Zephyr API Documentation 4.2.99
A Scalable Open Source RTOS
Loading...
Searching...
No Matches
kernel.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
12
13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
15
16#if !defined(_ASMLANGUAGE)
18#include <errno.h>
19#include <limits.h>
20#include <stdbool.h>
21#include <zephyr/toolchain.h>
26
27#ifdef __cplusplus
28extern "C" {
29#endif
30
31/*
32 * Zephyr currently assumes the size of a couple standard types to simplify
33 * print string formats. Let's make sure this doesn't change without notice.
34 */
35BUILD_ASSERT(sizeof(int32_t) == sizeof(int));
36BUILD_ASSERT(sizeof(int64_t) == sizeof(long long));
37BUILD_ASSERT(sizeof(intptr_t) == sizeof(long));
38
47
48#define K_ANY NULL
49
50#if (CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES) == 0
51#error Zero available thread priorities defined!
52#endif
53
54#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
55#define K_PRIO_PREEMPT(x) (x)
56
57#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
58#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
59#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
60#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
61#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
62
63#ifdef CONFIG_POLL
64#define Z_POLL_EVENT_OBJ_INIT(obj) \
65 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
66#define Z_DECL_POLL_EVENT sys_dlist_t poll_events;
67#else
68#define Z_POLL_EVENT_OBJ_INIT(obj)
69#define Z_DECL_POLL_EVENT
70#endif
71
72struct k_thread;
73struct k_mutex;
74struct k_sem;
75struct k_msgq;
76struct k_mbox;
77struct k_pipe;
78struct k_queue;
79struct k_fifo;
80struct k_lifo;
81struct k_stack;
82struct k_mem_slab;
83struct k_timer;
84struct k_poll_event;
85struct k_poll_signal;
86struct k_mem_domain;
87struct k_mem_partition;
88struct k_futex;
89struct k_event;
90
96
97/* private, used by k_poll and k_work_poll */
98struct k_work_poll;
99typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
100
105
106typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
107 void *user_data);
108
124void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data);
125
144#ifdef CONFIG_SMP
145void k_thread_foreach_filter_by_cpu(unsigned int cpu,
146 k_thread_user_cb_t user_cb, void *user_data);
147#else
148static inline
149void k_thread_foreach_filter_by_cpu(unsigned int cpu,
150 k_thread_user_cb_t user_cb, void *user_data)
151{
152 __ASSERT(cpu == 0, "cpu filter out of bounds");
153 ARG_UNUSED(cpu);
154 k_thread_foreach(user_cb, user_data);
155}
156#endif
157
186 k_thread_user_cb_t user_cb, void *user_data);
187
219#ifdef CONFIG_SMP
221 k_thread_user_cb_t user_cb, void *user_data);
222#else
223static inline
224void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu,
225 k_thread_user_cb_t user_cb, void *user_data)
226{
227 __ASSERT(cpu == 0, "cpu filter out of bounds");
228 ARG_UNUSED(cpu);
229 k_thread_foreach_unlocked(user_cb, user_data);
230}
231#endif
232
234
240
241#endif /* !_ASMLANGUAGE */
242
243
244/*
245 * Thread user options. May be needed by assembly code. Common part uses low
246 * bits, arch-specific use high bits.
247 */
248
252#define K_ESSENTIAL (BIT(0))
253
254#define K_FP_IDX 1
264#define K_FP_REGS (BIT(K_FP_IDX))
265
272#define K_USER (BIT(2))
273
282#define K_INHERIT_PERMS (BIT(3))
283
293#define K_CALLBACK_STATE (BIT(4))
294
304#define K_DSP_IDX 6
305#define K_DSP_REGS (BIT(K_DSP_IDX))
306
315#define K_AGU_IDX 7
316#define K_AGU_REGS (BIT(K_AGU_IDX))
317
327#define K_SSE_REGS (BIT(7))
328
329/* end - thread options */
330
331#if !defined(_ASMLANGUAGE)
356__syscall k_thread_stack_t *k_thread_stack_alloc(size_t size, int flags);
357
371
423__syscall k_tid_t k_thread_create(struct k_thread *new_thread,
424 k_thread_stack_t *stack,
425 size_t stack_size,
427 void *p1, void *p2, void *p3,
428 int prio, uint32_t options, k_timeout_t delay);
429
452 void *p1, void *p2,
453 void *p3);
454
468#define k_thread_access_grant(thread, ...) \
469 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), (thread), __VA_ARGS__)
470
485static inline void k_thread_heap_assign(struct k_thread *thread,
486 struct k_heap *heap)
487{
488 thread->resource_pool = heap;
489}
490
491#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
512__syscall int k_thread_stack_space_get(const struct k_thread *thread,
513 size_t *unused_ptr);
514#endif
515
516#if (K_HEAP_MEM_POOL_SIZE > 0)
529void k_thread_system_pool_assign(struct k_thread *thread);
530#endif /* (K_HEAP_MEM_POOL_SIZE > 0) */
531
551__syscall int k_thread_join(struct k_thread *thread, k_timeout_t timeout);
552
566__syscall int32_t k_sleep(k_timeout_t timeout);
567
579static inline int32_t k_msleep(int32_t ms)
580{
581 return k_sleep(Z_TIMEOUT_MS(ms));
582}
583
601
618__syscall void k_busy_wait(uint32_t usec_to_wait);
619
631bool k_can_yield(void);
632
640__syscall void k_yield(void);
641
651__syscall void k_wakeup(k_tid_t thread);
652
666__attribute_const__
668
675__attribute_const__
676static inline k_tid_t k_current_get(void)
677{
678#ifdef CONFIG_CURRENT_THREAD_USE_TLS
679
680 /* Thread-local cache of current thread ID, set in z_thread_entry() */
681 extern Z_THREAD_LOCAL k_tid_t z_tls_current;
682
683 return z_tls_current;
684#else
686#endif
687}
688
708__syscall void k_thread_abort(k_tid_t thread);
709
710k_ticks_t z_timeout_expires(const struct _timeout *timeout);
711k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
712
713#ifdef CONFIG_SYS_CLOCK_EXISTS
714
722__syscall k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread);
723
724static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
725 const struct k_thread *thread)
726{
727 return z_timeout_expires(&thread->base.timeout);
728}
729
738
739static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
740 const struct k_thread *thread)
741{
742 return z_timeout_remaining(&thread->base.timeout);
743}
744
745#endif /* CONFIG_SYS_CLOCK_EXISTS */
746
750
751struct _static_thread_data {
752 struct k_thread *init_thread;
753 k_thread_stack_t *init_stack;
754 unsigned int init_stack_size;
755 k_thread_entry_t init_entry;
756 void *init_p1;
757 void *init_p2;
758 void *init_p3;
759 int init_prio;
760 uint32_t init_options;
761 const char *init_name;
762#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
763 int32_t init_delay_ms;
764#else
765 k_timeout_t init_delay;
766#endif
767};
768
769#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
770#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay_ms = (ms)
771#define Z_THREAD_INIT_DELAY(thread) SYS_TIMEOUT_MS((thread)->init_delay_ms)
772#else
773#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay = SYS_TIMEOUT_MS_INIT(ms)
774#define Z_THREAD_INIT_DELAY(thread) (thread)->init_delay
775#endif
776
777#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
778 entry, p1, p2, p3, \
779 prio, options, delay, tname) \
780 { \
781 .init_thread = (thread), \
782 .init_stack = (stack), \
783 .init_stack_size = (stack_size), \
784 .init_entry = (k_thread_entry_t)entry, \
785 .init_p1 = (void *)p1, \
786 .init_p2 = (void *)p2, \
787 .init_p3 = (void *)p3, \
788 .init_prio = (prio), \
789 .init_options = (options), \
790 .init_name = STRINGIFY(tname), \
791 Z_THREAD_INIT_DELAY_INITIALIZER(delay) \
792 }
793
794/*
795 * Refer to K_THREAD_DEFINE() and K_KERNEL_THREAD_DEFINE() for
796 * information on arguments.
