NXP MIMXRT1020-EVK

Overview

The i.MX RT1020 expands the i.MX RT crossover processor families by providing high-performance feature set in low-cost LQFP packages, further simplifying board design and layout for customers. The i.MX RT1020 runs on the Arm® Cortex®-M7 core at 500 MHz.

MIMXRT1020-EVK

Hardware

  • MIMXRT1021DAG5A MCU
  • Memory
    • 256 Mbit SDRAM
    • 64 Mbit QSPI Flash
    • TF socket for SD card
  • Connectivity
    • 10/100 Mbit/s Ethernet PHY
    • Micro USB host and OTG connectors
    • CAN transceivers
    • Arduino interface
  • Audio
    • Audio Codec
    • 4-pole audio headphone jack
    • Microphone
    • External speaker connection
  • Power
    • 5 V DC jack
  • Debug
    • JTAG 20-pin connector
    • OpenSDA with DAPLink

For more information about the MIMXRT1020 SoC and MIMXRT1020-EVK board, see these references:

Supported Features

The mimxrt1020_evk board configuration supports the following hardware features:

Interface Controller Driver/Component
NVIC on-chip nested vector interrupt controller
SYSTICK on-chip systick
GPIO on-chip gpio
I2C on-chip i2c
UART on-chip serial port-polling; serial port-interrupt
ENET on-chip ethernet

The default configuration can be found in the defconfig file: boards/arm/mimxrt1020_evk/mimxrt1020_evk_defconfig

Other hardware features are not currently supported by the port.

Connections and I/Os

The MIMXRT1020 SoC has five pairs of pinmux/gpio controllers.

Name Function Usage
GPIO_AD_B0_05 GPIO LED
GPIO_AD_B0_06 LPUART1_TX UART Console
GPIO_AD_B0_07 LPUART1_RX UART Console
GPIO_AD_B1_08 LPUART2_TX UART BT HCI
GPIO_AD_B1_09 LPUART2_RX UART BT HCI
GPIO_AD_B1_14 LPI2C1_SCL I2C
GPIO_AD_B1_15 LPI2C1_SDA I2C
GPIO_SD_B1_02 LPI2C4_SCL I2C
GPIO_SD_B1_03 LPI2C4_SDA I2C
WAKEUP GPIO SW0
GPIO_AD_B0_04 ENET_RST Ethernet
GPIO_AD_B0_08 ENET_REF_CLK Ethernet
GPIO_AD_B0_09 ENET_RX_DATA01 Ethernet
GPIO_AD_B0_10 ENET_RX_DATA00 Ethernet
GPIO_AD_B0_11 ENET_RX_EN Ethernet
GPIO_AD_B0_12 ENET_RX_ER Ethernet
GPIO_AD_B0_13 ENET_TX_EN Ethernet
GPIO_AD_B0_14 ENET_TX_DATA00 Ethernet
GPIO_AD_B0_15 ENET_TX_DATA01 Ethernet
GPIO_AD_B1_06 ENET_INT Ethernet
GPIO_EMC_41 ENET_MDC Ethernet
GPIO_EMC_40 ENET_MDIO Ethernet

System Clock

The MIMXRT1020 SoC is configured to use the 24 MHz external oscillator on the board with the on-chip PLL to generate a 500 MHz core clock.

Serial Port

The MIMXRT1020 SoC has eight UARTs. LPUART1 is configured for the console, LPUART2 for the Bluetooth Host Controller Interface (BT HCI), and the remaining are not used.

Programming and Debugging

Build and flash applications as usual (see Build an Application and Run an Application for more details).

Configuring a Debug Probe

A debug probe is used for both flashing and debugging the board. This board is configured by default to use the OpenSDA DAPLink Onboard Debug Probe, however the pyOCD Debug Host Tools do not yet support programming the external flashes on this board so you must reconfigure the board for one of the following debug probes instead.

Configuring a Console

Regardless of your choice in debug probe, we will use the OpenSDA microcontroller as a usb-to-serial adapter for the serial console. Check that jumpers J25 and J26 are on (they are on by default when boards ship from the factory) to connect UART signals to the OpenSDA microcontroller.

Connect a USB cable from your PC to J23.

Use the following settings with your serial terminal of choice (minicom, putty, etc.):

  • Speed: 115200
  • Data: 8 bits
  • Parity: None
  • Stop bits: 1

Flashing

Here is an example for the Hello World application.

# On Linux/macOS
cd $ZEPHYR_BASE/samples/hello_world
mkdir build && cd build

# On Windows
cd %ZEPHYR_BASE%\samples\hello_world
mkdir build & cd build

# Use cmake to configure a Ninja-based build system:
cmake -GNinja -DBOARD=mimxrt1020_evk ..

# Now run ninja on the generated build system:
ninja flash

Open a serial terminal, reset the board (press the SW5 button), and you should see the following message in the terminal:

***** Booting Zephyr OS v1.14.0-rc1 *****
Hello World! mimxrt1020_evk

Debugging

Here is an example for the Hello World application.

# On Linux/macOS
cd $ZEPHYR_BASE/samples/hello_world
mkdir build && cd build

# On Windows
cd %ZEPHYR_BASE%\samples\hello_world
mkdir build & cd build

# Use cmake to configure a Ninja-based build system:
cmake -GNinja -DBOARD=mimxrt1020_evk ..

# Now run ninja on the generated build system:
ninja debug

Open a serial terminal, step through the application in your debugger, and you should see the following message in the terminal:

***** Booting Zephyr OS v1.14.0-rc1 *****
Hello World! mimxrt1020_evk