Zephyr API Documentation 4.0.99
A Scalable Open Source RTOS
Loading...
Searching...
No Matches
kernel.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
15
16#if !defined(_ASMLANGUAGE)
18#include <errno.h>
19#include <limits.h>
20#include <stdbool.h>
21#include <zephyr/toolchain.h>
25
26#ifdef __cplusplus
27extern "C" {
28#endif
29
30/*
31 * Zephyr currently assumes the size of a couple standard types to simplify
32 * print string formats. Let's make sure this doesn't change without notice.
33 */
34BUILD_ASSERT(sizeof(int32_t) == sizeof(int));
35BUILD_ASSERT(sizeof(int64_t) == sizeof(long long));
36BUILD_ASSERT(sizeof(intptr_t) == sizeof(long));
37
47#define K_ANY NULL
48
49#if (CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES) == 0
50#error Zero available thread priorities defined!
51#endif
52
53#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
54#define K_PRIO_PREEMPT(x) (x)
55
56#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
57#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
58#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
59#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
60#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
61
62#ifdef CONFIG_POLL
63#define Z_POLL_EVENT_OBJ_INIT(obj) \
64 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
65#define Z_DECL_POLL_EVENT sys_dlist_t poll_events;
66#else
67#define Z_POLL_EVENT_OBJ_INIT(obj)
68#define Z_DECL_POLL_EVENT
69#endif
70
71struct k_thread;
72struct k_mutex;
73struct k_sem;
74struct k_msgq;
75struct k_mbox;
76struct k_pipe;
77struct k_queue;
78struct k_fifo;
79struct k_lifo;
80struct k_stack;
81struct k_mem_slab;
82struct k_timer;
83struct k_poll_event;
84struct k_poll_signal;
85struct k_mem_domain;
86struct k_mem_partition;
87struct k_futex;
88struct k_event;
89
95
96/* private, used by k_poll and k_work_poll */
97struct k_work_poll;
98typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
99
105typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
106 void *user_data);
107
123void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data);
124
143#ifdef CONFIG_SMP
144void k_thread_foreach_filter_by_cpu(unsigned int cpu,
145 k_thread_user_cb_t user_cb, void *user_data);
146#else
147static inline
148void k_thread_foreach_filter_by_cpu(unsigned int cpu,
149 k_thread_user_cb_t user_cb, void *user_data)
150{
151 __ASSERT(cpu == 0, "cpu filter out of bounds");
152 ARG_UNUSED(cpu);
153 k_thread_foreach(user_cb, user_data);
154}
155#endif
156
185 k_thread_user_cb_t user_cb, void *user_data);
186
218#ifdef CONFIG_SMP
220 k_thread_user_cb_t user_cb, void *user_data);
221#else
222static inline
223void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu,
224 k_thread_user_cb_t user_cb, void *user_data)
225{
226 __ASSERT(cpu == 0, "cpu filter out of bounds");
227 ARG_UNUSED(cpu);
228 k_thread_foreach_unlocked(user_cb, user_data);
229}
230#endif
231
240#endif /* !_ASMLANGUAGE */
241
242
243/*
244 * Thread user options. May be needed by assembly code. Common part uses low
245 * bits, arch-specific use high bits.
246 */
247
251#define K_ESSENTIAL (BIT(0))
252
253#define K_FP_IDX 1
263#define K_FP_REGS (BIT(K_FP_IDX))
264
271#define K_USER (BIT(2))
272
281#define K_INHERIT_PERMS (BIT(3))
282
292#define K_CALLBACK_STATE (BIT(4))
293
303#define K_DSP_IDX 6
304#define K_DSP_REGS (BIT(K_DSP_IDX))
305
314#define K_AGU_IDX 7
315#define K_AGU_REGS (BIT(K_AGU_IDX))
316
326#define K_SSE_REGS (BIT(7))
327
328/* end - thread options */
329
330#if !defined(_ASMLANGUAGE)
345__syscall k_thread_stack_t *k_thread_stack_alloc(size_t size, int flags);
346
360
409__syscall k_tid_t k_thread_create(struct k_thread *new_thread,
410 k_thread_stack_t *stack,
411 size_t stack_size,
413 void *p1, void *p2, void *p3,
414 int prio, uint32_t options, k_timeout_t delay);
415
438 void *p1, void *p2,
439 void *p3);
440
454#define k_thread_access_grant(thread, ...) \
455 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), (thread), __VA_ARGS__)
456
471static inline void k_thread_heap_assign(struct k_thread *thread,
472 struct k_heap *heap)
473{
474 thread->resource_pool = heap;
475}
476
477#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
498__syscall int k_thread_stack_space_get(const struct k_thread *thread,
499 size_t *unused_ptr);
500#endif
501
502#if (K_HEAP_MEM_POOL_SIZE > 0)
515void k_thread_system_pool_assign(struct k_thread *thread);
516#endif /* (K_HEAP_MEM_POOL_SIZE > 0) */
517
537__syscall int k_thread_join(struct k_thread *thread, k_timeout_t timeout);
538
551__syscall int32_t k_sleep(k_timeout_t timeout);
552
564static inline int32_t k_msleep(int32_t ms)
565{
566 return k_sleep(Z_TIMEOUT_MS(ms));
567}
568
586
603__syscall void k_busy_wait(uint32_t usec_to_wait);
604
616bool k_can_yield(void);
617
625__syscall void k_yield(void);
626
636__syscall void k_wakeup(k_tid_t thread);
637
651__attribute_const__
653
660__attribute_const__
661static inline k_tid_t k_current_get(void)
662{
663#ifdef CONFIG_CURRENT_THREAD_USE_TLS
664
665 /* Thread-local cache of current thread ID, set in z_thread_entry() */
666 extern Z_THREAD_LOCAL k_tid_t z_tls_current;
667
668 return z_tls_current;
669#else
671#endif
672}
673
693__syscall void k_thread_abort(k_tid_t thread);
694
695k_ticks_t z_timeout_expires(const struct _timeout *timeout);
696k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
697
698#ifdef CONFIG_SYS_CLOCK_EXISTS
699
707__syscall k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread);
708
709static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
710 const struct k_thread *thread)
711{
712 return z_timeout_expires(&thread->base.timeout);
713}
714
723
724static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
725 const struct k_thread *thread)
726{
727 return z_timeout_remaining(&thread->base.timeout);
728}
729
730#endif /* CONFIG_SYS_CLOCK_EXISTS */
731
736struct _static_thread_data {
737 struct k_thread *init_thread;
738 k_thread_stack_t *init_stack;
739 unsigned int init_stack_size;
741 void *init_p1;
742 void *init_p2;
743 void *init_p3;
744 int init_prio;
745 uint32_t init_options;
746 const char *init_name;
747#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
748 int32_t init_delay_ms;
749#else
750 k_timeout_t init_delay;
751#endif
752};
753
754#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
755#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay_ms = (ms)
756#define Z_THREAD_INIT_DELAY(thread) SYS_TIMEOUT_MS((thread)->init_delay_ms)
757#else
758#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay = SYS_TIMEOUT_MS(ms)
759#define Z_THREAD_INIT_DELAY(thread) (thread)->init_delay
760#endif
761
762#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
763 entry, p1, p2, p3, \
764 prio, options, delay, tname) \
765 { \
766 .init_thread = (thread), \
767 .init_stack = (stack), \
768 .init_stack_size = (stack_size), \
769 .init_entry = (k_thread_entry_t)entry, \
770 .init_p1 = (void *)p1, \
771 .init_p2 = (void *)p2, \
772 .init_p3 = (void *)p3, \
773 .init_prio = (prio), \
774 .init_options = (options), \
775 .init_name = STRINGIFY(tname), \
776 Z_THREAD_INIT_DELAY_INITIALIZER(delay) \
777 }
778
779/*
780 * Refer to K_THREAD_DEFINE() and K_KERNEL_THREAD_DEFINE() for
781 * information on arguments.