797 */
798#define Z_THREAD_COMMON_DEFINE(name, stack_size, \
799 entry, p1, p2, p3, \
800 prio, options, delay) \
801 struct k_thread _k_thread_obj_##name; \
802 STRUCT_SECTION_ITERABLE(_static_thread_data, \
803 _k_thread_data_##name) = \
804 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
805 _k_thread_stack_##name, stack_size,\
806 entry, p1, p2, p3, prio, options, \
807 delay, name); \
808 __maybe_unused const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
809
813
845#define K_THREAD_DEFINE(name, stack_size, \
846 entry, p1, p2, p3, \
847 prio, options, delay) \
848 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
849 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
850 prio, options, delay)
851
882#define K_KERNEL_THREAD_DEFINE(name, stack_size, \
883 entry, p1, p2, p3, \
884 prio, options, delay) \
885 K_KERNEL_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
886 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
887 prio, options, delay)
888
898__syscall int k_thread_priority_get(k_tid_t thread);
899
925__syscall void k_thread_priority_set(k_tid_t thread, int prio);
926
927
928#ifdef CONFIG_SCHED_DEADLINE
960__syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
961
1002__syscall void k_thread_absolute_deadline_set(k_tid_t thread, int deadline);
1003#endif
1004
1023__syscall void k_reschedule(void);
1024
1025#ifdef CONFIG_SCHED_CPU_MASK
1039
1053
1067
1081
1092int k_thread_cpu_pin(k_tid_t thread, int cpu);
1093#endif
1094
1116__syscall void k_thread_suspend(k_tid_t thread);
1117
1129__syscall void k_thread_resume(k_tid_t thread);
1130
1144static inline void k_thread_start(k_tid_t thread)
1145{
1146 k_wakeup(thread);
1147}
1148
1175void k_sched_time_slice_set(int32_t slice, int prio);
1176
1215void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
1216 k_thread_timeslice_fn_t expired, void *data);
1217
1219
1224
1236bool k_is_in_isr(void);
1237
1254__syscall int k_is_preempt_thread(void);
1255
1267static inline bool k_is_pre_kernel(void)
1268{
1269 extern bool z_sys_post_kernel; /* in init.c */
1270
1271 return !z_sys_post_kernel;
1272}
1273
1277
1282
1308void k_sched_lock(void);
1309
1318
1331__syscall void k_thread_custom_data_set(void *value);
1332
1340__syscall void *k_thread_custom_data_get(void);
1341
1355__syscall int k_thread_name_set(k_tid_t thread, const char *str);
1356
1365const char *k_thread_name_get(k_tid_t thread);
1366
1378__syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1379 size_t size);
1380
1393const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size);
1394
1398
1403
1412#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1413
1426#define K_NSEC(t) Z_TIMEOUT_NS(t)
1427
1440#define K_USEC(t) Z_TIMEOUT_US(t)
1441
1452#define K_CYC(t) Z_TIMEOUT_CYC(t)
1453
1464#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1465
1476#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1477
1488#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1489
1500#define K_MINUTES(m) K_SECONDS((m) * 60)
1501
1512#define K_HOURS(h) K_MINUTES((h) * 60)
1513
1522#define K_FOREVER Z_FOREVER
1523
1524#ifdef CONFIG_TIMEOUT_64BIT
1525
1537#define K_TIMEOUT_ABS_TICKS(t) \
1538 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)CLAMP(t, 0, (INT64_MAX - 1))))
1539
1551#define K_TIMEOUT_ABS_SEC(t) K_TIMEOUT_ABS_TICKS(k_sec_to_ticks_ceil64(t))
1552
1564#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1565
1578#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1579
1592#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1593
1606#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1607
1608#endif
1609
1613
1620struct k_timer {
1624
1625 /*
1626 * _timeout structure must be first here if we want to use
1627 * dynamic timer allocation. timeout.node is used in the double-linked
1628 * list of free timers
1629 */
1630 struct _timeout timeout;
1631
1632 /* wait queue for the (single) thread waiting on this timer */
1633 _wait_q_t wait_q;
1634
1635 /* runs in ISR context */
1636 void (*expiry_fn)(struct k_timer *timer);
1637
1638 /* runs in the context of the thread that calls k_timer_stop() */
1639 void (*stop_fn)(struct k_timer *timer);
1640
1641 /* timer period */
1642 k_timeout_t period;
1643
1644 /* timer status */
1645 uint32_t status;
1646
1647 /* user-specific data, also used to support legacy features */
1648 void *user_data;
1649
1651
1652#ifdef CONFIG_OBJ_CORE_TIMER
1653 struct k_obj_core obj_core;
1654#endif
1658};
1659
1663#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1664 { \
1665 .timeout = { \
1666 .node = {},\
1667 .fn = z_timer_expiration_handler, \
1668 .dticks = 0, \
1669 }, \
1670 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1671 .expiry_fn = expiry, \
1672 .stop_fn = stop, \
1673 .period = {}, \
1674 .status = 0, \
1675 .user_data = 0, \
1676 }
1677
1681
1687
1698typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1699
1714typedef void (*k_timer_stop_t)(struct k_timer *timer);
1715
1727#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1728 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1729 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1730
1740void k_timer_init(struct k_timer *timer,
1741 k_timer_expiry_t expiry_fn,
1742 k_timer_stop_t stop_fn);
1743
1761__syscall void k_timer_start(struct k_timer *timer,
1762 k_timeout_t duration, k_timeout_t period);
1763
1780__syscall void k_timer_stop(struct k_timer *timer);
1781
1794__syscall uint32_t k_timer_status_get(struct k_timer *timer);
1795
1813__syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1814
1815#ifdef CONFIG_SYS_CLOCK_EXISTS
1816
1827__syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1828
1829static inline k_ticks_t z_impl_k_timer_expires_ticks(
1830 const struct k_timer *timer)
1831{
1832 return z_timeout_expires(&timer->timeout);
1833}
1834
1845__syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1846
1847static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1848 const struct k_timer *timer)
1849{
1850 return z_timeout_remaining(&timer->timeout);
1851}
1852
1863static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
1864{
1866}
1867
1868#endif /* CONFIG_SYS_CLOCK_EXISTS */
1869
1882__syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
1883
1887static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
1888 void *user_data)
1889{
1890 timer->user_data = user_data;
1891}
1892
1900__syscall void *k_timer_user_data_get(const struct k_timer *timer);
1901
1902static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
1903{
1904 return timer->user_data;
1905}
1906
1908
1914
1924__syscall int64_t k_uptime_ticks(void);
1925
1939static inline int64_t k_uptime_get(void)
1940{
1942}
1943
1963static inline uint32_t k_uptime_get_32(void)
1964{
1965 return (uint32_t)k_uptime_get();
1966}
1967
1976static inline uint32_t k_uptime_seconds(void)
1977{
1979}
1980
1992static inline int64_t k_uptime_delta(int64_t *reftime)
1993{
1994 int64_t uptime, delta;
1995
1996 uptime = k_uptime_get();
1997 delta = uptime - *reftime;
1998 *reftime = uptime;
1999
2000 return delta;
2001}
2002
2011static inline uint32_t k_cycle_get_32(void)
2012{
2013 return arch_k_cycle_get_32();
2014}
2015
2026static inline uint64_t k_cycle_get_64(void)
2027{
2028 if (!IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
2029 __ASSERT(0, "64-bit cycle counter not enabled on this platform. "
2030 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
2031 return 0;
2032 }
2033
2034 return arch_k_cycle_get_64();
2035}
2036
2040
2041struct k_queue {
2044 _wait_q_t wait_q;
2045
2046 Z_DECL_POLL_EVENT
2047
2049};
2050
2054
2055#define Z_QUEUE_INITIALIZER(obj) \
2056 { \
2057 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
2058 .lock = { }, \
2059 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2060 Z_POLL_EVENT_OBJ_INIT(obj) \
2061 }
2062
2066
2072
2080__syscall void k_queue_init(struct k_queue *queue);
2081
2095__syscall void k_queue_cancel_wait(struct k_queue *queue);
2096
2109void k_queue_append(struct k_queue *queue, void *data);
2110
2127__syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
2128
2141void k_queue_prepend(struct k_queue *queue, void *data);
2142
2159__syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
2160
2174void k_queue_insert(struct k_queue *queue, void *prev, void *data);
2175
2194int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
2195
2211int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
2212
2230__syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
2231
2248bool k_queue_remove(struct k_queue *queue, void *data);
2249
2264bool k_queue_unique_append(struct k_queue *queue, void *data);
2265
2279__syscall int k_queue_is_empty(struct k_queue *queue);
2280
2281static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
