NXP MIMXRT1050-EVK

Overview

The i.MX RT1050 is a new processor family featuring NXP’s advanced implementation of the ARM Cortex-M7 Core. It provides high CPU performance and real-time response.

The i.MX RT1050 provides various memory interfaces, including SDRAM, Raw NAND FLASH, NOR FLASH, SD/eMMC, Quad SPI, HyperBus and a wide range of other interfaces for connecting peripherals, such as WLAN, Bluetooth™, GPS, displays, and camera sensors. As with other i.MX processors, i.MX RT1050 also has rich audio and video features, including LCD display, basic 2D graphics, camera interface, SPDIF, and I2S audio interface.

The following document refers to the discontinued MIMXRT1050-EVK board. For the MIMXRT1050-EVKB board, refer to Board Revisions section.

MIMXRT1050-EVK

Hardware

  • MIMXRT1052DVL6A MCU (600 MHz, 512 KB TCM)
  • Memory
    • 256 KB SDRAM
    • 64 Mbit QSPI Flash
    • 512 Mbit Hyper Flash
  • Display
    • LCD connector
    • Touch connector
  • Ethernet
    • 10/100 Mbit/s Ethernet PHY
  • USB
    • USB 2.0 OTG connector
    • USB 2.0 host connector
  • Audio
    • 3.5 mm audio stereo headphone jack
    • Board-mounted microphone
    • Left and right speaker out connectors
  • Power
    • 5 V DC jack
  • Debug
    • JTAG 20-pin connector
    • OpenSDA with DAPLink
  • Sensor
    • FXOS8700CQ 6-axis e-compass
    • CMOS camera sensor interface
  • Expansion port
    • Arduino interface
  • CAN bus connector

For more information about the MIMXRT1050 SoC and MIMXRT1050-EVK board, see these references:

Supported Features

The mimxrt1050_evk board configuration supports the following hardware features:

Interface Controller Driver/Component
NVIC on-chip nested vector interrupt controller
SYSTICK on-chip systick
DISPLAY on-chip display
GPIO on-chip gpio
I2C on-chip i2c
SPI on-chip spi
UART on-chip serial port-polling; serial port-interrupt
ENET on-chip ethernet
USB on-chip USB device

The default configuration can be found in the defconfig file:

boards/arm/mimxrt1050_evk/mimxrt1050_evk_defconfig

Other hardware features are not currently supported by the port.

Connections and IOs

The MIMXRT1050 SoC has five pairs of pinmux/gpio controllers.

Name Function Usage
GPIO_AD_B0_00 LPSPI3_SCK SPI
GPIO_AD_B0_01 LPSPI3_SDO SPI
GPIO_AD_B0_02 LPSPI3_SDI/LCD_RST| SPI/LCD Display
GPIO_AD_B0_03 LPSPI3_PCS0 SPI
GPIO_AD_B0_09 GPIO/ENET_RST LED
GPIO_AD_B0_10 GPIO/ENET_INT GPIO/Ethernet
GPIO_AD_B0_12 LPUART1_TX UART Console
GPIO_AD_B0_13 LPUART1_RX UART Console
GPIO_AD_B1_00 LPI2C1_SCL I2C
GPIO_AD_B1_01 LPI2C1_SDA I2C
GPIO_AD_B1_06 LPUART3_TX UART BT HCI
GPIO_AD_B1_07 LPUART3_RX UART BT HCI
WAKEUP GPIO SW0
GPIO_B0_00 LCD_CLK LCD Display
GPIO_B0_01 LCD_ENABLE LCD Display
GPIO_B0_02 LCD_HSYNC LCD Display
GPIO_B0_03 LCD_VSYNC LCD Display
GPIO_B0_04 LCD_DATA00 LCD Display
GPIO_B0_05 LCD_DATA01 LCD Display
GPIO_B0_06 LCD_DATA02 LCD Display
GPIO_B0_07 LCD_DATA03 LCD Display
GPIO_B0_08 LCD_DATA04 LCD Display
GPIO_B0_09 LCD_DATA05 LCD Display
GPIO_B0_10 LCD_DATA06 LCD Display
GPIO_B0_11 LCD_DATA07 LCD Display
GPIO_B0_12 LCD_DATA08 LCD Display
GPIO_B0_13 LCD_DATA09 LCD Display
GPIO_B0_14 LCD_DATA10 LCD Display
GPIO_B0_15 LCD_DATA11 LCD Display
GPIO_B1_00 LCD_DATA12 LCD Display
GPIO_B1_01 LCD_DATA13 LCD Display
GPIO_B1_02 LCD_DATA14 LCD Display
GPIO_B1_03 LCD_DATA15 LCD Display
GPIO_B1_04 ENET_RX_DATA00 Ethernet
GPIO_B1_05 ENET_RX_DATA01 Ethernet
GPIO_B1_06 ENET_RX_EN Ethernet
GPIO_B1_07 ENET_TX_DATA00 Ethernet
GPIO_B1_08 ENET_TX_DATA01 Ethernet
GPIO_B1_09 ENET_TX_EN Ethernet
GPIO_B1_10 ENET_REF_CLK Ethernet
GPIO_B1_11 ENET_RX_ER Ethernet
GPIO_B1_15 BACKLIGHT_CTL LCD Display
GPIO_EMC_40 ENET_MDC Ethernet
GPIO_EMC_41 ENET_MDIO Ethernet
GPIO_AD_B0_09 ENET_RST Ethernet
GPIO_AD_B0_10 ENET_INT Ethernet