782 */
783#define Z_THREAD_COMMON_DEFINE(name, stack_size, \
784 entry, p1, p2, p3, \
785 prio, options, delay) \
786 struct k_thread _k_thread_obj_##name; \
787 STRUCT_SECTION_ITERABLE(_static_thread_data, \
788 _k_thread_data_##name) = \
789 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
790 _k_thread_stack_##name, stack_size,\
791 entry, p1, p2, p3, prio, options, \
792 delay, name); \
793 const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
794
830#define K_THREAD_DEFINE(name, stack_size, \
831 entry, p1, p2, p3, \
832 prio, options, delay) \
833 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
834 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
835 prio, options, delay)
836
867#define K_KERNEL_THREAD_DEFINE(name, stack_size, \
868 entry, p1, p2, p3, \
869 prio, options, delay) \
870 K_KERNEL_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
871 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
872 prio, options, delay)
873
883__syscall int k_thread_priority_get(k_tid_t thread);
884
910__syscall void k_thread_priority_set(k_tid_t thread, int prio);
911
912
913#ifdef CONFIG_SCHED_DEADLINE
946__syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
947#endif
948
949#ifdef CONFIG_SCHED_CPU_MASK
963
977
991
1005
1016int k_thread_cpu_pin(k_tid_t thread, int cpu);
1017#endif
1018
1040__syscall void k_thread_suspend(k_tid_t thread);
1041
1053__syscall void k_thread_resume(k_tid_t thread);
1054
1068static inline void k_thread_start(k_tid_t thread)
1069{
1070 k_wakeup(thread);
1071}
1072
1099void k_sched_time_slice_set(int32_t slice, int prio);
1100
1139void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
1140 k_thread_timeslice_fn_t expired, void *data);
1141
1160bool k_is_in_isr(void);
1161
1178__syscall int k_is_preempt_thread(void);
1179
1191static inline bool k_is_pre_kernel(void)
1192{
1193 extern bool z_sys_post_kernel; /* in init.c */
1194
1195 return !z_sys_post_kernel;
1196}
1197
1232void k_sched_lock(void);
1233
1242
1255__syscall void k_thread_custom_data_set(void *value);
1256
1264__syscall void *k_thread_custom_data_get(void);
1265
1279__syscall int k_thread_name_set(k_tid_t thread, const char *str);
1280
1289const char *k_thread_name_get(k_tid_t thread);
1290
1302__syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1303 size_t size);
1304
1317const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size);
1318
1336#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1337
1350#define K_NSEC(t) Z_TIMEOUT_NS(t)
1351
1364#define K_USEC(t) Z_TIMEOUT_US(t)
1365
1376#define K_CYC(t) Z_TIMEOUT_CYC(t)
1377
1388#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1389
1400#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1401
1412#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1413
1424#define K_MINUTES(m) K_SECONDS((m) * 60)
1425
1436#define K_HOURS(h) K_MINUTES((h) * 60)
1437
1446#define K_FOREVER Z_FOREVER
1447
1448#ifdef CONFIG_TIMEOUT_64BIT
1449
1461#define K_TIMEOUT_ABS_TICKS(t) \
1462 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)MAX(t, 0)))
1463
1475#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1476
1489#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1490
1503#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1504
1517#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1518
1519#endif
1520
1529struct k_timer {
1530 /*
1531 * _timeout structure must be first here if we want to use
1532 * dynamic timer allocation. timeout.node is used in the double-linked
1533 * list of free timers
1534 */
1535 struct _timeout timeout;
1536
1537 /* wait queue for the (single) thread waiting on this timer */
1538 _wait_q_t wait_q;
1539
1540 /* runs in ISR context */
1541 void (*expiry_fn)(struct k_timer *timer);
1542
1543 /* runs in the context of the thread that calls k_timer_stop() */
1544 void (*stop_fn)(struct k_timer *timer);
1545
1546 /* timer period */
1547 k_timeout_t period;
1548
1549 /* timer status */
1550 uint32_t status;
1551
1552 /* user-specific data, also used to support legacy features */
1553 void *user_data;
1554
1556
1557#ifdef CONFIG_OBJ_CORE_TIMER
1558 struct k_obj_core obj_core;
1559#endif
1560};
1561
1562#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1563 { \
1564 .timeout = { \
1565 .node = {},\
1566 .fn = z_timer_expiration_handler, \
1567 .dticks = 0, \
1568 }, \
1569 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1570 .expiry_fn = expiry, \
1571 .stop_fn = stop, \
1572 .status = 0, \
1573 .user_data = 0, \
1574 }
1575
1596typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1597
1612typedef void (*k_timer_stop_t)(struct k_timer *timer);
1613
1625#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1626 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1627 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1628
1638void k_timer_init(struct k_timer *timer,
1639 k_timer_expiry_t expiry_fn,
1640 k_timer_stop_t stop_fn);
1641
1656__syscall void k_timer_start(struct k_timer *timer,
1657 k_timeout_t duration, k_timeout_t period);
1658
1675__syscall void k_timer_stop(struct k_timer *timer);
1676
1689__syscall uint32_t k_timer_status_get(struct k_timer *timer);
1690
1708__syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1709
1710#ifdef CONFIG_SYS_CLOCK_EXISTS
1711
1722__syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1723
1724static inline k_ticks_t z_impl_k_timer_expires_ticks(
1725 const struct k_timer *timer)
1726{
1727 return z_timeout_expires(&timer->timeout);
1728}
1729
1740__syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1741
1742static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1743 const struct k_timer *timer)
1744{
1745 return z_timeout_remaining(&timer->timeout);
1746}
1747
1758static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
1759{
1761}
1762
1763#endif /* CONFIG_SYS_CLOCK_EXISTS */
1764
1777__syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
1778
1782static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
1783 void *user_data)
1784{
1785 timer->user_data = user_data;
1786}
1787
1795__syscall void *k_timer_user_data_get(const struct k_timer *timer);
1796
1797static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
1798{
1799 return timer->user_data;
1800}
1801
1819__syscall int64_t k_uptime_ticks(void);
1820
1834static inline int64_t k_uptime_get(void)
1835{
1837}
1838
1858static inline uint32_t k_uptime_get_32(void)
1859{
1860 return (uint32_t)k_uptime_get();
1861}
1862
1871static inline uint32_t k_uptime_seconds(void)
1872{
1874}
1875
1887static inline int64_t k_uptime_delta(int64_t *reftime)
1888{
1889 int64_t uptime, delta;
1890
1891 uptime = k_uptime_get();
1892 delta = uptime - *reftime;
1893 *reftime = uptime;
1894
1895 return delta;
1896}
1897
1906static inline uint32_t k_cycle_get_32(void)
1907{
1908 return arch_k_cycle_get_32();
1909}
1910
1921static inline uint64_t k_cycle_get_64(void)
1922{
1923 if (!IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
1924 __ASSERT(0, "64-bit cycle counter not enabled on this platform. "
1925 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
1926 return 0;
1927 }
1928
1929 return arch_k_cycle_get_64();
1930}
1931
1936struct k_queue {
1939 _wait_q_t wait_q;
1940
1941 Z_DECL_POLL_EVENT
1942
1944};
1945
1950#define Z_QUEUE_INITIALIZER(obj) \
1951 { \
1952 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
1953 .lock = { }, \
1954 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1955 Z_POLL_EVENT_OBJ_INIT(obj) \
1956 }
1957
1975__syscall void k_queue_init(struct k_queue *queue);
1976
1990__syscall void k_queue_cancel_wait(struct k_queue *queue);
1991
2004void k_queue_append(struct k_queue *queue, void *data);
2005
2022__syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
2023
2036void k_queue_prepend(struct k_queue *queue, void *data);
2037
2054__syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
2055
2069void k_queue_insert(struct k_queue *queue, void *prev, void *data);
2070
2089int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
2090
2106int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
