YD-STM32H750VB
Overview
The YD-STM32H750VB development board is a complete demonstration and development platform for Arm® Cortex®-M7 core-based STM32H750VBT6 microcontroller, with 128Kbytes of Flash memory and 1 Mbytes of SRAM.
More information about STM32H750 can be found here:
Supported Features
The yd_stm32h750vb
board supports the hardware features listed below.
- on-chip / on-board
- Feature integrated in the SoC / present on the board.
- 2 / 2
-
Number of instances that are enabled / disabled.
Click on the label to see the first instance of this feature in the board/SoC DTS files. -
vnd,foo
-
Compatible string for the Devicetree binding matching the feature.
Click on the link to view the binding documentation.
yd_stm32h750vb/stm32h750xx
target
Type |
Location |
Description |
Compatible |
---|---|---|---|
CPU |
on-chip |
ARM Cortex-M7 CPU1 |
|
ADC |
on-chip |
STM32 ADC4 |
|
CAN |
on-chip |
STM32H7 series FDCAN CAN FD controller2 |
|
Clock control |
on-chip |
STM32H7 RCC (Reset and Clock controller)1 |
|
on-chip |
STM32 HSE Clock1 |
||
on-chip |
STM32 HSI Clock1 |
||
on-chip |
Generic fixed-rate clock provider3 |
||
on-chip |
STM32 LSE Clock1 |
||
on-chip |
|||
on-chip |
STM32 Clock multiplexer1 |
||
on-chip |
STM32 Microcontroller Clock Output (MCO)2 |
||
Counter |
on-chip |
STM32 counters12 |
|
DAC |
on-chip |
STM32 family DAC1 |
|
Display |
on-chip |
STM32 LCD-TFT display controller1 |
|
DMA |
on-chip |
STM32 DMA controller (V1)2 |
|
on-chip |
STM32 BDMA controller1 |
||
on-chip |
STM32 DMAMUX controller2 |
||
Ethernet |
on-chip |
STM32H7 Ethernet1 |
|
Flash controller |
on-chip |
STM32 Family flash controller1 |
|
on-board |
STM32 QSPI Flash controller supporting the JEDEC CFI interface1 |
||
GPIO & Headers |
on-chip |
STM32 GPIO Controller11 |
|
I2C |
on-chip |
STM32 I2C V2 controller4 |
|
I2S |
on-chip |
STM32H7 I2S controller3 |
|
Input |
on-board |
Group of GPIO-bound input keys1 |
|
Interrupt controller |
on-chip |
ARMv7-M NVIC (Nested Vectored Interrupt Controller)1 |
|
on-chip |
STM32 External Interrupt Controller1 |
||
LED |
on-board |
Group of GPIO-controlled LEDs1 |
|
MDIO |
on-chip |
STM32 MDIO Controller1 |
|
Memory controller |
on-chip |
STM32 Battery Backed RAM1 |
|
on-chip |
STM32H7 Flexible Memory Controller (FMC)1 |
||
on-chip |
STM32 Flexible Memory Controller (SDRAM controller)1 |
||
MMC |
on-chip |
||
MMU / MPU |
on-chip |
ARMv7-M Memory Protection Unit (MPU)1 |
|
MTD |
on-chip |
STM32 flash memory1 |
|
on-board |
Fixed partitions of a flash (or other non-volatile storage) memory1 |
||
PHY |
on-chip |
This binding is to be used by all the usb transceivers which are built-in with USB IP1 |
|
Pin control |
on-chip |
STM32 Pin controller1 |
|
PWM |
on-chip |
STM32 PWM12 |
|
QSPI |
on-chip |
STM32 QSPI Controller1 |
|
Reset controller |
on-chip |
STM32 Reset and Clock Control (RCC) Controller1 |
|
RNG |
on-chip |
STM32 Random Number Generator1 |
|
RTC |
on-chip |
STM32 RTC1 |
|
Sensors |
on-chip |
STM32 family TEMP node for production calibrated sensors with two calibration temperatures1 |
|
on-chip |
STM32 VBAT1 |
||
on-chip |
STM32 VREF+1 |
||
Serial controller |
on-chip |
||
on-chip |
STM32 UART4 |
||
on-chip |
STM32 LPUART1 |
||
SMbus |
on-chip |
STM32 SMBus controller4 |
|
SPI |
on-chip |
STM32H7 SPI controller6 |
|
SRAM |
on-chip |
Generic on-chip SRAM description1 |
|
Timer |
on-chip |
ARMv7-M System Tick1 |
|
on-chip |
STM32 timers14 |
||
on-chip |
STM32 low-power timer (LPTIM)1 |
||
USB |
on-chip |
STM32 OTGFS controller1 |
|
Video |
on-chip |
STM32 Digital Camera Memory Interface (DCMI)1 |
|
Watchdog |
on-chip |
STM32 watchdog1 |
|
on-chip |
STM32 system window watchdog1 |
Pin Mapping
Default Zephyr Peripheral Mapping:
UART_1_TX : PA9
UART_1_RX : PA10
LED_1 : PA13 (SWDIO)
LED_2 : PA14 (SWCLK)
LED_3 : PA15
LED_4 : PB4
KEY : PB3
System Clock
The STM32H750VB System Clock can be driven by an internal or external oscillator, as well as by the main PLL clock. By default, the System clock is driven by the PLL clock at 480MHz. PLL clock is feed by a 25MHz high speed external clock.
Flashing
There are 2 main entry points for flashing STM32H750VB SoCs, one using the ROM bootloader, and another by using the SWD debug port (which requires additional hardware such as ST-Link). Flashing using the ROM bootloader requires a special activation pattern, which can be triggered by using the BOOT0 button.
Installing dfu-util
It is recommended to use at least v0.8 of dfu-util [2]. The package available in debian/ubuntu can be quite old, so you might have to build dfu-util from source.
There is also a Windows version which works, but you may have to install the right USB drivers with a tool like Zadig [1].
Flashing an application to YD-STM32H750VB
Connect a USB-C cable and the board should power ON. Force the board into DFU mode by keeping the BOOT0 switch pressed while pressing and releasing the RST switch.
The dfu-util runner is supported on this board and so a sample can be built and tested easily.
Here is an example for the Blinky application.
# From the root of the zephyr repository
west build -b yd_stm32h750vb samples/basic/blinky
west flash
You will see the LED blinking every second.
Debugging
You can debug an application in the usual way. Here is an example for the Hello World application.
# From the root of the zephyr repository
west build -b yd_stm32h750vb samples/hello_world
west debug