2282{
2283 return sys_sflist_is_empty(&queue->data_q) ? 1 : 0;
2284}
2285
2295__syscall void *k_queue_peek_head(struct k_queue *queue);
2296
2306__syscall void *k_queue_peek_tail(struct k_queue *queue);
2307
2317#define K_QUEUE_DEFINE(name) \
2318 STRUCT_SECTION_ITERABLE(k_queue, name) = \
2319 Z_QUEUE_INITIALIZER(name)
2320
2322
2323#ifdef CONFIG_USERSPACE
2333struct k_futex {
2335};
2336
2344struct z_futex_data {
2345 _wait_q_t wait_q;
2346 struct k_spinlock lock;
2347};
2348
2349#define Z_FUTEX_DATA_INITIALIZER(obj) \
2350 { \
2351 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2352 }
2353
2359
2379__syscall int k_futex_wait(struct k_futex *futex, int expected,
2380 k_timeout_t timeout);
2381
2396__syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
2397
2399#endif
2400
2406
2411
2418
2419struct k_event {
2423 _wait_q_t wait_q;
2424 uint32_t events;
2425 struct k_spinlock lock;
2426
2428
2429#ifdef CONFIG_OBJ_CORE_EVENT
2430 struct k_obj_core obj_core;
2431#endif
2435
2436};
2437
2441
2442#define Z_EVENT_INITIALIZER(obj) \
2443 { \
2444 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2445 .events = 0, \
2446 .lock = {}, \
2447 }
2451
2459__syscall void k_event_init(struct k_event *event);
2460
2478__syscall uint32_t k_event_post(struct k_event *event, uint32_t events);
2479
2497__syscall uint32_t k_event_set(struct k_event *event, uint32_t events);
2498
2515__syscall uint32_t k_event_set_masked(struct k_event *event, uint32_t events,
2516 uint32_t events_mask);
2517
2530__syscall uint32_t k_event_clear(struct k_event *event, uint32_t events);
2531
2556__syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2557 bool reset, k_timeout_t timeout);
2558
2583__syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2584 bool reset, k_timeout_t timeout);
2585
2605__syscall uint32_t k_event_wait_safe(struct k_event *event, uint32_t events,
2606 bool reset, k_timeout_t timeout);
2607
2627__syscall uint32_t k_event_wait_all_safe(struct k_event *event, uint32_t events,
2628 bool reset, k_timeout_t timeout);
2629
2630
2631
2642static inline uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
2643{
2644 return k_event_wait(event, events_mask, false, K_NO_WAIT);
2645}
2646
2656#define K_EVENT_DEFINE(name) \
2657 STRUCT_SECTION_ITERABLE(k_event, name) = \
2658 Z_EVENT_INITIALIZER(name);
2659
2661
2662struct k_fifo {
2663 struct k_queue _queue;
2664#ifdef CONFIG_OBJ_CORE_FIFO
2665 struct k_obj_core obj_core;
2666#endif
2667};
2668
2672#define Z_FIFO_INITIALIZER(obj) \
2673 { \
2674 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2675 }
2676
2680
2686
2694#define k_fifo_init(fifo) \
2695 ({ \
2696 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2697 k_queue_init(&(fifo)->_queue); \
2698 K_OBJ_CORE_INIT(K_OBJ_CORE(fifo), _obj_type_fifo); \
2699 K_OBJ_CORE_LINK(K_OBJ_CORE(fifo)); \
2700 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2701 })
2702
2714#define k_fifo_cancel_wait(fifo) \
2715 ({ \
2716 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2717 k_queue_cancel_wait(&(fifo)->_queue); \
2718 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2719 })
2720
2733#define k_fifo_put(fifo, data) \
2734 ({ \
2735 void *_data = data; \
2736 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, _data); \
2737 k_queue_append(&(fifo)->_queue, _data); \
2738 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, _data); \
2739 })
2740
2757#define k_fifo_alloc_put(fifo, data) \
2758 ({ \
2759 void *_data = data; \
2760 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, _data); \
2761 int fap_ret = k_queue_alloc_append(&(fifo)->_queue, _data); \
2762 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, _data, fap_ret); \
2763 fap_ret; \
2764 })
2765
2780#define k_fifo_put_list(fifo, head, tail) \
2781 ({ \
2782 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2783 k_queue_append_list(&(fifo)->_queue, head, tail); \
2784 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2785 })
2786
2800#define k_fifo_put_slist(fifo, list) \
2801 ({ \
2802 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2803 k_queue_merge_slist(&(fifo)->_queue, list); \
2804 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2805 })
2806
2824#define k_fifo_get(fifo, timeout) \
2825 ({ \
2826 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2827 void *fg_ret = k_queue_get(&(fifo)->_queue, timeout); \
2828 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, fg_ret); \
2829 fg_ret; \
2830 })
2831
2845#define k_fifo_is_empty(fifo) \
2846 k_queue_is_empty(&(fifo)->_queue)
2847
2861#define k_fifo_peek_head(fifo) \
2862 ({ \
2863 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2864 void *fph_ret = k_queue_peek_head(&(fifo)->_queue); \
2865 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, fph_ret); \
2866 fph_ret; \
2867 })
2868
2880#define k_fifo_peek_tail(fifo) \
2881 ({ \
2882 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2883 void *fpt_ret = k_queue_peek_tail(&(fifo)->_queue); \
2884 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, fpt_ret); \
2885 fpt_ret; \
2886 })
2887
2897#define K_FIFO_DEFINE(name) \
2898 STRUCT_SECTION_ITERABLE(k_fifo, name) = \
2899 Z_FIFO_INITIALIZER(name)
2900
2902
2903struct k_lifo {
2904 struct k_queue _queue;
2905#ifdef CONFIG_OBJ_CORE_LIFO
2906 struct k_obj_core obj_core;
2907#endif
2908};
2909
2913
2914#define Z_LIFO_INITIALIZER(obj) \
2915 { \
2916 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2917 }
2918
2922
2928
2936#define k_lifo_init(lifo) \
2937 ({ \
2938 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2939 k_queue_init(&(lifo)->_queue); \
2940 K_OBJ_CORE_INIT(K_OBJ_CORE(lifo), _obj_type_lifo); \
2941 K_OBJ_CORE_LINK(K_OBJ_CORE(lifo)); \
2942 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2943 })
2944
2957#define k_lifo_put(lifo, data) \
2958 ({ \
2959 void *_data = data; \
2960 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, _data); \
2961 k_queue_prepend(&(lifo)->_queue, _data); \
2962 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, _data); \
2963 })
2964
2981#define k_lifo_alloc_put(lifo, data) \
2982 ({ \
2983 void *_data = data; \
2984 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, _data); \
2985 int lap_ret = k_queue_alloc_prepend(&(lifo)->_queue, _data); \
2986 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, _data, lap_ret); \
2987 lap_ret; \
2988 })
2989
3007#define k_lifo_get(lifo, timeout) \
3008 ({ \
3009 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
3010 void *lg_ret = k_queue_get(&(lifo)->_queue, timeout); \
3011 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, lg_ret); \
3012 lg_ret; \
3013 })
3014
3024#define K_LIFO_DEFINE(name) \
3025 STRUCT_SECTION_ITERABLE(k_lifo, name) = \
3026 Z_LIFO_INITIALIZER(name)
3027
3029
3033#define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
3034
3035typedef uintptr_t stack_data_t;
3036
3037struct k_stack {
3038 _wait_q_t wait_q;
3039 struct k_spinlock lock;
3040 stack_data_t *base, *next, *top;
3041
3042 uint8_t flags;
3043
3045
3046#ifdef CONFIG_OBJ_CORE_STACK
3047 struct k_obj_core obj_core;
3048#endif
3049};
3050
3051#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
3052 { \
3053 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3054 .base = (stack_buffer), \
3055 .next = (stack_buffer), \
3056 .top = (stack_buffer) + (stack_num_entries), \
3057 }
3058
3062
3068
3078void k_stack_init(struct k_stack *stack,
3079 stack_data_t *buffer, uint32_t num_entries);
3080
3081
3095
3096__syscall int32_t k_stack_alloc_init(struct k_stack *stack,
3097 uint32_t num_entries);
3098
3110int k_stack_cleanup(struct k_stack *stack);
3111
3125__syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
3126
3147__syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
3148 k_timeout_t timeout);
3149
3160#define K_STACK_DEFINE(name, stack_num_entries) \
3161 stack_data_t __noinit \
3162 _k_stack_buf_##name[stack_num_entries]; \
3163 STRUCT_SECTION_ITERABLE(k_stack, name) = \
3164 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
3165 stack_num_entries)
3166
3168
3172
3173struct k_work;
3174struct k_work_q;
3175struct k_work_queue_config;
3176extern struct k_work_q k_sys_work_q;
3177
3181
3187
3192struct k_mutex {
3194 _wait_q_t wait_q;
3197
3200
3203
3205
3206#ifdef CONFIG_OBJ_CORE_MUTEX
3207 struct k_obj_core obj_core;
3208#endif
3209};
3210
3214#define Z_MUTEX_INITIALIZER(obj) \
3215 { \
3216 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3217 .owner = NULL, \
3218 .lock_count = 0, \
3219 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
3220 }
3221
3225
3235#define K_MUTEX_DEFINE(name) \
3236 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
3237 Z_MUTEX_INITIALIZER(name)
3238