2107
2125__syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
2126
2143bool k_queue_remove(struct k_queue *queue, void *data);
2144
2159bool k_queue_unique_append(struct k_queue *queue, void *data);
2160
2174__syscall int k_queue_is_empty(struct k_queue *queue);
2175
2176static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
2177{
2178 return sys_sflist_is_empty(&queue->data_q) ? 1 : 0;
2179}
2180
2190__syscall void *k_queue_peek_head(struct k_queue *queue);
2191
2201__syscall void *k_queue_peek_tail(struct k_queue *queue);
2202
2212#define K_QUEUE_DEFINE(name) \
2213 STRUCT_SECTION_ITERABLE(k_queue, name) = \
2214 Z_QUEUE_INITIALIZER(name)
2215
2218#ifdef CONFIG_USERSPACE
2228struct k_futex {
2230};
2231
2239struct z_futex_data {
2240 _wait_q_t wait_q;
2241 struct k_spinlock lock;
2242};
2243
2244#define Z_FUTEX_DATA_INITIALIZER(obj) \
2245 { \
2246 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2247 }
2248
2274__syscall int k_futex_wait(struct k_futex *futex, int expected,
2275 k_timeout_t timeout);
2276
2291__syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
2292
2294#endif
2295
2307struct k_event {
2308 _wait_q_t wait_q;
2311
2313
2314#ifdef CONFIG_OBJ_CORE_EVENT
2315 struct k_obj_core obj_core;
2316#endif
2317
2318};
2319
2320#define Z_EVENT_INITIALIZER(obj) \
2321 { \
2322 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2323 .events = 0 \
2324 }
2325
2333__syscall void k_event_init(struct k_event *event);
2334
2350__syscall uint32_t k_event_post(struct k_event *event, uint32_t events);
2351
2367__syscall uint32_t k_event_set(struct k_event *event, uint32_t events);
2368
2383__syscall uint32_t k_event_set_masked(struct k_event *event, uint32_t events,
2384 uint32_t events_mask);
2385
2396__syscall uint32_t k_event_clear(struct k_event *event, uint32_t events);
2397
2419__syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2420 bool reset, k_timeout_t timeout);
2421
2443__syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2444 bool reset, k_timeout_t timeout);
2445
2454static inline uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
2455{
2456 return k_event_wait(event, events_mask, false, K_NO_WAIT);
2457}
2458
2468#define K_EVENT_DEFINE(name) \
2469 STRUCT_SECTION_ITERABLE(k_event, name) = \
2470 Z_EVENT_INITIALIZER(name);
2471
2474struct k_fifo {
2475 struct k_queue _queue;
2476#ifdef CONFIG_OBJ_CORE_FIFO
2477 struct k_obj_core obj_core;
2478#endif
2479};
2480
2484#define Z_FIFO_INITIALIZER(obj) \
2485 { \
2486 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2487 }
2488
2506#define k_fifo_init(fifo) \
2507 ({ \
2508 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2509 k_queue_init(&(fifo)->_queue); \
2510 K_OBJ_CORE_INIT(K_OBJ_CORE(fifo), _obj_type_fifo); \
2511 K_OBJ_CORE_LINK(K_OBJ_CORE(fifo)); \
2512 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2513 })
2514
2526#define k_fifo_cancel_wait(fifo) \
2527 ({ \
2528 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2529 k_queue_cancel_wait(&(fifo)->_queue); \
2530 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2531 })
2532
2545#define k_fifo_put(fifo, data) \
2546 ({ \
2547 void *_data = data; \
2548 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, _data); \
2549 k_queue_append(&(fifo)->_queue, _data); \
2550 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, _data); \
2551 })
2552
2569#define k_fifo_alloc_put(fifo, data) \
2570 ({ \
2571 void *_data = data; \
2572 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, _data); \
2573 int fap_ret = k_queue_alloc_append(&(fifo)->_queue, _data); \
2574 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, _data, fap_ret); \
2575 fap_ret; \
2576 })
2577
2592#define k_fifo_put_list(fifo, head, tail) \
2593 ({ \
2594 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2595 k_queue_append_list(&(fifo)->_queue, head, tail); \
2596 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2597 })
2598
2612#define k_fifo_put_slist(fifo, list) \
2613 ({ \
2614 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2615 k_queue_merge_slist(&(fifo)->_queue, list); \
2616 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2617 })
2618
2636#define k_fifo_get(fifo, timeout) \
2637 ({ \
2638 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2639 void *fg_ret = k_queue_get(&(fifo)->_queue, timeout); \
2640 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, fg_ret); \
2641 fg_ret; \
2642 })
2643
2657#define k_fifo_is_empty(fifo) \
2658 k_queue_is_empty(&(fifo)->_queue)
2659
2673#define k_fifo_peek_head(fifo) \
2674 ({ \
2675 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2676 void *fph_ret = k_queue_peek_head(&(fifo)->_queue); \
2677 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, fph_ret); \
2678 fph_ret; \
2679 })
2680
2692#define k_fifo_peek_tail(fifo) \
2693 ({ \
2694 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2695 void *fpt_ret = k_queue_peek_tail(&(fifo)->_queue); \
2696 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, fpt_ret); \
2697 fpt_ret; \
2698 })
2699
2709#define K_FIFO_DEFINE(name) \
2710 STRUCT_SECTION_ITERABLE(k_fifo, name) = \
2711 Z_FIFO_INITIALIZER(name)
2712
2715struct k_lifo {
2716 struct k_queue _queue;
2717#ifdef CONFIG_OBJ_CORE_LIFO
2718 struct k_obj_core obj_core;
2719#endif
2720};
2721
2726#define Z_LIFO_INITIALIZER(obj) \
2727 { \
2728 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2729 }
2730
2748#define k_lifo_init(lifo) \
2749 ({ \
2750 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2751 k_queue_init(&(lifo)->_queue); \
2752 K_OBJ_CORE_INIT(K_OBJ_CORE(lifo), _obj_type_lifo); \
2753 K_OBJ_CORE_LINK(K_OBJ_CORE(lifo)); \
2754 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2755 })
2756
2769#define k_lifo_put(lifo, data) \
2770 ({ \
2771 void *_data = data; \
2772 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, _data); \
2773 k_queue_prepend(&(lifo)->_queue, _data); \
2774 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, _data); \
2775 })
2776
2793#define k_lifo_alloc_put(lifo, data) \
2794 ({ \
2795 void *_data = data; \
2796 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, _data); \
2797 int lap_ret = k_queue_alloc_prepend(&(lifo)->_queue, _data); \
2798 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, _data, lap_ret); \
2799 lap_ret; \
2800 })
2801
2819#define k_lifo_get(lifo, timeout) \
2820 ({ \
2821 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2822 void *lg_ret = k_queue_get(&(lifo)->_queue, timeout); \
2823 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, lg_ret); \
2824 lg_ret; \
2825 })
2826
2836#define K_LIFO_DEFINE(name) \
2837 STRUCT_SECTION_ITERABLE(k_lifo, name) = \
2838 Z_LIFO_INITIALIZER(name)
2839
2845#define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
2846
2847typedef uintptr_t stack_data_t;
2848
2849struct k_stack {
2850 _wait_q_t wait_q;
2851 struct k_spinlock lock;
2852 stack_data_t *base, *next, *top;
2853
2854 uint8_t flags;
2855
2857
2858#ifdef CONFIG_OBJ_CORE_STACK
2859 struct k_obj_core obj_core;
2860#endif
2861};
2862
2863#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
2864 { \
2865 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
2866 .base = (stack_buffer), \
2867 .next = (stack_buffer), \
2868 .top = (stack_buffer) + (stack_num_entries), \
2869 }
2870
2890void k_stack_init(struct k_stack *stack,
2891 stack_data_t *buffer, uint32_t num_entries);
2892
2893
2908__syscall int32_t k_stack_alloc_init(struct k_stack *stack,
2909 uint32_t num_entries);
2910
2922int k_stack_cleanup(struct k_stack *stack);
2923
2937__syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
2938
2959__syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
2960 k_timeout_t timeout);
2961
2972#define K_STACK_DEFINE(name, stack_num_entries) \
2973 stack_data_t __noinit \
2974 _k_stack_buf_##name[stack_num_entries]; \
2975 STRUCT_SECTION_ITERABLE(k_stack, name) = \
2976 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
2977 stack_num_entries)
2978
2985struct k_work;
2986struct k_work_q;
2987struct k_work_queue_config;