System Clock

The MIMXRT1050 SoC is configured to use the 24 MHz external oscillator on the board with the on-chip PLL to generate a 600 MHz core clock.

Serial Port

The MIMXRT1050 SoC has eight UARTs. LPUART1 is configured for the console, LPUART3 for the Bluetooth Host Controller Interface (BT HCI), and the remaining are not used.

USB

The RT1050 SoC has two USB OTG (USBOTG) controllers that supports both device and host functions through its micro USB connectors. Only USB device function is supported in Zephyr at the moment.

Programming and Debugging

Build and flash applications as usual (see Building an Application and Run an Application for more details).

Configuring a Debug Probe

A debug probe is used for both flashing and debugging the board. This board is configured by default to use the OpenSDA DAPLink Onboard Debug Probe, however the pyOCD Debug Host Tools do not yet support programming the external flashes on this board so you must reconfigure the board for one of the following debug probes instead.

Configuring a Console

Regardless of your choice in debug probe, we will use the OpenSDA microcontroller as a usb-to-serial adapter for the serial console. Check that jumpers J30 and J31 are on (they are on by default when boards ship from the factory) to connect UART signals to the OpenSDA microcontroller.

Connect a USB cable from your PC to J28.

Use the following settings with your serial terminal of choice (minicom, putty, etc.):

  • Speed: 115200
  • Data: 8 bits
  • Parity: None
  • Stop bits: 1

Flashing

Here is an example for the Hello World application.

# From the root of the zephyr repository
west build -b mimxrt1050_evk samples/hello_world
west flash

Open a serial terminal, reset the board (press the SW4 button), and you should see the following message in the terminal:

***** Booting Zephyr OS v1.14.0-rc1 *****
Hello World! mimxrt1050_evk

Debugging

Here is an example for the Hello World application.

# From the root of the zephyr repository
west build -b mimxrt1050_evk samples/hello_world
west debug

Open a serial terminal, step through the application in your debugger, and you should see the following message in the terminal:

***** Booting Zephyr OS v1.14.0-rc1 *****
Hello World! mimxrt1050_evk

Board Revisions

The original MIMXRT1050-EVK (rev A0) board was updated with a newer MIMXRT1050-EVKB (rev A1) board, with these major hardware differences:

- SoC changed from MIMXRT1052DVL6**A** to MIMXRT1052DVL6**B**
- Hardware bug fixes for: power, interfaces, and memory
- Arduino headers included

For more details, please see the following NXP i.MXRT1050 A0 to A1 Migration Guide.

Current Zephyr build supports the new MIMXRT1050-EVKB