3251__syscall int k_mutex_init(struct k_mutex *mutex);
3252
3253
3275__syscall int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout);
3276
3297__syscall int k_mutex_unlock(struct k_mutex *mutex);
3298
3302
3303
3305 _wait_q_t wait_q;
3306
3307#ifdef CONFIG_OBJ_CORE_CONDVAR
3308 struct k_obj_core obj_core;
3309#endif
3310};
3311
3312#define Z_CONDVAR_INITIALIZER(obj) \
3313 { \
3314 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3315 }
3316
3322
3329__syscall int k_condvar_init(struct k_condvar *condvar);
3330
3337__syscall int k_condvar_signal(struct k_condvar *condvar);
3338
3346__syscall int k_condvar_broadcast(struct k_condvar *condvar);
3347
3365__syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
3366 k_timeout_t timeout);
3367
3378#define K_CONDVAR_DEFINE(name) \
3379 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
3380 Z_CONDVAR_INITIALIZER(name)
3381
3384
3390
3397struct k_sem {
3401 _wait_q_t wait_q;
3402 unsigned int count;
3403 unsigned int limit;
3404
3405 Z_DECL_POLL_EVENT
3406
3408
3409#ifdef CONFIG_OBJ_CORE_SEM
3410 struct k_obj_core obj_core;
3411#endif
3413};
3414
3418
3419#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
3420 { \
3421 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3422 .count = (initial_count), \
3423 .limit = (count_limit), \
3424 Z_POLL_EVENT_OBJ_INIT(obj) \
3425 }
3426
3430
3439#define K_SEM_MAX_LIMIT UINT_MAX
3440
3456__syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
3457 unsigned int limit);
3458
3477__syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
3478
3489__syscall void k_sem_give(struct k_sem *sem);
3490
3500__syscall void k_sem_reset(struct k_sem *sem);
3501
3511__syscall unsigned int k_sem_count_get(struct k_sem *sem);
3512
3516static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
3517{
3518 return sem->count;
3519}
3520
3532#define K_SEM_DEFINE(name, initial_count, count_limit) \
3533 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3534 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3535 BUILD_ASSERT(((count_limit) != 0) && \
3536 (((initial_count) < (count_limit)) || ((initial_count) == (count_limit))) && \
3537 ((count_limit) <= K_SEM_MAX_LIMIT));
3538
3540
3541#if defined(CONFIG_SCHED_IPI_SUPPORTED) || defined(__DOXYGEN__)
3542struct k_ipi_work;
3543
3544
3545typedef void (*k_ipi_func_t)(struct k_ipi_work *work);
3546
3557 sys_dnode_t node[CONFIG_MP_MAX_NUM_CPUS]; /* Node in IPI work queue */
3558 k_ipi_func_t func; /* Function to execute on target CPU */
3559 struct k_event event; /* Event to signal when processed */
3560 uint32_t bitmask; /* Bitmask of targeted CPUs */
3562};
3563
3564
3572static inline void k_ipi_work_init(struct k_ipi_work *work)
3573{
3574 k_event_init(&work->event);
3575 for (unsigned int i = 0; i < CONFIG_MP_MAX_NUM_CPUS; i++) {
3576 sys_dnode_init(&work->node[i]);
3577 }
3578 work->bitmask = 0;
3579}
3580
3599int k_ipi_work_add(struct k_ipi_work *work, uint32_t cpu_bitmask,
3600 k_ipi_func_t func);
3601
3624int k_ipi_work_wait(struct k_ipi_work *work, k_timeout_t timeout);
3625
3635
3636#endif /* CONFIG_SCHED_IPI_SUPPORTED */
3637
3641
3642struct k_work_delayable;
3643struct k_work_sync;
3644
3648
3654
3661typedef void (*k_work_handler_t)(struct k_work *work);
3662
3676void k_work_init(struct k_work *work,
3678
3693int k_work_busy_get(const struct k_work *work);
3694
3708static inline bool k_work_is_pending(const struct k_work *work);
3709
3731 struct k_work *work);
3732
3741int k_work_submit(struct k_work *work);
3742
3767bool k_work_flush(struct k_work *work,
3768 struct k_work_sync *sync);
3769
3789int k_work_cancel(struct k_work *work);
3790
3821bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3822
3833
3854 k_thread_stack_t *stack, size_t stack_size,
3855 int prio, const struct k_work_queue_config *cfg);
3856
3867void k_work_queue_run(struct k_work_q *queue, const struct k_work_queue_config *cfg);
3868
3878static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
3879
3903int k_work_queue_drain(struct k_work_q *queue, bool plug);
3904
3919
3936
3952
3964static inline struct k_work_delayable *
3966
3981
3996static inline bool k_work_delayable_is_pending(
3997 const struct k_work_delayable *dwork);
3998
4013 const struct k_work_delayable *dwork);
4014
4029 const struct k_work_delayable *dwork);
4030
4059 struct k_work_delayable *dwork,
4060 k_timeout_t delay);
4061
4076 k_timeout_t delay);
4077
4114 struct k_work_delayable *dwork,
4115 k_timeout_t delay);
4116
4130 k_timeout_t delay);
4131
4157 struct k_work_sync *sync);
4158
4180
4210 struct k_work_sync *sync);
4211
4212enum {
4216
4217 /* The atomic API is used for all work and queue flags fields to
4218 * enforce sequential consistency in SMP environments.
4219 */
4220
4221 /* Bits that represent the work item states. At least nine of the
4222 * combinations are distinct valid stable states.
4223 */
4224 K_WORK_RUNNING_BIT = 0,
4225 K_WORK_CANCELING_BIT = 1,
4226 K_WORK_QUEUED_BIT = 2,
4227 K_WORK_DELAYED_BIT = 3,
4228 K_WORK_FLUSHING_BIT = 4,
4229
4230 K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
4231 | BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT) | BIT(K_WORK_FLUSHING_BIT),
4232
4233 /* Static work flags */
4234 K_WORK_DELAYABLE_BIT = 8,
4235 K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
4236
4237 /* Dynamic work queue flags */
4238 K_WORK_QUEUE_STARTED_BIT = 0,
4239 K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
4240 K_WORK_QUEUE_BUSY_BIT = 1,
4241 K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
4242 K_WORK_QUEUE_DRAIN_BIT = 2,
4243 K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
4244 K_WORK_QUEUE_PLUGGED_BIT = 3,
4245 K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
4246 K_WORK_QUEUE_STOP_BIT = 4,
4247 K_WORK_QUEUE_STOP = BIT(K_WORK_QUEUE_STOP_BIT),
4248
4249 /* Static work queue flags */
4250 K_WORK_QUEUE_NO_YIELD_BIT = 8,
4251 K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
4252
4256 /* Transient work flags */
4257
4263 K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
4264
4269 K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
4270
4276 K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
4277
4283 K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
4284
4289 K_WORK_FLUSHING = BIT(K_WORK_FLUSHING_BIT),
4290};
4291
4293struct k_work {
4294 /* All fields are protected by the work module spinlock. No fields
4295 * are to be accessed except through kernel API.
4296 */
4297
4298 /* Node to link into k_work_q pending list. */
4300
4301 /* The function to be invoked by the work queue thread. */
4303
4304 /* The queue on which the work item was last submitted. */
4306
4307 /* State of the work item.
4308 *
4309 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
4310 *
4311 * It can be RUNNING and CANCELING simultaneously.
4312 */
4314};
4315
4316#define Z_WORK_INITIALIZER(work_handler) { \
4317 .handler = (work_handler), \
4318}
4319
4322 /* The work item. */
4323 struct k_work work;
4324
4325 /* Timeout used to submit work after a delay. */
4326 struct _timeout timeout;
4327
4328 /* The queue to which the work should be submitted. */
4330};
4331
4332#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
4333 .work = { \
4334 .handler = (work_handler), \
4335 .flags = K_WORK_DELAYABLE, \
4336 }, \
4337}
4338
4355#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
4356 struct k_work_delayable work \
4357 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
4358
4362
4363/* Record used to wait for work to flush.
4364 *
4365 * The work item is inserted into the queue that will process (or is
4366 * processing) the item, and will be processed as soon as the item
4367 * completes. When the flusher is processed the semaphore will be
4368 * signaled, releasing the thread waiting for the flush.
4369 */
4370struct z_work_flusher {
4371 struct k_work work;
4372 struct k_sem sem;
4373};
4374
4375/* Record used to wait for work to complete a cancellation.
4376 *
4377 * The work item is inserted into a global queue of pending cancels.
4378 * When a cancelling work item goes idle any matching waiters are
4379 * removed from pending_cancels and are woken.
4380 */
4381struct z_work_canceller {
4382 sys_snode_t node;
4383 struct k_work *work;
4384 struct k_sem sem;
4385};
4386
4390
4405 union {
4406 struct z_work_flusher flusher;
4407 struct z_work_canceller canceller;
4408 };
4409};
4410
4422 const char *name;
4423
4437
4442
4452};
4453
4455struct k_work_q {
4456 /* The thread that animates the work. */
4458
4459 /* The thread ID that animates the work. This may be an external thread
4460 * if k_work_queue_run() is used.
4461 */
4463
4464 /* All the following fields must be accessed only while the
4465 * work module spinlock is held.