2988extern struct k_work_q k_sys_work_q;
2989
3004struct k_mutex {
3006 _wait_q_t wait_q;
3009
3012
3015
3017
3018#ifdef CONFIG_OBJ_CORE_MUTEX
3019 struct k_obj_core obj_core;
3020#endif
3021};
3022
3026#define Z_MUTEX_INITIALIZER(obj) \
3027 { \
3028 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3029 .owner = NULL, \
3030 .lock_count = 0, \
3031 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
3032 }
3033
3047#define K_MUTEX_DEFINE(name) \
3048 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
3049 Z_MUTEX_INITIALIZER(name)
3050
3063__syscall int k_mutex_init(struct k_mutex *mutex);
3064
3065
3087__syscall int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout);
3088
3109__syscall int k_mutex_unlock(struct k_mutex *mutex);
3110
3117 _wait_q_t wait_q;
3118
3119#ifdef CONFIG_OBJ_CORE_CONDVAR
3120 struct k_obj_core obj_core;
3121#endif
3122};
3123
3124#define Z_CONDVAR_INITIALIZER(obj) \
3125 { \
3126 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3127 }
3128
3141__syscall int k_condvar_init(struct k_condvar *condvar);
3142
3149__syscall int k_condvar_signal(struct k_condvar *condvar);
3150
3158__syscall int k_condvar_broadcast(struct k_condvar *condvar);
3159
3177__syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
3178 k_timeout_t timeout);
3179
3190#define K_CONDVAR_DEFINE(name) \
3191 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
3192 Z_CONDVAR_INITIALIZER(name)
3201struct k_sem {
3202 _wait_q_t wait_q;
3203 unsigned int count;
3204 unsigned int limit;
3205
3206 Z_DECL_POLL_EVENT
3207
3209
3210#ifdef CONFIG_OBJ_CORE_SEM
3211 struct k_obj_core obj_core;
3212#endif
3213};
3214
3215#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
3216 { \
3217 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3218 .count = (initial_count), \
3219 .limit = (count_limit), \
3220 Z_POLL_EVENT_OBJ_INIT(obj) \
3221 }
3222
3241#define K_SEM_MAX_LIMIT UINT_MAX
3242
3258__syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
3259 unsigned int limit);
3260
3279__syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
3280
3291__syscall void k_sem_give(struct k_sem *sem);
3292
3302__syscall void k_sem_reset(struct k_sem *sem);
3303
3313__syscall unsigned int k_sem_count_get(struct k_sem *sem);
3314
3318static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
3319{
3320 return sem->count;
3321}
3322
3334#define K_SEM_DEFINE(name, initial_count, count_limit) \
3335 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3336 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3337 BUILD_ASSERT(((count_limit) != 0) && \
3338 (((initial_count) < (count_limit)) || ((initial_count) == (count_limit))) && \
3339 ((count_limit) <= K_SEM_MAX_LIMIT));
3340
3347struct k_work_delayable;
3348struct k_work_sync;
3349
3366typedef void (*k_work_handler_t)(struct k_work *work);
3367
3381void k_work_init(struct k_work *work,
3383
3398int k_work_busy_get(const struct k_work *work);
3399
3413static inline bool k_work_is_pending(const struct k_work *work);
3414
3436 struct k_work *work);
3437
3446int k_work_submit(struct k_work *work);
3447
3472bool k_work_flush(struct k_work *work,
3473 struct k_work_sync *sync);
3474
3494int k_work_cancel(struct k_work *work);
3495
3526bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3527
3538
3559 k_thread_stack_t *stack, size_t stack_size,
3560 int prio, const struct k_work_queue_config *cfg);
3561
3571static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
3572
3596int k_work_queue_drain(struct k_work_q *queue, bool plug);
3597
3612
3628
3644
3656static inline struct k_work_delayable *
3658
3673
3688static inline bool k_work_delayable_is_pending(
3689 const struct k_work_delayable *dwork);
3690
3705 const struct k_work_delayable *dwork);
3706
3721 const struct k_work_delayable *dwork);
3722
3751 struct k_work_delayable *dwork,
3752 k_timeout_t delay);
3753
3768 k_timeout_t delay);
3769
3806 struct k_work_delayable *dwork,
3807 k_timeout_t delay);
3808
3822 k_timeout_t delay);
3823
3849 struct k_work_sync *sync);
3850
3872
3902 struct k_work_sync *sync);
3903
3904enum {
3909 /* The atomic API is used for all work and queue flags fields to
3910 * enforce sequential consistency in SMP environments.
3911 */
3912
3913 /* Bits that represent the work item states. At least nine of the
3914 * combinations are distinct valid stable states.
3915 */
3916 K_WORK_RUNNING_BIT = 0,
3917 K_WORK_CANCELING_BIT = 1,
3918 K_WORK_QUEUED_BIT = 2,
3919 K_WORK_DELAYED_BIT = 3,
3920 K_WORK_FLUSHING_BIT = 4,
3921
3922 K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
3923 | BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT) | BIT(K_WORK_FLUSHING_BIT),
3924
3925 /* Static work flags */
3926 K_WORK_DELAYABLE_BIT = 8,
3927 K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
3928
3929 /* Dynamic work queue flags */
3930 K_WORK_QUEUE_STARTED_BIT = 0,
3931 K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
3932 K_WORK_QUEUE_BUSY_BIT = 1,
3933 K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
3934 K_WORK_QUEUE_DRAIN_BIT = 2,
3935 K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
3936 K_WORK_QUEUE_PLUGGED_BIT = 3,
3937 K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
3938 K_WORK_QUEUE_STOP_BIT = 4,
3939 K_WORK_QUEUE_STOP = BIT(K_WORK_QUEUE_STOP_BIT),
3940
3941 /* Static work queue flags */
3942 K_WORK_QUEUE_NO_YIELD_BIT = 8,
3943 K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
3944
3948 /* Transient work flags */
3949
3955 K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
3956
3961 K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
3962
3968 K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
3969
3975 K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
3976
3981 K_WORK_FLUSHING = BIT(K_WORK_FLUSHING_BIT),
3982};
3983
3985struct k_work {
3986 /* All fields are protected by the work module spinlock. No fields
3987 * are to be accessed except through kernel API.
3988 */
3989
3990 /* Node to link into k_work_q pending list. */
3992
3993 /* The function to be invoked by the work queue thread. */
3995
3996 /* The queue on which the work item was last submitted. */
3998
3999 /* State of the work item.
4000 *
4001 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
4002 *
4003 * It can be RUNNING and CANCELING simultaneously.
4004 */
4006};
4007
4008#define Z_WORK_INITIALIZER(work_handler) { \
4009 .handler = (work_handler), \
4010}
4011
4014 /* The work item. */
4015 struct k_work work;
4016
4017 /* Timeout used to submit work after a delay. */
4018 struct _timeout timeout;
4019
4020 /* The queue to which the work should be submitted. */
4022};
4023
4024#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
4025 .work = { \
4026 .handler = (work_handler), \
4027 .flags = K_WORK_DELAYABLE, \
4028 }, \
4029}
4030
4047#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
4048 struct k_work_delayable work \
4049 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
4050
4055/* Record used to wait for work to flush.
4056 *
4057 * The work item is inserted into the queue that will process (or is
4058 * processing) the item, and will be processed as soon as the item
4059 * completes. When the flusher is processed the semaphore will be
4060 * signaled, releasing the thread waiting for the flush.
4061 */
4062struct z_work_flusher {
4063 struct k_work work;
4064 struct k_sem sem;
4065};
4066
4067/* Record used to wait for work to complete a cancellation.
4068 *
4069 * The work item is inserted into a global queue of pending cancels.
4070 * When a cancelling work item goes idle any matching waiters are
4071 * removed from pending_cancels and are woken.
4072 */
4073struct z_work_canceller {
4074 sys_snode_t node;
4075 struct k_work *work;
4076 struct k_sem sem;
4077};
4078
4097 union {
4098 struct z_work_flusher flusher;
4099 struct z_work_canceller canceller;
4100 };
4101};
4102
4114 const char *name;
4115
4129
4134};
4135
4137struct k_work_q {
4138 /* The thread that animates the work. */
4140
4141 /* All the following fields must be accessed only while the
4142 * work module spinlock is held.
