.h:55
Message Queue Attributes.
Definition: kernel.h:4463
uint32_t used_msgs
Used messages.
Definition: kernel.h:4469
size_t msg_size
Message Size.
Definition: kernel.h:4465
uint32_t max_msgs
Maximal number of messages.
Definition: kernel.h:4467
Message Queue Structure.
Definition: kernel.h:4404
size_t msg_size
Message size.
Definition: kernel.h:4410
char * read_ptr
Read pointer.
Definition: kernel.h:4418
uint32_t used_msgs
Number of used messages.
Definition: kernel.h:4422
char * buffer_end
End of message buffer.
Definition: kernel.h:4416
struct k_spinlock lock
Lock.
Definition: kernel.h:4408
char * write_ptr
Write pointer.
Definition: kernel.h:4420
char * buffer_start
Start of message buffer.
Definition: kernel.h:4414
uint8_t flags
Message queue.
Definition: kernel.h:4427
_wait_q_t wait_q
Message queue wait queue.
Definition: kernel.h:4406
uint32_t max_msgs
Maximal number of messages.
Definition: kernel.h:4412
Mutex Structure.
Definition: kernel.h:2902
uint32_t lock_count
Current lock count.
Definition: kernel.h:2909
_wait_q_t wait_q
Mutex wait queue.
Definition: kernel.h:2904
int owner_orig_prio
Original thread priority.
Definition: kernel.h:2912
struct k_thread * owner
Mutex owner.
Definition: kernel.h:2906
Object core structure.
Definition: obj_core.h:121
Pipe Structure.
Definition: kernel.h:4849
uint8_t flags
Wait queue.
Definition: kernel.h:4864
_wait_q_t readers
Reader wait queue.
Definition: kernel.h:4858
size_t write_index
Where in buffer to write.
Definition: kernel.h:4854
size_t bytes_used
Definition: kernel.h:4852
struct k_spinlock lock
Synchronization lock.
Definition: kernel.h:4855
_wait_q_t writers
Writer wait queue.
Definition: kernel.h:4859
size_t size
Buffer size.
Definition: kernel.h:4851
unsigned char * buffer
Pipe buffer: may be NULL.
Definition: kernel.h:4850
size_t read_index
Where in buffer to read from.
Definition: kernel.h:4853
struct k_pipe::@243 wait_q
Poll Event.
Definition: kernel.h:5648
struct k_poll_signal * signal
Definition: kernel.h:5673
uint32_t tag
optional user-specified tag, opaque, untouched by the API
Definition: kernel.h:5656
struct k_fifo * fifo
Definition: kernel.h:5675
struct k_msgq * msgq
Definition: kernel.h:5677
struct k_queue * queue
Definition: kernel.h:5676
uint32_t unused
unused bits in 32-bit word
Definition: kernel.h:5668
uint32_t type
bitfield of event types (bitwise-ORed K_POLL_TYPE_xxx values)
Definition: kernel.h:5659
struct k_sem * sem
Definition: kernel.h:5674
uint32_t state
bitfield of event states (bitwise-ORed K_POLL_STATE_xxx values)
Definition: kernel.h:5662
uint32_t mode
mode of operation, from enum k_poll_modes
Definition: kernel.h:5665
struct z_poller * poller
PRIVATE - DO NOT TOUCH.
Definition: kernel.h:5653
void * obj
Definition: kernel.h:5672
Definition: kernel.h:5624
sys_dlist_t poll_events
PRIVATE - DO NOT TOUCH.
Definition: kernel.h:5626
int result
custom result value passed to k_poll_signal_raise() if needed
Definition: kernel.h:5635
unsigned int signaled
1 if the event has been signaled, 0 otherwise.
Definition: kernel.h:5632
Definition: kernel.h:1837
struct k_spinlock lock
Definition: kernel.h:1839
_wait_q_t wait_q
Definition: kernel.h:1840
sys_sflist_t data_q
Definition: kernel.h:1838
Kernel Spin Lock.
Definition: spinlock.h:45
Definition: thread.h:207
Thread Structure.
Definition: thread.h:260
struct _thread_base base
Definition: thread.h:262
struct k_heap * resource_pool
resource pool
Definition: thread.h:350
struct __thread_entry entry
thread entry and parameters description
Definition: thread.h:289
Kernel timeout type.
Definition: sys_clock.h:65
A structure used to submit work after a delay.
Definition: kernel.h:3891
struct _timeout timeout
Definition: kernel.h:3896
struct k_work_q * queue
Definition: kernel.h:3899
struct k_work work
Definition: kernel.h:3893
A structure used to hold work until it can be processed.
Definition: kernel.h:4010
sys_slist_t pending
Definition: kernel.h:4019
_wait_q_t drainq
Definition: kernel.h:4025
_wait_q_t notifyq
Definition: kernel.h:4022
uint32_t flags
Definition: kernel.h:4028
struct k_thread thread
Definition: kernel.h:4012
A structure holding optional configuration items for a work queue.
Definition: kernel.h:3987
const char * name
The name to be given to the work queue thread.
Definition: kernel.h:3992
bool no_yield
Control whether the work queue thread should yield between items.
Definition: kernel.h:4006
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition: kernel.h:3974
struct z_work_canceller canceller
Definition: kernel.h:3977
struct z_work_flusher flusher
Definition: kernel.h:3976
A structure used to submit work.
Definition: kernel.h:3863
k_work_handler_t handler
Definition: kernel.h:3872
uint32_t flags
Definition: kernel.h:3883
struct k_work_q * queue
Definition: kernel.h:3875
sys_snode_t node
Definition: kernel.h:3869
Definition: sys_heap.h:56
Definition: mem_stats.h:24
Macros to abstract toolchain specific capabilities.