4466 */
4467
4468 /* List of k_work items to be worked. */
4470
4471 /* Wait queue for idle work thread. */
4472 _wait_q_t notifyq;
4473
4474 /* Wait queue for threads waiting for the queue to drain. */
4475 _wait_q_t drainq;
4476
4477 /* Flags describing queue state. */
4479
4480#if defined(CONFIG_WORKQUEUE_WORK_TIMEOUT)
4481 struct _timeout work_timeout_record;
4482 struct k_work *work;
4483 k_timeout_t work_timeout;
4484#endif /* defined(CONFIG_WORKQUEUE_WORK_TIMEOUT) */
4485};
4486
4487/* Provide the implementation for inline functions declared above */
4488
4489static inline bool k_work_is_pending(const struct k_work *work)
4490{
4491 return k_work_busy_get(work) != 0;
4492}
4493
4494static inline struct k_work_delayable *
4499
4501 const struct k_work_delayable *dwork)
4502{
4503 return k_work_delayable_busy_get(dwork) != 0;
4504}
4505
4507 const struct k_work_delayable *dwork)
4508{
4509 return z_timeout_expires(&dwork->timeout);
4510}
4511
4513 const struct k_work_delayable *dwork)
4514{
4515 return z_timeout_remaining(&dwork->timeout);
4516}
4517
4519{
4520 return queue->thread_id;
4521}
4522
4524
4525struct k_work_user;
4526
4531
4541typedef void (*k_work_user_handler_t)(struct k_work_user *work);
4542
4546
4547struct k_work_user_q {
4548 struct k_queue queue;
4549 struct k_thread thread;
4550};
4551
4552enum {
4553 K_WORK_USER_STATE_PENDING, /* Work item pending state */
4554};
4555
4556struct k_work_user {
4557 void *_reserved; /* Used by k_queue implementation. */
4558 k_work_user_handler_t handler;
4560};
4561
4565
4566#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
4567#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
4568#else
4569#define Z_WORK_USER_INITIALIZER(work_handler) \
4570 { \
4571 ._reserved = NULL, \
4572 .handler = (work_handler), \
4573 .flags = 0 \
4574 }
4575#endif
4576
4588#define K_WORK_USER_DEFINE(work, work_handler) \
4589 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4590
4600static inline void k_work_user_init(struct k_work_user *work,
4601 k_work_user_handler_t handler)
4602{
4603 *work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
4604}
4605
4622static inline bool k_work_user_is_pending(struct k_work_user *work)
4623{
4624 return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
4625}
4626
4645static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
4646 struct k_work_user *work)
4647{
4648 int ret = -EBUSY;
4649
4650 if (!atomic_test_and_set_bit(&work->flags,
4651 K_WORK_USER_STATE_PENDING)) {
4652 ret = k_queue_alloc_append(&work_q->queue, work);
4653
4654 /* Couldn't insert into the queue. Clear the pending bit
4655 * so the work item can be submitted again
4656 */
4657 if (ret != 0) {
4658 atomic_clear_bit(&work->flags,
4659 K_WORK_USER_STATE_PENDING);
4660 }
4661 }
4662
4663 return ret;
4664}
4665
4685void k_work_user_queue_start(struct k_work_user_q *work_q,
4686 k_thread_stack_t *stack,
4687 size_t stack_size, int prio,
4688 const char *name);
4689
4700static inline k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
4701{
4702 return &work_q->thread;
4703}
4704
4706
4710
4711struct k_work_poll {
4712 struct k_work work;
4713 struct k_work_q *workq;
4714 struct z_poller poller;
4715 struct k_poll_event *events;
4716 int num_events;
4717 k_work_handler_t real_handler;
4718 struct _timeout timeout;
4719 int poll_result;
4720};
4721
4725
4730
4742#define K_WORK_DEFINE(work, work_handler) \
4743 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4744
4754void k_work_poll_init(struct k_work_poll *work,
4755 k_work_handler_t handler);
4756
4792 struct k_work_poll *work,
4793 struct k_poll_event *events,
4794 int num_events,
4795 k_timeout_t timeout);
4796
4828int k_work_poll_submit(struct k_work_poll *work,
4829 struct k_poll_event *events,
4830 int num_events,
4831 k_timeout_t timeout);
4832
4847int k_work_poll_cancel(struct k_work_poll *work);
4848
4850
4856
4860struct k_msgq {
4862 _wait_q_t wait_q;
4866 size_t msg_size;
4879
4880 Z_DECL_POLL_EVENT
4881
4884
4886
4887#ifdef CONFIG_OBJ_CORE_MSGQ
4888 struct k_obj_core obj_core;
4889#endif
4890};
4891
4894
4895
4896#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4897 { \
4898 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4899 .lock = {}, \
4900 .msg_size = q_msg_size, \
4901 .max_msgs = q_max_msgs, \
4902 .buffer_start = q_buffer, \
4903 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4904 .read_ptr = q_buffer, \
4905 .write_ptr = q_buffer, \
4906 .used_msgs = 0, \
4907 Z_POLL_EVENT_OBJ_INIT(obj) \
4908 .flags = 0, \
4909 }
4910
4914
4915
4916#define K_MSGQ_FLAG_ALLOC BIT(0)
4917
4929
4930
4949#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4950 static char __noinit __aligned(q_align) \
4951 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4952 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4953 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4954 (q_msg_size), (q_max_msgs))
4955
4970void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
4971 uint32_t max_msgs);
4972
4992__syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
4993 uint32_t max_msgs);
4994
5005int k_msgq_cleanup(struct k_msgq *msgq);
5006
5027__syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
5028
5053__syscall int k_msgq_put_front(struct k_msgq *msgq, const void *data);
5054
5075__syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
5076
5091__syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
5092
5109__syscall int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx);
5110
5120__syscall void k_msgq_purge(struct k_msgq *msgq);
5121
5132__syscall uint32_t k_msgq_num_free_get(struct k_msgq *msgq);
5133
5142__syscall void k_msgq_get_attrs(struct k_msgq *msgq,
5143 struct k_msgq_attrs *attrs);
5144
5145
5146static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
5147{
5148 return msgq->max_msgs - msgq->used_msgs;
5149}
5150
5160__syscall uint32_t k_msgq_num_used_get(struct k_msgq *msgq);
5161
5162static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
5163{
5164 return msgq->used_msgs;
5165}
5166
5168
5174
5181 size_t size;
5185 void *tx_data;
5191 k_tid_t _syncing_thread;
5192#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
5194 struct k_sem *_async_sem;
5195#endif
5196};
5197
5201struct k_mbox {
5203 _wait_q_t tx_msg_queue;
5205 _wait_q_t rx_msg_queue;
5207
5209
5210#ifdef CONFIG_OBJ_CORE_MAILBOX
5211 struct k_obj_core obj_core;
5212#endif
5213};
5214
5217
5218#define Z_MBOX_INITIALIZER(obj) \
5219 { \
5220 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
5221 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
5222 }
5223
5227
5237#define K_MBOX_DEFINE(name) \
5238 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
5239 Z_MBOX_INITIALIZER(name) \
5240
5241
5248void k_mbox_init(struct k_mbox *mbox);
5249
5269int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
5270 k_timeout_t timeout);
5271
5285void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
5286 struct k_sem *sem);
5287
5305int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
5306 void *buffer, k_timeout_t timeout);
5307
5321void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
5322
5324
5330
5340__syscall void k_pipe_init(struct k_pipe *pipe, uint8_t *buffer, size_t buffer_size);
5341
5346
5347struct k_pipe {
5348 size_t waiting;
5351 _wait_q_t data;
5352 _wait_q_t space;
5354
5355 Z_DECL_POLL_EVENT
5356#ifdef CONFIG_OBJ_CORE_PIPE
5357 struct k_obj_core obj_core;
5358#endif
5360};
5361
5365#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
5366{ \
5367 .waiting = 0, \
5368 .buf = RING_BUF_INIT(pipe_buffer, pipe_buffer_size), \
5369 .data = Z_WAIT_Q_INIT(&obj.data), \
5370 .space = Z_WAIT_Q_INIT(&obj.space), \
5371 .flags = PIPE_FLAG_OPEN, \
5372 Z_POLL_EVENT_OBJ_INIT(obj) \
5373}
5377
5391#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
5392 static unsigned char __noinit __aligned(pipe_align) \
5393 _k_pipe_buf_##name[pipe_buffer_size]; \
5394 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
5395 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
5396
5397
5414__syscall int k_pipe_write(struct k_pipe *pipe, const uint8_t *data, size_t len,
5415 k_timeout_t timeout);
5416
5432__syscall int k_pipe_read(struct k_pipe *pipe, uint8_t *data, size_t len,
5433 k_timeout_t timeout);
5434
5444__syscall void k_pipe_reset(struct k_pipe *pipe);
5445
5454__syscall void k_pipe_close(struct k_pipe *pipe);
5456
5460struct k_mem_slab_info {
5461 uint32_t num_blocks;
5462 size_t block_size;
5463 uint32_t num_used;
5464#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5465 uint32_t max_used;
5466#endif
5467};
5468
5469struct k_mem_slab {
5470 _wait_q_t wait_q;
5471 struct k_spinlock lock;
5472 char *buffer;
5473 char *free_list;
5474 struct k_mem_slab_info info;
5475
5477
5478#ifdef CONFIG_OBJ_CORE_MEM_SLAB
5479 struct k_obj_core obj_core;
5480#endif
5481};
5482
5483#define Z_MEM_SLAB_INITIALIZER(_slab, _slab_buffer, _slab_block_size, \
5484 _slab_num_blocks) \
5485 { \
5486 .wait_q = Z_WAIT_Q_INIT(&(_slab).wait_q), \
5487 .lock = {}, \
5488 .buffer = _slab_buffer, \
5489 .free_list = NULL, \
5490 .info = {_slab_num_blocks, _slab_block_size, 0} \
5491 }
5492
5493
5497
5503
5529#define K_MEM_SLAB_DEFINE_IN_SECT(name, in_section, slab_block_size, slab_num_blocks, slab_align) \
5530 BUILD_ASSERT(((slab_block_size) % (slab_align)) == 0, \
5531 "slab_block_size must be a multiple of slab_align"); \
5532 BUILD_ASSERT((((slab_align) & ((slab_align) - 1)) == 0), \