4143 */
4144
4145 /* List of k_work items to be worked. */
4147
4148 /* Wait queue for idle work thread. */
4149 _wait_q_t notifyq;
4150
4151 /* Wait queue for threads waiting for the queue to drain. */
4152 _wait_q_t drainq;
4153
4154 /* Flags describing queue state. */
4156};
4157
4158/* Provide the implementation for inline functions declared above */
4159
4160static inline bool k_work_is_pending(const struct k_work *work)
4161{
4162 return k_work_busy_get(work) != 0;
4163}
4164
4165static inline struct k_work_delayable *
4170
4172 const struct k_work_delayable *dwork)
4173{
4174 return k_work_delayable_busy_get(dwork) != 0;
4175}
4176
4178 const struct k_work_delayable *dwork)
4179{
4180 return z_timeout_expires(&dwork->timeout);
4181}
4182
4184 const struct k_work_delayable *dwork)
4185{
4186 return z_timeout_remaining(&dwork->timeout);
4187}
4188
4190{
4191 return &queue->thread;
4192}
4193
4196struct k_work_user;
4197
4212typedef void (*k_work_user_handler_t)(struct k_work_user *work);
4213
4218struct k_work_user_q {
4219 struct k_queue queue;
4220 struct k_thread thread;
4221};
4222
4223enum {
4224 K_WORK_USER_STATE_PENDING, /* Work item pending state */
4225};
4226
4227struct k_work_user {
4228 void *_reserved; /* Used by k_queue implementation. */
4229 k_work_user_handler_t handler;
4231};
4232
4237#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
4238#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
4239#else
4240#define Z_WORK_USER_INITIALIZER(work_handler) \
4241 { \
4242 ._reserved = NULL, \
4243 .handler = (work_handler), \
4244 .flags = 0 \
4245 }
4246#endif
4247
4259#define K_WORK_USER_DEFINE(work, work_handler) \
4260 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4261
4271static inline void k_work_user_init(struct k_work_user *work,
4272 k_work_user_handler_t handler)
4273{
4274 *work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
4275}
4276
4293static inline bool k_work_user_is_pending(struct k_work_user *work)
4294{
4295 return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
4296}
4297
4316static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
4317 struct k_work_user *work)
4318{
4319 int ret = -EBUSY;
4320
4321 if (!atomic_test_and_set_bit(&work->flags,
4322 K_WORK_USER_STATE_PENDING)) {
4323 ret = k_queue_alloc_append(&work_q->queue, work);
4324
4325 /* Couldn't insert into the queue. Clear the pending bit
4326 * so the work item can be submitted again
4327 */
4328 if (ret != 0) {
4329 atomic_clear_bit(&work->flags,
4330 K_WORK_USER_STATE_PENDING);
4331 }
4332 }
4333
4334 return ret;
4335}
4336
4356void k_work_user_queue_start(struct k_work_user_q *work_q,
4357 k_thread_stack_t *stack,
4358 size_t stack_size, int prio,
4359 const char *name);
4360
4371static inline k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
4372{
4373 return &work_q->thread;
4374}
4375
4382struct k_work_poll {
4383 struct k_work work;
4384 struct k_work_q *workq;
4385 struct z_poller poller;
4386 struct k_poll_event *events;
4387 int num_events;
4388 k_work_handler_t real_handler;
4389 struct _timeout timeout;
4390 int poll_result;
4391};
4392
4413#define K_WORK_DEFINE(work, work_handler) \
4414 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4415
4425void k_work_poll_init(struct k_work_poll *work,
4426 k_work_handler_t handler);
4427
4463 struct k_work_poll *work,
4464 struct k_poll_event *events,
4465 int num_events,
4466 k_timeout_t timeout);
4467
4499int k_work_poll_submit(struct k_work_poll *work,
4500 struct k_poll_event *events,
4501 int num_events,
4502 k_timeout_t timeout);
4503
4518int k_work_poll_cancel(struct k_work_poll *work);
4519
4531struct k_msgq {
4533 _wait_q_t wait_q;
4537 size_t msg_size;
4550
4551 Z_DECL_POLL_EVENT
4552
4555
4557
4558#ifdef CONFIG_OBJ_CORE_MSGQ
4559 struct k_obj_core obj_core;
4560#endif
4561};
4567#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4568 { \
4569 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4570 .msg_size = q_msg_size, \
4571 .max_msgs = q_max_msgs, \
4572 .buffer_start = q_buffer, \
4573 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4574 .read_ptr = q_buffer, \
4575 .write_ptr = q_buffer, \
4576 .used_msgs = 0, \
4577 Z_POLL_EVENT_OBJ_INIT(obj) \
4578 }
4579
4585#define K_MSGQ_FLAG_ALLOC BIT(0)
4586
4598
4599
4618#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4619 static char __noinit __aligned(q_align) \
4620 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4621 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4622 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4623 (q_msg_size), (q_max_msgs))
4624
4639void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
4640 uint32_t max_msgs);
4641
4661__syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
4662 uint32_t max_msgs);
4663
4674int k_msgq_cleanup(struct k_msgq *msgq);
4675
4696__syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
4697
4718__syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
4719
4734__syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
4735
4752__syscall int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx);
4753
4763__syscall void k_msgq_purge(struct k_msgq *msgq);
4764
4775__syscall uint32_t k_msgq_num_free_get(struct k_msgq *msgq);
4776
4785__syscall void k_msgq_get_attrs(struct k_msgq *msgq,
4786 struct k_msgq_attrs *attrs);
4787
4788
4789static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
4790{
4791 return msgq->max_msgs - msgq->used_msgs;
4792}
4793
4803__syscall uint32_t k_msgq_num_used_get(struct k_msgq *msgq);
4804
4805static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
4806{
4807 return msgq->used_msgs;
4808}
4809
4824 size_t size;
4828 void *tx_data;
4834 k_tid_t _syncing_thread;
4835#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
4837 struct k_sem *_async_sem;
4838#endif
4839};
4844struct k_mbox {
4846 _wait_q_t tx_msg_queue;
4848 _wait_q_t rx_msg_queue;
4850
4852
4853#ifdef CONFIG_OBJ_CORE_MAILBOX
4854 struct k_obj_core obj_core;
4855#endif
4856};
4861#define Z_MBOX_INITIALIZER(obj) \
4862 { \
4863 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
4864 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
4865 }
4866
4880#define K_MBOX_DEFINE(name) \
4881 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
4882 Z_MBOX_INITIALIZER(name) \
4883
4891void k_mbox_init(struct k_mbox *mbox);
4892
4912int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4913 k_timeout_t timeout);
4914
4928void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4929 struct k_sem *sem);
4930
4948int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
4949 void *buffer, k_timeout_t timeout);
4950
4964void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
4965
4975struct k_pipe {
4976 unsigned char *buffer;
4977 size_t size;
4978 size_t bytes_used;
4979 size_t read_index;
4983 struct {
4984 _wait_q_t readers;
4985 _wait_q_t writers;
4988 Z_DECL_POLL_EVENT
4989
4993
4994#ifdef CONFIG_OBJ_CORE_PIPE
4995 struct k_obj_core obj_core;
4996#endif
4997};
4998
5002#define K_PIPE_FLAG_ALLOC BIT(0)
5004#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
5005 { \
5006 .buffer = pipe_buffer, \
5007 .size = pipe_buffer_size, \
5008 .bytes_used = 0, \
5009 .read_index = 0, \
5010 .write_index = 0, \
5011 .lock = {}, \
5012 .wait_q = { \
5013 .readers = Z_WAIT_Q_INIT(&obj.wait_q.readers), \
5014 .writers = Z_WAIT_Q_INIT(&obj.wait_q.writers) \
5015 }, \
5016 Z_POLL_EVENT_OBJ_INIT(obj) \
5017 .flags = 0, \
5018 }
5019
5037#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
5038 static unsigned char __noinit __aligned(pipe_align) \
5039 _k_pipe_buf_##name[pipe_buffer_size]; \
5040 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
5041 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
5042
5054void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size);
5055
5067int k_pipe_cleanup(struct k_pipe *pipe);
5068
5084__syscall int k_pipe_alloc_init(struct k_pipe *pipe, size_t size);
5085
5104__syscall int k_pipe_put(struct k_pipe *pipe, const void *data,
5105 size_t bytes_to_write, size_t *bytes_written,
