ST STM32F469I Discovery

Overview

The STM32F469 Discovery kit features an ARM Cortex-M4 based STM32F469NI MCU with a wide range of connectivity support and configurations Here are some highlights of the STM32F469I-DISCO board:

  • STM32 microcontroller in BGA216 package

  • On-board ST-LINK/V2-1 debugger/programmer, supporting USB reenumeration capability

  • Flexible board power supply:

    • ST-LINK/V2-1 USB connector
    • User USB FS connector
    • VIN from Arduino* compatible connectors
  • Four user LEDs

  • Two push-buttons: USER and RESET

  • USB OTG FS with micro-AB connector

  • 4-inch 800x480 pixel TFT color LCD with MIPI DSI interface and capacitive touch screen

  • SAI Audio DAC, with a stereo headphone output jack

  • Three MEMS microphones

  • MicroSD card connector

  • I2C extension connector

  • 4Mx32bit SDRAM

  • 128-Mbit Quad-SPI NOR Flash

  • Expansion connectors and Arduino UNO V3 connectors

STM32F469I-DISCO

More information about the board can be found at the 32F469IDISCOVERY website.

Hardware

STM32F469I-DISCO Discovery kit provides the following hardware components:

  • STM32F469NIH6 in BGA216 package
  • ARM® 32-bit Cortex® -M4 CPU with FPU
  • 180 MHz max CPU frequency
  • VDD from 1.8 V to 3.6 V
  • 2 MB Flash
  • 384+4 KB SRAM including 64-Kbyte of core coupled memory
  • GPIO with external interrupt capability
  • LCD parallel interface, 8080/6800 modes
  • LCD TFT controller supporting up to XGA resolution
  • MIPI® DSI host controller supporting up to 720p 30Hz resolution
  • 3x12-bit ADC with 24 channels
  • 2x12-bit D/A converters
  • RTC
  • Advanced-control Timer
  • General Purpose Timers (17)
  • Watchdog Timers (2)
  • USART/UART (8)
  • I2C (3)
  • SPI (6)
  • 1xSAI (serial audio interface)
  • SDIO
  • 2xCAN
  • USB 2.0 OTG FS with on-chip PHY
  • USB 2.0 OTG HS/FS with dedicated DMA, on-chip full-speed PHY and ULPI
  • 10/100 Ethernet MAC with dedicated DMA
  • 8- to 14-bit parallel camera
  • CRC calculation unit
  • True random number generator
  • DMA Controller
More information about STM32F469NI can be found here:

Supported Features

The Zephyr stm32f469i_disco board configuration supports the following hardware features:

Interface Controller Driver/Component
NVIC on-chip nested vector interrupt controller
UART on-chip serial port-polling; serial port-interrupt
PINMUX on-chip pinmux
GPIO on-chip gpio
PWM on-chip pwm

Other hardware features are not yet supported on Zephyr porting.

The default configuration can be found in the defconfig file:

boards/arm/stm32f469i_disco/stm32f469i_disco_defconfig

Pin Mapping

STM32F469I-DISCO Discovery kit has 9 GPIO controllers. These controllers are responsible for pin muxing, input/output, pull-up, etc.

For mode details please refer to 32F469IDISCOVERY board User Manual.

Default Zephyr Peripheral Mapping:

  • UART_3 TX/RX : PB10/PB11 (ST-Link Virtual Port Com)
  • UART_6 TX/RX : PG14/PG9 (Arduino Serial)
  • I2C1 SCL/SDA : PB8/PB9 (Arduino I2C)
  • SPI2 SCK/MISO/MOSI : PD3/PB14/PB15 (Arduino SPI)
  • USB DM : PA11
  • USB DP : PA12
  • USER_PB : PA0
  • LD1 : PG6
  • LD2 : PD4
  • LD3 : PD5
  • LD4 : PK3

System Clock

STM32F469I-DISCO System Clock could be driven by internal or external oscillator, as well as main PLL clock. By default System clock is driven by PLL clock at 180MHz, driven by 8MHz high speed external clock.

Serial Port

The STM32F469 Discovery kit has up to 8 UARTs. The Zephyr console output is assigned to UART3. Default settings are 115200 8N1.

Programming and Debugging

Applications for the stm32f469i_disco board configuration can be built and flashed in the usual way (see Build an Application and Run an Application for more details).

Flashing

STM32F469I-DISCO Discovery kit includes an ST-LINK/V2 embedded debug tool interface. This interface is supported by the openocd version included in Zephyr SDK.

Flashing an application to STM32F469I-DISCO

First, connect the STM32F469I-DISCO Discovery kit to your host computer using the USB port to prepare it for flashing. Then build and flash your application.

Here is an example for the Hello World application.

# On Linux/macOS
cd $ZEPHYR_BASE/samples/hello_world
mkdir build && cd build

# On Windows
cd %ZEPHYR_BASE%\samples\hello_world
mkdir build & cd build


# Use cmake to configure a Ninja-based build system:
cmake -GNinja -DBOARD=stm32f469i_disco ..

# Now run ninja on the generated build system:
ninja
ninja flash

Run a serial host program to connect with your board:

$ minicom -D /dev/ttyACM0

You should see the following message on the console:

Hello World! arm

Debugging

You can debug an application in the usual way. Here is an example for the Hello World application.

# On Linux/macOS
cd $ZEPHYR_BASE/samples/hello_world
mkdir build && cd build

# On Windows
cd %ZEPHYR_BASE%\samples\hello_world
mkdir build & cd build


# Use cmake to configure a Ninja-based build system:
cmake -GNinja -DBOARD=stm32f469i_disco ..

# Now run ninja on the generated build system:
ninja debug