5533 "slab_align must be a power of 2"); \
5534 char in_section __aligned(WB_UP( \
5535 slab_align)) _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5536 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = Z_MEM_SLAB_INITIALIZER( \
5537 name, _k_mem_slab_buf_##name, WB_UP(slab_block_size), slab_num_blocks)
5538
5562#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
5563 K_MEM_SLAB_DEFINE_IN_SECT(name, __noinit_named(k_mem_slab_buf_##name), slab_block_size, \
5564 slab_num_blocks, slab_align)
5565
5582#define K_MEM_SLAB_DEFINE_IN_SECT_STATIC(name, in_section, slab_block_size, slab_num_blocks, \
5583 slab_align) \
5584 BUILD_ASSERT(((slab_block_size) % (slab_align)) == 0, \
5585 "slab_block_size must be a multiple of slab_align"); \
5586 BUILD_ASSERT((((slab_align) & ((slab_align) - 1)) == 0), \
5587 "slab_align must be a power of 2"); \
5588 static char in_section __aligned(WB_UP( \
5589 slab_align)) _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5590 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = Z_MEM_SLAB_INITIALIZER( \
5591 name, _k_mem_slab_buf_##name, WB_UP(slab_block_size), slab_num_blocks)
5592
5607#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
5608 K_MEM_SLAB_DEFINE_IN_SECT_STATIC(name, __noinit_named(k_mem_slab_buf_##name), \
5609 slab_block_size, slab_num_blocks, slab_align)
5610
5632int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
5633 size_t block_size, uint32_t num_blocks);
5634
5657int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
5658 k_timeout_t timeout);
5659
5671void k_mem_slab_free(struct k_mem_slab *slab, void *mem);
5672
5685static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
5686{
5687 return slab->info.num_used;
5688}
5689
5702static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5703{
5704#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5705 return slab->info.max_used;
5706#else
5707 ARG_UNUSED(slab);
5708 return 0;
5709#endif
5710}
5711
5724static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5725{
5726 return slab->info.num_blocks - slab->info.num_used;
5727}
5728
5742
5743int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats);
5744
5758int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab);
5759
5761
5766
5767/* kernel synchronized heap struct */
5768
5769struct k_heap {
5771 _wait_q_t wait_q;
5773};
5774
5788void k_heap_init(struct k_heap *h, void *mem,
5789 size_t bytes) __attribute_nonnull(1);
5790
5811void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5812 k_timeout_t timeout) __attribute_nonnull(1);
5813
5835void *k_heap_alloc(struct k_heap *h, size_t bytes,
5836 k_timeout_t timeout) __attribute_nonnull(1);
5837
5860void *k_heap_calloc(struct k_heap *h, size_t num, size_t size, k_timeout_t timeout)
5861 __attribute_nonnull(1);
5862
5886void *k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
5887 __attribute_nonnull(1);
5888
5899void k_heap_free(struct k_heap *h, void *mem) __attribute_nonnull(1);
5900
5901/* Hand-calculated minimum heap sizes needed to return a successful
5902 * 1-byte allocation. See details in lib/os/heap.[ch]
5903 */
5904#define Z_HEAP_MIN_SIZE ((sizeof(void *) > 4) ? 56 : 44)
5905
5922#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5923 char in_section \
5924 __aligned(8) /* CHUNK_UNIT */ \
5925 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5926 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5927 .heap = { \
5928 .init_mem = kheap_##name, \
5929 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5930 }, \
5931 }
5932
5947#define K_HEAP_DEFINE(name, bytes) \
5948 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5949 __noinit_named(kheap_buf_##name))
5950
5965#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5966 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5967
5977int k_heap_array_get(struct k_heap **heap);
5978
5982
5989
6008void *k_aligned_alloc(size_t align, size_t size);
6009
6021void *k_malloc(size_t size);
6022
6033void k_free(void *ptr);
6034
6046void *k_calloc(size_t nmemb, size_t size);
6047
6065void *k_realloc(void *ptr, size_t size);
6066
6068
6069/* polling API - PRIVATE */
6070
6071#ifdef CONFIG_POLL
6072#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
6073#else
6074#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
6075#endif
6076
6077/* private - types bit positions */
6078enum _poll_types_bits {
6079 /* can be used to ignore an event */
6080 _POLL_TYPE_IGNORE,
6081
6082 /* to be signaled by k_poll_signal_raise() */
6083 _POLL_TYPE_SIGNAL,
6084
6085 /* semaphore availability */
6086 _POLL_TYPE_SEM_AVAILABLE,
6087
6088 /* queue/FIFO/LIFO data availability */
6089 _POLL_TYPE_DATA_AVAILABLE,
6090
6091 /* msgq data availability */
6092 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
6093
6094 /* pipe data availability */
6095 _POLL_TYPE_PIPE_DATA_AVAILABLE,
6096
6097 _POLL_NUM_TYPES
6098};
6099
6100#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
6101
6102/* private - states bit positions */
6103enum _poll_states_bits {
6104 /* default state when creating event */
6105 _POLL_STATE_NOT_READY,
6106
6107 /* signaled by k_poll_signal_raise() */
6108 _POLL_STATE_SIGNALED,
6109
6110 /* semaphore is available */
6111 _POLL_STATE_SEM_AVAILABLE,
6112
6113 /* data is available to read on queue/FIFO/LIFO */
6114 _POLL_STATE_DATA_AVAILABLE,
6115
6116 /* queue/FIFO/LIFO wait was cancelled */
6117 _POLL_STATE_CANCELLED,
6118
6119 /* data is available to read on a message queue */
6120 _POLL_STATE_MSGQ_DATA_AVAILABLE,
6121
6122 /* data is available to read from a pipe */
6123 _POLL_STATE_PIPE_DATA_AVAILABLE,
6124
6125 _POLL_NUM_STATES
6126};
6127
6128#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
6129
6130#define _POLL_EVENT_NUM_UNUSED_BITS \
6131 (32 - (0 \
6132 + 8 /* tag */ \
6133 + _POLL_NUM_TYPES \
6134 + _POLL_NUM_STATES \
6135 + 1 /* modes */ \
6136 ))
6137
6138/* end of polling API - PRIVATE */
6139
6140
6148
6149/* Public polling API */
6150
6151/* public - values for k_poll_event.type bitfield */
6152#define K_POLL_TYPE_IGNORE 0
6153#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
6154#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
6155#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
6156#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
6157#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
6158#define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
6159
6160/* public - polling modes */
6162 /* polling thread does not take ownership of objects when available */
6164
6166};
6167
6168/* public - values for k_poll_event.state bitfield */
6169#define K_POLL_STATE_NOT_READY 0
6170#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
6171#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
6172#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
6173#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
6174#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
6175#define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
6176#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
6177
6178/* public - poll signal object */
6182
6187 unsigned int signaled;
6188
6191};
6192
6193#define K_POLL_SIGNAL_INITIALIZER(obj) \
6194 { \
6195 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
6196 .signaled = 0, \
6197 .result = 0, \
6198 }
6199
6205 sys_dnode_t _node;
6206
6208 struct z_poller *poller;
6209
6212
6214 uint32_t type:_POLL_NUM_TYPES;
6215
6217 uint32_t state:_POLL_NUM_STATES;
6218
6221
6223 uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
6224
6226 union {
6227 /* The typed_* fields below are used by K_POLL_EVENT_*INITIALIZER() macros to ensure
6228 * type safety of polled objects.
6229 */
6237 };
6238};
6239
6240#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
6241 { \
6242 .poller = NULL, \
6243 .type = _event_type, \
6244 .state = K_POLL_STATE_NOT_READY, \
6245 .mode = _event_mode, \
6246 .unused = 0, \
6247 { \
6248 .typed_##_event_type = _event_obj, \
6249 }, \
6250 }
6251
6252#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
6253 event_tag) \
6254 { \
6255 .tag = event_tag, \
6256 .type = _event_type, \
6257 .state = K_POLL_STATE_NOT_READY, \
6258 .mode = _event_mode, \
6259 .unused = 0, \
6260 { \
6261 .typed_##_event_type = _event_obj, \
6262 }, \
6263 }
6264
6279
6280void k_poll_event_init(struct k_poll_event *event, uint32_t type,
6281 int mode, void *obj);
6282
6325
6326__syscall int k_poll(struct k_poll_event *events, int num_events,
6327 k_timeout_t timeout);
6328
6336
6337__syscall void k_poll_signal_init(struct k_poll_signal *sig);
6338
6344__syscall void k_poll_signal_reset(struct k_poll_signal *sig);
6345
6356__syscall void k_poll_signal_check(struct k_poll_signal *sig,
6357 unsigned int *signaled, int *result);
6358
6382
6383__syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
6384
6386
6405static inline void k_cpu_idle(void)
6406{
6407 arch_cpu_idle();
6408}
6409
6424static inline void k_cpu_atomic_idle(unsigned int key)
6425{
6427}
6428
6432
6437#ifdef ARCH_EXCEPT
6438/* This architecture has direct support for triggering a CPU exception */
6439#define z_except_reason(reason) ARCH_EXCEPT(reason)
6440#else
6441
6442#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
6443#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
6444#else
6445#define __EXCEPT_LOC()
6446#endif
6447
6448/* NOTE: This is the implementation for arches that do not implement
6449 * ARCH_EXCEPT() to generate a real CPU exception.