5106 size_t min_xfer, k_timeout_t timeout);
5107
5127__syscall int k_pipe_get(struct k_pipe *pipe, void *data,
5128 size_t bytes_to_read, size_t *bytes_read,
5129 size_t min_xfer, k_timeout_t timeout);
5130
5139__syscall size_t k_pipe_read_avail(struct k_pipe *pipe);
5140
5149__syscall size_t k_pipe_write_avail(struct k_pipe *pipe);
5150
5161__syscall void k_pipe_flush(struct k_pipe *pipe);
5162
5174__syscall void k_pipe_buffer_flush(struct k_pipe *pipe);
5175
5182struct k_mem_slab_info {
5183 uint32_t num_blocks;
5184 size_t block_size;
5185 uint32_t num_used;
5186#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5187 uint32_t max_used;
5188#endif
5189};
5190
5191struct k_mem_slab {
5192 _wait_q_t wait_q;
5193 struct k_spinlock lock;
5194 char *buffer;
5195 char *free_list;
5196 struct k_mem_slab_info info;
5197
5199
5200#ifdef CONFIG_OBJ_CORE_MEM_SLAB
5201 struct k_obj_core obj_core;
5202#endif
5203};
5204
5205#define Z_MEM_SLAB_INITIALIZER(_slab, _slab_buffer, _slab_block_size, \
5206 _slab_num_blocks) \
5207 { \
5208 .wait_q = Z_WAIT_Q_INIT(&(_slab).wait_q), \
5209 .lock = {}, \
5210 .buffer = _slab_buffer, \
5211 .free_list = NULL, \
5212 .info = {_slab_num_blocks, _slab_block_size, 0} \
5213 }
5214
5215
5249#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
5250 char __noinit_named(k_mem_slab_buf_##name) \
5251 __aligned(WB_UP(slab_align)) \
5252 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5253 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5254 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5255 WB_UP(slab_block_size), slab_num_blocks)
5256
5271#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
5272 static char __noinit_named(k_mem_slab_buf_##name) \
5273 __aligned(WB_UP(slab_align)) \
5274 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5275 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5276 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5277 WB_UP(slab_block_size), slab_num_blocks)
5278
5300int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
5301 size_t block_size, uint32_t num_blocks);
5302
5325int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
5326 k_timeout_t timeout);
5327
5337void k_mem_slab_free(struct k_mem_slab *slab, void *mem);
5338
5349static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
5350{
5351 return slab->info.num_used;
5352}
5353
5364static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5365{
5366#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5367 return slab->info.max_used;
5368#else
5369 ARG_UNUSED(slab);
5370 return 0;
5371#endif
5372}
5373
5384static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5385{
5386 return slab->info.num_blocks - slab->info.num_used;
5387}
5388
5401int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats);
5402
5414int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab);
5415
5423/* kernel synchronized heap struct */
5424
5425struct k_heap {
5427 _wait_q_t wait_q;
5429};
5430
5444void k_heap_init(struct k_heap *h, void *mem,
5445 size_t bytes) __attribute_nonnull(1);
5446
5467void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5468 k_timeout_t timeout) __attribute_nonnull(1);
5469
5491void *k_heap_alloc(struct k_heap *h, size_t bytes,
5492 k_timeout_t timeout) __attribute_nonnull(1);
5493
5517void *k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
5518 __attribute_nonnull(1);
5519
5530void k_heap_free(struct k_heap *h, void *mem) __attribute_nonnull(1);
5531
5532/* Hand-calculated minimum heap sizes needed to return a successful
5533 * 1-byte allocation. See details in lib/os/heap.[ch]
5534 */
5535#define Z_HEAP_MIN_SIZE ((sizeof(void *) > 4) ? 56 : 44)
5536
5553#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5554 char in_section \
5555 __aligned(8) /* CHUNK_UNIT */ \
5556 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5557 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5558 .heap = { \
5559 .init_mem = kheap_##name, \
5560 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5561 }, \
5562 }
5563
5578#define K_HEAP_DEFINE(name, bytes) \
5579 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5580 __noinit_named(kheap_buf_##name))
5581
5596#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5597 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5598
5627void *k_aligned_alloc(size_t align, size_t size);
5628
5640void *k_malloc(size_t size);
5641
5652void k_free(void *ptr);
5653
5665void *k_calloc(size_t nmemb, size_t size);
5666
5684void *k_realloc(void *ptr, size_t size);
5685
5688/* polling API - PRIVATE */
5689
5690#ifdef CONFIG_POLL
5691#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
5692#else
5693#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
5694#endif
5695
5696/* private - types bit positions */
5697enum _poll_types_bits {
5698 /* can be used to ignore an event */
5699 _POLL_TYPE_IGNORE,
5700
5701 /* to be signaled by k_poll_signal_raise() */
5702 _POLL_TYPE_SIGNAL,
5703
5704 /* semaphore availability */
5705 _POLL_TYPE_SEM_AVAILABLE,
5706
5707 /* queue/FIFO/LIFO data availability */
5708 _POLL_TYPE_DATA_AVAILABLE,
5709
5710 /* msgq data availability */
5711 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
5712
5713 /* pipe data availability */
5714 _POLL_TYPE_PIPE_DATA_AVAILABLE,
5715
5716 _POLL_NUM_TYPES
5717};
5718
5719#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
5720
5721/* private - states bit positions */
5722enum _poll_states_bits {
5723 /* default state when creating event */
5724 _POLL_STATE_NOT_READY,
5725
5726 /* signaled by k_poll_signal_raise() */
5727 _POLL_STATE_SIGNALED,
5728
5729 /* semaphore is available */
5730 _POLL_STATE_SEM_AVAILABLE,
5731
5732 /* data is available to read on queue/FIFO/LIFO */
5733 _POLL_STATE_DATA_AVAILABLE,
5734
5735 /* queue/FIFO/LIFO wait was cancelled */
5736 _POLL_STATE_CANCELLED,
5737
5738 /* data is available to read on a message queue */
5739 _POLL_STATE_MSGQ_DATA_AVAILABLE,
5740
5741 /* data is available to read from a pipe */
5742 _POLL_STATE_PIPE_DATA_AVAILABLE,
5743
5744 _POLL_NUM_STATES
5745};
5746
5747#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
5748
5749#define _POLL_EVENT_NUM_UNUSED_BITS \
5750 (32 - (0 \
5751 + 8 /* tag */ \
5752 + _POLL_NUM_TYPES \
5753 + _POLL_NUM_STATES \
5754 + 1 /* modes */ \
5755 ))
5756
5757/* end of polling API - PRIVATE */
5758
5759
5766/* Public polling API */
5767
5768/* public - values for k_poll_event.type bitfield */
5769#define K_POLL_TYPE_IGNORE 0
5770#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
5771#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
5772#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
5773#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
5774#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
5775#define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
5776
5777/* public - polling modes */
5779 /* polling thread does not take ownership of objects when available */
5781
5784
5785/* public - values for k_poll_event.state bitfield */
5786#define K_POLL_STATE_NOT_READY 0
5787#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
5788#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
5789#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
5790#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
5791#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
5792#define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
5793#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
5794
5795/* public - poll signal object */
5799
5804 unsigned int signaled;
5805
5808};
5809
5810#define K_POLL_SIGNAL_INITIALIZER(obj) \
5811 { \
5812 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
5813 .signaled = 0, \
5814 .result = 0, \
5815 }
5822 sys_dnode_t _node;
5823
5825 struct z_poller *poller;
5826
5829
5831 uint32_t type:_POLL_NUM_TYPES;
5832
5834 uint32_t state:_POLL_NUM_STATES;
5835
5838
5840 uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
5841
5843 union {
5844 /* The typed_* fields below are used by K_POLL_EVENT_*INITIALIZER() macros to ensure
5845 * type safety of polled objects.
5846 */
5847 void *obj, *typed_K_POLL_TYPE_IGNORE;
5848 struct k_poll_signal *signal, *typed_K_POLL_TYPE_SIGNAL;
5849 struct k_sem *sem, *typed_K_POLL_TYPE_SEM_AVAILABLE;
5850 struct k_fifo *fifo, *typed_K_POLL_TYPE_FIFO_DATA_AVAILABLE;
5851 struct k_queue *queue, *typed_K_POLL_TYPE_DATA_AVAILABLE;
5852 struct k_msgq *msgq, *typed_K_POLL_TYPE_MSGQ_DATA_AVAILABLE;
5853#ifdef CONFIG_PIPES
5854 struct k_pipe *pipe, *typed_K_POLL_TYPE_PIPE_DATA_AVAILABLE;
5855#endif
5856 };
5857};
5858
5859#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
5860 { \
5861 .poller = NULL, \
5862 .type = _event_type, \
5863 .state = K_POLL_STATE_NOT_READY, \
5864 .mode = _event_mode, \
5865 .unused = 0, \
5866 { \
5867 .typed_##_event_type = _event_obj, \
5868 }, \
5869 }
5870
5871#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
5872 event_tag) \
5873 { \
5874 .tag = event_tag, \
5875 .type = _event_type, \
5876 .state = K_POLL_STATE_NOT_READY, \
5877 .mode = _event_mode, \
5878 .unused = 0, \
5879 { \
5880 .typed_##_event_type = _event_obj, \
5881 }, \
5882 }
5883
5899void k_poll_event_init(struct k_poll_event *event, uint32_t type,
5900 int mode, void *obj);
5901
5945__syscall int k_poll(struct k_poll_event *events, int num_events,
5946 k_timeout_t timeout);
5947
5956__syscall void k_poll_signal_init(struct k_poll_signal *sig);
5957
5963__syscall void k_poll_signal_reset(struct k_poll_signal *sig);
5964
5975__syscall void k_poll_signal_check(struct k_poll_signal *sig,
5976 unsigned int *signaled, int *result);
5977
6002__syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
6003
6024static inline void k_cpu_idle(void)
6025{
6026 arch_cpu_idle();
6027}
6028
6043static inline void k_cpu_atomic_idle(unsigned int key)
6044{
6046}
6047
6056#ifdef ARCH_EXCEPT
6057/* This architecture has direct support for triggering a CPU exception */
6058#define z_except_reason(reason) ARCH_EXCEPT(reason)
6059#else
6060
6061#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
6062#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
6063#else
6064#define __EXCEPT_LOC()
6065#endif
6066
6067/* NOTE: This is the implementation for arches that do not implement
6068 * ARCH_EXCEPT() to generate a real CPU exception.
6069 *
6070 * We won't have a real exception frame to determine the PC value when
6071 * the oops occurred, so print file and line number before we jump into
6072 * the fatal error handler.
6073 */
6074#define z_except_reason(reason) do { \
6075 __EXCEPT_LOC(); \
6076 z_fatal_error(reason, NULL); \
6077 } while (false)
6078
6079#endif /* _ARCH__EXCEPT */
6095#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
6096
6105#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
6106
6111/*
6112 * private APIs that are utilized by one or more public APIs
6113 */
6114
6118void z_timer_expiration_handler(struct _timeout *timeout);
6123#ifdef CONFIG_PRINTK
6131__syscall void k_str_out(char *c, size_t n);
6132#endif
6133
6160__syscall int k_float_disable(struct k_thread *thread);
6161
6200__syscall int k_float_enable(struct k_thread *thread, unsigned int options);
6201
6215
6223
6232
6243
6254
6263
6272
6273#ifdef __cplusplus
6274}
6275#endif
6276
6277#include <zephyr/tracing/tracing.h>
6278#include <zephyr/syscalls/kernel.h>
6279
6280#endif /* !_ASMLANGUAGE */
6281
6282#endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
static uint32_t arch_k_cycle_get_32(void)
Definition misc.h:26
static uint64_t arch_k_cycle_get_64(void)
Definition misc.h:33
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition arch_interface.h:48
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition arch_interface.h:46
long atomic_t
Definition atomic_types.h:15
System error numbers.
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically get and test a bit.
Definition atomic.h:127
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition atomic.h:191
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit and test it.
Definition atomic.h:170
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition kernel.h:1906
#define K_NO_WAIT
Generate null timeout delay.
Definition kernel.h:1336
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition kernel.h:1858
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition sys_clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition kernel.h:1887
static uint32_t k_uptime_seconds(void)
Get system uptime in seconds.
Definition kernel.h:1871
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition kernel.h:1921
static int64_t k_uptime_get(void)
Get system uptime.
Definition kernel.h:1834
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition kernel.h:6024
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition kernel.h:6043
struct _dnode sys_dnode_t
Doubly-linked list node structure.
Definition dlist.h:54
struct _dnode sys_dlist_t
Doubly-linked list structure.
Definition dlist.h:50
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
uint32_t k_event_set_masked(struct k_event *event, uint32_t events, uint32_t events_mask)
Set or clear the events in an event object.
static uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
Test the events currently tracked in the event object.
Definition kernel.h:2454
uint32_t k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
uint32_t k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_clear(struct k_event *event, uint32_t events)
Clear the events in an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events.
struct _sflist sys_sflist_t
Flagged single-linked list structure.
Definition sflist.h:54
static bool sys_sflist_is_empty(sys_sflist_t *list)
Test if the given list is empty.
Definition sflist.h:336
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void * k_realloc(void *ptr, size_t size)
Expand the size of an existing allocation.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
Reallocate memory from a k_heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition kernel.h:1191
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void *mem)
Free memory allocated from a memory slab.
int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats)
Get the memory stats for a memory slab.
int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
Reset the maximum memory usage for a slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition kernel.h:5349
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition kernel.h:5364
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition kernel.h:5384
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to a message queue.
int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx)
Peek/read a message from a message queue at the specified index.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
size_t k_pipe_read_avail(struct k_pipe *pipe)
Query the number of bytes that may be read from pipe.
int k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
Initialize a pipe and allocate a buffer for it.
void k_pipe_flush(struct k_pipe *pipe)
Flush the pipe of write data.
void k_pipe_buffer_flush(struct k_pipe *pipe)
Flush the pipe's internal buffer.
int k_pipe_cleanup(struct k_pipe *pipe)
Release a pipe's allocated buffer.
int k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
Read data from a pipe.
void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)
Initialize a pipe.
size_t k_pipe_write_avail(struct k_pipe *pipe)
Query the number of bytes that may be written to pipe.
int k_pipe_put(struct k_pipe *pipe, const void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, k_timeout_t timeout)
Write data to a pipe.
void k_poll_signal_reset(struct k_poll_signal *sig)
Reset a poll signal object's state to unsignaled.
k_poll_modes
Definition kernel.h:5778
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition kernel.h:5780
@ K_POLL_NUM_MODES
Definition kernel.h:5782
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
struct _slist sys_slist_t
Single-linked list structure.
Definition slist.h:49
struct _snode sys_snode_t
Single-linked list node structure.
Definition slist.h:39
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition tracing_macros.h:366
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition util_macro.h:140
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition util.h:284
#define EBUSY
Mount device busy.
Definition errno.h:54
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
const char * k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
bool k_can_yield(void)
Check whether it is possible to yield in the current context.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition kernel.h:471
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *thread)
Get time remaining before a thread wakes up, in system ticks.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition kernel.h:564
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, k_thread_timeslice_fn_t expired, void *data)
Set thread time slice.
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition kernel.h:661
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_thread_foreach_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in running on specified cpu.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
int k_thread_stack_free(k_thread_stack_t *stack)
Free a dynamically allocated thread stack.
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread)
Get time when a thread wakes up, in system ticks.
__attribute_const__ k_tid_t k_sched_current_thread_query(void)
Query thread ID of the current thread.
static void k_thread_start(k_tid_t thread)
Start an inactive thread.
Definition kernel.h:1068
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.
void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over the threads in running on current cpu without locking.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition kernel.h:105
k_thread_stack_t * k_thread_stack_alloc(size_t size, int flags)
Dynamically allocate a thread stack.
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition kernel.h:1612
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition kernel.h:1596
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition kernel.h:1758
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
#define k_ticks_to_ms_floor32(t)
Convert ticks to milliseconds.
Definition time_units.h:1701
#define k_ticks_to_sec_floor32(t)
Convert ticks to seconds.
Definition time_units.h:1605
#define k_ticks_to_ms_floor64(t)
Convert ticks to milliseconds.
Definition time_units.h:1717
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition kernel.h:4189
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition kernel.h:4160
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition kernel.h:4177
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
int k_work_queue_stop(struct k_work_q *queue, k_timeout_t timeout)
Stop a work queue.
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition kernel.h:4316
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition kernel.h:4293
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition kernel.h:3366
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition kernel.h:4171
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition kernel.h:4271
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition kernel.h:4212
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
static k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
Access the user mode thread that animates a work queue.