6450 *
6451 * We won't have a real exception frame to determine the PC value when
6452 * the oops occurred, so print file and line number before we jump into
6453 * the fatal error handler.
6454 */
6455#define z_except_reason(reason) do { \
6456 __EXCEPT_LOC(); \
6457 z_fatal_error(reason, NULL); \
6458 } while (false)
6459
6460#endif /* _ARCH__EXCEPT */
6464
6476#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
6477
6486#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
6487
6491
6492/*
6493 * private APIs that are utilized by one or more public APIs
6494 */
6495
6499void z_timer_expiration_handler(struct _timeout *timeout);
6503
6504#ifdef CONFIG_PRINTK
6512__syscall void k_str_out(char *c, size_t n);
6513#endif
6514
6520
6541__syscall int k_float_disable(struct k_thread *thread);
6542
6581__syscall int k_float_enable(struct k_thread *thread, unsigned int options);
6582
6586
6596
6604
6613
6624
6635
6644
6653
6654#ifdef __cplusplus
6655}
6656#endif
6657
6658#include <zephyr/tracing/tracing.h>
6659#include <zephyr/syscalls/kernel.h>
6660
6661#endif /* !_ASMLANGUAGE */
6662
6663#endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
static uint32_t arch_k_cycle_get_32(void)
Definition misc.h:26
static uint64_t arch_k_cycle_get_64(void)
Definition misc.h:33
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition arch_interface.h:48
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition arch_interface.h:46
long atomic_t
Definition atomic_types.h:15
System error numbers.
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically get and test a bit.
Definition atomic.h:127
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition atomic.h:191
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit and test it.
Definition atomic.h:170
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition kernel.h:2011
#define K_NO_WAIT
Generate null timeout delay.
Definition kernel.h:1412
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition kernel.h:1963
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition kernel.h:1992
static uint32_t k_uptime_seconds(void)
Get system uptime in seconds.
Definition kernel.h:1976
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition kernel.h:2026
static int64_t k_uptime_get(void)
Get system uptime.
Definition kernel.h:1939
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition kernel.h:6405
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition kernel.h:6424
struct _dnode sys_dnode_t
Doubly-linked list node structure.
Definition dlist.h:54
struct _dnode sys_dlist_t
Doubly-linked list structure.
Definition dlist.h:50
static void sys_dnode_init(sys_dnode_t *node)
initialize node to its state when not in a list
Definition dlist.h:219
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
uint32_t k_event_set_masked(struct k_event *event, uint32_t events, uint32_t events_mask)
Set or clear the events in an event object.
uint32_t k_event_wait_all_safe(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events (safe version)
static uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
Test the events currently tracked in the event object.
Definition kernel.h:2642
uint32_t k_event_wait_safe(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events (safe version)
uint32_t k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
uint32_t k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_clear(struct k_event *event, uint32_t events)
Clear the events in an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events.
static bool sys_sflist_is_empty(const sys_sflist_t *list)
Test if the given list is empty.
Definition sflist.h:336
struct _sflist sys_sflist_t
Flagged single-linked list structure.
Definition sflist.h:54
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
int k_heap_array_get(struct k_heap **heap)
Get the array of statically defined heaps.
void * k_heap_calloc(struct k_heap *h, size_t num, size_t size, k_timeout_t timeout)
Allocate and initialize memory for an array of objects from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void * k_realloc(void *ptr, size_t size)
Expand the size of an existing allocation.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
Reallocate memory from a k_heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition kernel.h:1267
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void *mem)
Free memory allocated from a memory slab.
int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats)
Get the memory stats for a memory slab.
int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
Reset the maximum memory usage for a slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition kernel.h:5685
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition kernel.h:5702
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition kernel.h:5724
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to the end of a message queue.
int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx)
Peek/read a message from a message queue at the specified index.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put_front(struct k_msgq *msgq, const void *data)
Send a message to the front of a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
int k_pipe_write(struct k_pipe *pipe, const uint8_t *data, size_t len, k_timeout_t timeout)
Write data to a pipe.
void k_pipe_close(struct k_pipe *pipe)
Close a pipe.
void k_pipe_reset(struct k_pipe *pipe)
Reset a pipe This routine resets the pipe, discarding any unread data and unblocking any threads wait...
void k_pipe_init(struct k_pipe *pipe, uint8_t *buffer, size_t buffer_size)
initialize a pipe
pipe_flags
Definition kernel.h:5342
int k_pipe_read(struct k_pipe *pipe, uint8_t *data, size_t len, k_timeout_t timeout)
Read data from a pipe This routine reads up to len bytes of data from pipe.
@ PIPE_FLAG_RESET
Definition kernel.h:5344
@ PIPE_FLAG_OPEN
Definition kernel.h:5343
void k_poll_signal_reset(struct k_poll_signal *sig)
Reset a poll signal object's state to unsignaled.
k_poll_modes
Definition kernel.h:6161
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition kernel.h:6163
@ K_POLL_NUM_MODES
Definition kernel.h:6165
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
struct _slist sys_slist_t
Single-linked list structure.
Definition slist.h:49
struct _snode sys_snode_t
Single-linked list node structure.
Definition slist.h:39
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition tracing_macros.h:366
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition util_macro.h:148
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition util.h:281
#define EBUSY
Mount device busy.
Definition errno.h:54
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
const char * k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
void k_thread_absolute_deadline_set(k_tid_t thread, int deadline)
Set absolute deadline expiration time for scheduler.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
bool k_can_yield(void)
Check whether it is possible to yield in the current context.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition kernel.h:485
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *thread)
Get time remaining before a thread wakes up, in system ticks.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition kernel.h:579
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, k_thread_timeslice_fn_t expired, void *data)
Set thread time slice.
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition kernel.h:676
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_thread_foreach_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in running on specified cpu.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
int k_thread_stack_free(k_thread_stack_t *stack)
Free a dynamically allocated thread stack.
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread)
Get time when a thread wakes up, in system ticks.
__attribute_const__ k_tid_t k_sched_current_thread_query(void)
Query thread ID of the current thread.
static void k_thread_start(k_tid_t thread)
Start an inactive thread.
Definition kernel.h:1144
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_reschedule(void)
Invoke the scheduler.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set relative deadline expiration time for scheduler.
void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over the threads in running on current cpu without locking.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition kernel.h:106
k_thread_stack_t * k_thread_stack_alloc(size_t size, int flags)
Dynamically allocate a thread stack.
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition kernel.h:1714
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition kernel.h:1698
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition kernel.h:1863
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
#define k_ticks_to_ms_floor32(t)
Convert ticks to milliseconds.
Definition time_units.h:1707
#define k_ticks_to_sec_floor32(t)
Convert ticks to seconds.
Definition time_units.h:1611
#define k_ticks_to_ms_floor64(t)
Convert ticks to milliseconds.
Definition time_units.h:1723
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition kernel.h:4518
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition kernel.h:4489
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition kernel.h:4506
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
int k_work_queue_stop(struct k_work_q *queue, k_timeout_t timeout)
Stop a work queue.
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition kernel.h:4645
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition kernel.h:4622
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition kernel.h:3661
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition kernel.h:4500
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition kernel.h:4600
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition kernel.h:4541
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
static k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
Access the user mode thread that animates a work queue.
Definition kernel.h:4700
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition kernel.h:4495
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition kernel.h:4512
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
void k_work_queue_run(struct k_work_q *queue, const struct k_work_queue_config *cfg)
Run work queue using calling thread.
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition kernel.h:4269
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition kernel.h:4276
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition kernel.h:4283
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition kernel.h:4263
@ K_WORK_FLUSHING
Flag indicating a synced work item that is being flushed.
Definition kernel.h:4289
#define BUILD_ASSERT(EXPR, MSG...)
Definition llvm.h:51
struct k_thread * k_tid_t
Definition thread.h:366
struct k_thread_runtime_stats k_thread_runtime_stats_t
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
int k_ipi_work_add(struct k_ipi_work *work, uint32_t cpu_bitmask, k_ipi_func_t func)
Add an IPI work item to the IPI work queue.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
void k_ipi_work_signal(void)
Signal that there is one or more IPI work items to process.
int k_ipi_work_wait(struct k_ipi_work *work, k_timeout_t timeout)
Wait until the IPI work item has been processed by all targeted CPUs.
execution_context_types
Definition kernel.h:91
@ K_ISR
Definition kernel.h:92
@ K_COOP_THREAD
Definition kernel.h:93
@ K_PREEMPT_THREAD
Definition kernel.h:94
void(* k_ipi_func_t)(struct k_ipi_work *work)
Definition kernel.h:3545
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
static void k_ipi_work_init(struct k_ipi_work *work)
Initialize the specified IPI work item.
Definition kernel.h:3572
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
int k_thread_runtime_stats_cpu_get(int cpu, k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads on specified cpu.
Header files included by kernel.h.
void(* k_thread_timeslice_fn_t)(struct k_thread *thread, void *data)
Definition kernel_structs.h:314
Memory Statistics.
flags
Definition parser.h:97
state
Definition parser_state.h:29
__UINT32_TYPE__ uint32_t
Definition stdint.h:90
__INTPTR_TYPE__ intptr_t
Definition stdint.h:104
__INT32_TYPE__ int32_t
Definition stdint.h:74
__UINT64_TYPE__ uint64_t
Definition stdint.h:91
__UINT8_TYPE__ uint8_t
Definition stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition stdint.h:105
__INT64_TYPE__ int64_t
Definition stdint.h:75
Definition kernel.h:3304
_wait_q_t wait_q
Definition kernel.h:3305
Event Structure.
Definition kernel.h:2419
Definition kernel.h:2662
futex structure
Definition kernel.h:2333
atomic_t val
Definition kernel.h:2334
Definition kernel.h:5769
struct k_spinlock lock
Definition kernel.h:5772
struct sys_heap heap
Definition kernel.h:5770
_wait_q_t wait_q
Definition kernel.h:5771
IPI work item structure.
Definition kernel.h:3553
Definition kernel.h:2903
Mailbox Message Structure.
Definition kernel.h:5179
k_tid_t tx_target_thread
target thread id
Definition kernel.h:5189
void * tx_data
sender's message data buffer
Definition kernel.h:5185
k_tid_t rx_source_thread
source thread id
Definition kernel.h:5187
uint32_t info
application-defined information value
Definition kernel.h:5183
size_t size
size of message (in bytes)
Definition kernel.h:5181
Mailbox Structure.
Definition kernel.h:5201
_wait_q_t tx_msg_queue
Transmit messages queue.
Definition kernel.h:5203
struct k_spinlock lock
Definition kernel.h:5206
_wait_q_t rx_msg_queue
Receive message queue.
Definition kernel.h:5205
Memory Domain.
Definition mem_domain.h:80
Memory Partition.
Definition mem_domain.h:55
Message Queue Attributes.
Definition kernel.h:4921
uint32_t used_msgs
Used messages.
Definition kernel.h:4927
size_t msg_size
Message Size.
Definition kernel.h:4923
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:4925
Message Queue Structure.
Definition kernel.h:4860
size_t msg_size
Message size.
Definition kernel.h:4866
char * read_ptr
Read pointer.
Definition kernel.h:4874
uint32_t used_msgs
Number of used messages.
Definition kernel.h:4878
char * buffer_end
End of message buffer.
Definition kernel.h:4872
struct k_spinlock lock
Lock.
Definition kernel.h:4864
char * write_ptr
Write pointer.
Definition kernel.h:4876
char * buffer_start
Start of message buffer.
Definition kernel.h:4870
uint8_t flags
Message queue.
Definition kernel.h:4883
_wait_q_t wait_q
Message queue wait queue.
Definition kernel.h:4862
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:4868
Mutex Structure.
Definition kernel.h:3192
uint32_t lock_count
Current lock count.
Definition kernel.h:3199
_wait_q_t wait_q
Mutex wait queue.
Definition kernel.h:3194
int owner_orig_prio
Original thread priority.
Definition kernel.h:3202
struct k_thread * owner
Mutex owner.
Definition kernel.h:3196
Object core structure.
Definition obj_core.h:121
Definition kernel.h:5347
uint8_t flags
Definition kernel.h:5353
struct ring_buf buf
Definition kernel.h:5349
_wait_q_t data
Definition kernel.h:5351
_wait_q_t space
Definition kernel.h:5352
struct k_spinlock lock
Definition kernel.h:5350
size_t waiting
Definition kernel.h:5348
Poll Event.
Definition kernel.h:6203
struct k_msgq * typed_K_POLL_TYPE_MSGQ_DATA_AVAILABLE
Definition kernel.h:6235
void * typed_K_POLL_TYPE_IGNORE
Definition kernel.h:6230
struct k_poll_signal * signal
Definition kernel.h:6231
struct k_pipe * pipe
Definition kernel.h:6236
uint32_t tag
optional user-specified tag, opaque, untouched by the API
Definition kernel.h:6211
struct k_fifo * fifo
Definition kernel.h:6233
struct k_msgq * msgq
Definition kernel.h:6235
struct k_queue * queue
Definition kernel.h:6234
uint32_t unused
unused bits in 32-bit word
Definition kernel.h:6223
struct k_pipe * typed_K_POLL_TYPE_PIPE_DATA_AVAILABLE
Definition kernel.h:6236
uint32_t type
bitfield of event types (bitwise-ORed K_POLL_TYPE_xxx values)
Definition kernel.h:6214
struct k_sem * sem
Definition kernel.h:6232
struct k_queue * typed_K_POLL_TYPE_DATA_AVAILABLE
Definition kernel.h:6234
struct k_sem * typed_K_POLL_TYPE_SEM_AVAILABLE
Definition kernel.h:6232
uint32_t state
bitfield of event states (bitwise-ORed K_POLL_STATE_xxx values)
Definition kernel.h:6217
uint32_t mode
mode of operation, from enum k_poll_modes
Definition kernel.h:6220
struct z_poller * poller
PRIVATE - DO NOT TOUCH.
Definition kernel.h:6208
struct k_poll_signal * typed_K_POLL_TYPE_SIGNAL
Definition kernel.h:6231
void * obj
Definition kernel.h:6230
struct k_fifo * typed_K_POLL_TYPE_FIFO_DATA_AVAILABLE
Definition kernel.h:6233
Definition kernel.h:6179
sys_dlist_t poll_events
PRIVATE - DO NOT TOUCH.
Definition kernel.h:6181
int result
custom result value passed to k_poll_signal_raise() if needed
Definition kernel.h:6190
unsigned int signaled
1 if the event has been signaled, 0 otherwise.
Definition kernel.h:6187
Definition kernel.h:2041
struct k_spinlock lock
Definition kernel.h:2043
_wait_q_t wait_q
Definition kernel.h:2044
sys_sflist_t data_q
Definition kernel.h:2042
Semaphore structure.
Definition kernel.h:3397
Kernel Spin Lock.
Definition spinlock.h:45
Thread Structure.
Definition thread.h:250
struct _thread_base base
Definition thread.h:252
struct k_heap * resource_pool
resource pool
Definition thread.h:340
struct __thread_entry entry
thread entry and parameters description
Definition thread.h:279
Kernel timeout type.
Definition clock.h:65
Kernel timer structure.
Definition kernel.h:1620
A structure used to submit work after a delay.
Definition kernel.h:4321
struct _timeout timeout
Definition kernel.h:4326
struct k_work_q * queue
Definition kernel.h:4329
struct k_work work
Definition kernel.h:4323
A structure used to hold work until it can be processed.
Definition kernel.h:4455
sys_slist_t pending
Definition kernel.h:4469
_wait_q_t drainq
Definition kernel.h:4475
k_tid_t thread_id
Definition kernel.h:4462
_wait_q_t notifyq
Definition kernel.h:4472
uint32_t flags
Definition kernel.h:4478
struct k_thread thread
Definition kernel.h:4457
A structure holding optional configuration items for a work queue.
Definition kernel.h:4417
const char * name
The name to be given to the work queue thread.
Definition kernel.h:4422
uint32_t work_timeout_ms
Controls whether work queue monitors work timeouts.
Definition kernel.h:4451
bool essential
Control whether the work queue thread should be marked as essential thread.
Definition kernel.h:4441
bool no_yield
Control whether the work queue thread should yield between items.
Definition kernel.h:4436
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition kernel.h:4404
struct z_work_canceller canceller
Definition kernel.h:4407
struct z_work_flusher flusher
Definition kernel.h:4406
A structure used to submit work.
Definition kernel.h:4293
k_work_handler_t handler
Definition kernel.h:4302
uint32_t flags
Definition kernel.h:4313
struct k_work_q * queue
Definition kernel.h:4305
sys_snode_t node
Definition kernel.h:4299
A structure to represent a ring buffer.
Definition ring_buffer.h:49
Definition sys_heap.h:57
Definition mem_stats.h:24
Macros to abstract toolchain specific capabilities.