Definition kernel.h:4371
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition kernel.h:4166
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition kernel.h:4183
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition kernel.h:3961
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition kernel.h:3968
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition kernel.h:3975
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition kernel.h:3955
@ K_WORK_FLUSHING
Flag indicating a synced work item that is being flushed.
Definition kernel.h:3981
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
execution_context_types
Definition kernel.h:90
@ K_ISR
Definition kernel.h:91
@ K_COOP_THREAD
Definition kernel.h:92
@ K_PREEMPT_THREAD
Definition kernel.h:93
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
int k_thread_runtime_stats_cpu_get(int cpu, k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads on specified cpu.
Header files included by kernel.h.
void(* k_thread_timeslice_fn_t)(struct k_thread *thread, void *data)
Definition kernel_structs.h:307
Memory Statistics.
flags
Definition parser.h:96
state
Definition parser_state.h:29
__UINT32_TYPE__ uint32_t
Definition stdint.h:90
__INTPTR_TYPE__ intptr_t
Definition stdint.h:104
__INT32_TYPE__ int32_t
Definition stdint.h:74
__UINT64_TYPE__ uint64_t
Definition stdint.h:91
__UINT8_TYPE__ uint8_t
Definition stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition stdint.h:105
__INT64_TYPE__ int64_t
Definition stdint.h:75
Structure to store initialization entry information.
Definition init.h:103
Definition kernel.h:3116
_wait_q_t wait_q
Definition kernel.h:3117
Event Structure.
Definition kernel.h:2307
struct k_spinlock lock
Definition kernel.h:2310
uint32_t events
Definition kernel.h:2309
_wait_q_t wait_q
Definition kernel.h:2308
Definition kernel.h:2474
futex structure
Definition kernel.h:2228
atomic_t val
Definition kernel.h:2229
Definition kernel.h:5425
struct k_spinlock lock
Definition kernel.h:5428
struct sys_heap heap
Definition kernel.h:5426
_wait_q_t wait_q
Definition kernel.h:5427
Definition kernel.h:2715
Mailbox Message Structure.
Definition kernel.h:4822
k_tid_t tx_target_thread
target thread id
Definition kernel.h:4832
void * tx_data
sender's message data buffer
Definition kernel.h:4828
k_tid_t rx_source_thread
source thread id
Definition kernel.h:4830
uint32_t info
application-defined information value
Definition kernel.h:4826
size_t size
size of message (in bytes)
Definition kernel.h:4824
Mailbox Structure.
Definition kernel.h:4844
_wait_q_t tx_msg_queue
Transmit messages queue.
Definition kernel.h:4846
struct k_spinlock lock
Definition kernel.h:4849
_wait_q_t rx_msg_queue
Receive message queue.
Definition kernel.h:4848
Memory Domain.
Definition mem_domain.h:80
Memory Partition.
Definition mem_domain.h:55
Message Queue Attributes.
Definition kernel.h:4590
uint32_t used_msgs
Used messages.
Definition kernel.h:4596
size_t msg_size
Message Size.
Definition kernel.h:4592
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:4594
Message Queue Structure.
Definition kernel.h:4531
size_t msg_size
Message size.
Definition kernel.h:4537
char * read_ptr
Read pointer.
Definition kernel.h:4545
uint32_t used_msgs
Number of used messages.
Definition kernel.h:4549
char * buffer_end
End of message buffer.
Definition kernel.h:4543
struct k_spinlock lock
Lock.
Definition kernel.h:4535
char * write_ptr
Write pointer.
Definition kernel.h:4547
char * buffer_start
Start of message buffer.
Definition kernel.h:4541
uint8_t flags
Message queue.
Definition kernel.h:4554
_wait_q_t wait_q
Message queue wait queue.
Definition kernel.h:4533
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:4539
Mutex Structure.
Definition kernel.h:3004
uint32_t lock_count
Current lock count.
Definition kernel.h:3011
_wait_q_t wait_q
Mutex wait queue.
Definition kernel.h:3006
int owner_orig_prio
Original thread priority.
Definition kernel.h:3014
struct k_thread * owner
Mutex owner.
Definition kernel.h:3008
Object core structure.
Definition obj_core.h:121
Pipe Structure.
Definition kernel.h:4975
uint8_t flags
Wait queue.
Definition kernel.h:4990
struct k_pipe::@314 wait_q
_wait_q_t readers
Reader wait queue.
Definition kernel.h:4984
size_t write_index
Where in buffer to write.
Definition kernel.h:4980
size_t bytes_used
Number of bytes used in buffer.
Definition kernel.h:4978
struct k_spinlock lock
Synchronization lock.
Definition kernel.h:4981
_wait_q_t writers
Writer wait queue.
Definition kernel.h:4985
size_t size
Buffer size.
Definition kernel.h:4977
unsigned char * buffer
Pipe buffer: may be NULL.
Definition kernel.h:4976
size_t read_index
Where in buffer to read from.
Definition kernel.h:4979
Poll Event.
Definition kernel.h:5820
struct k_poll_signal * signal
Definition kernel.h:5848
uint32_t tag
optional user-specified tag, opaque, untouched by the API
Definition kernel.h:5828
struct k_fifo * fifo
Definition kernel.h:5850
struct k_msgq * msgq
Definition kernel.h:5852
struct k_queue * queue
Definition kernel.h:5851
uint32_t unused
unused bits in 32-bit word
Definition kernel.h:5840
uint32_t type
bitfield of event types (bitwise-ORed K_POLL_TYPE_xxx values)
Definition kernel.h:5831
struct k_sem * sem
Definition kernel.h:5849
uint32_t state
bitfield of event states (bitwise-ORed K_POLL_STATE_xxx values)
Definition kernel.h:5834
uint32_t mode
mode of operation, from enum k_poll_modes
Definition kernel.h:5837
struct z_poller * poller
PRIVATE - DO NOT TOUCH.
Definition kernel.h:5825
void * obj
Definition kernel.h:5847
Definition kernel.h:5796
sys_dlist_t poll_events
PRIVATE - DO NOT TOUCH.
Definition kernel.h:5798
int result
custom result value passed to k_poll_signal_raise() if needed
Definition kernel.h:5807
unsigned int signaled
1 if the event has been signaled, 0 otherwise.
Definition kernel.h:5804
Definition kernel.h:1936
struct k_spinlock lock
Definition kernel.h:1938
_wait_q_t wait_q
Definition kernel.h:1939
sys_sflist_t data_q
Definition kernel.h:1937
Kernel Spin Lock.
Definition spinlock.h:45
Definition thread.h:207
Thread Structure.
Definition thread.h:259
struct _thread_base base
Definition thread.h:261
struct k_heap * resource_pool
resource pool
Definition thread.h:349
struct __thread_entry entry
thread entry and parameters description
Definition thread.h:288
Kernel timeout type.
Definition sys_clock.h:65
A structure used to submit work after a delay.
Definition kernel.h:4013
struct _timeout timeout
Definition kernel.h:4018
struct k_work_q * queue
Definition kernel.h:4021
struct k_work work
Definition kernel.h:4015
A structure used to hold work until it can be processed.
Definition kernel.h:4137
sys_slist_t pending
Definition kernel.h:4146
_wait_q_t drainq
Definition kernel.h:4152
_wait_q_t notifyq
Definition kernel.h:4149
uint32_t flags
Definition kernel.h:4155
struct k_thread thread
Definition kernel.h:4139
A structure holding optional configuration items for a work queue.
Definition kernel.h:4109
const char * name
The name to be given to the work queue thread.
Definition kernel.h:4114
bool essential
Control whether the work queue thread should be marked as essential thread.
Definition kernel.h:4133
bool no_yield
Control whether the work queue thread should yield between items.
Definition kernel.h:4128
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition kernel.h:4096
struct z_work_canceller canceller
Definition kernel.h:4099
struct z_work_flusher flusher
Definition kernel.h:4098
A structure used to submit work.
Definition kernel.h:3985
k_work_handler_t handler
Definition kernel.h:3994
uint32_t flags
Definition kernel.h:4005
struct k_work_q * queue
Definition kernel.h:3997
sys_snode_t node
Definition kernel.h:3991
Definition sys_heap.h:57
Definition mem_stats.h:24
Macros to abstract toolchain specific capabilities.