Zephyr API Documentation  3.6.0
A Scalable Open Source RTOS
3.6.0
All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
kernel.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
15
16#if !defined(_ASMLANGUAGE)
18#include <errno.h>
19#include <limits.h>
20#include <stdbool.h>
21#include <zephyr/toolchain.h>
25
26#ifdef __cplusplus
27extern "C" {
28#endif
29
30/*
31 * Zephyr currently assumes the size of a couple standard types to simplify
32 * print string formats. Let's make sure this doesn't change without notice.
33 */
34BUILD_ASSERT(sizeof(int32_t) == sizeof(int));
35BUILD_ASSERT(sizeof(int64_t) == sizeof(long long));
36BUILD_ASSERT(sizeof(intptr_t) == sizeof(long));
37
45#define K_ANY NULL
46
47#if CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES == 0
48#error Zero available thread priorities defined!
49#endif
50
51#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
52#define K_PRIO_PREEMPT(x) (x)
53
54#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
55#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
56#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
57#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
58#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
59
60#ifdef CONFIG_POLL
61#define Z_POLL_EVENT_OBJ_INIT(obj) \
62 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
63#define Z_DECL_POLL_EVENT sys_dlist_t poll_events;
64#else
65#define Z_POLL_EVENT_OBJ_INIT(obj)
66#define Z_DECL_POLL_EVENT
67#endif
68
69struct k_thread;
70struct k_mutex;
71struct k_sem;
72struct k_msgq;
73struct k_mbox;
74struct k_pipe;
75struct k_queue;
76struct k_fifo;
77struct k_lifo;
78struct k_stack;
79struct k_mem_slab;
80struct k_timer;
81struct k_poll_event;
82struct k_poll_signal;
83struct k_mem_domain;
84struct k_mem_partition;
85struct k_futex;
86struct k_event;
87
89 K_ISR = 0,
92};
93
94/* private, used by k_poll and k_work_poll */
95struct k_work_poll;
96typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
97
103typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
104 void *user_data);
105
121void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data);
122
151 k_thread_user_cb_t user_cb, void *user_data);
152
161#endif /* !_ASMLANGUAGE */
162
163
164/*
165 * Thread user options. May be needed by assembly code. Common part uses low
166 * bits, arch-specific use high bits.
167 */
168
172#define K_ESSENTIAL (BIT(0))
173
183#define K_FP_IDX 1
184#define K_FP_REGS (BIT(K_FP_IDX))
185
192#define K_USER (BIT(2))
193
202#define K_INHERIT_PERMS (BIT(3))
203
213#define K_CALLBACK_STATE (BIT(4))
214
224#define K_DSP_IDX 6
225#define K_DSP_REGS (BIT(K_DSP_IDX))
226
235#define K_AGU_IDX 7
236#define K_AGU_REGS (BIT(K_AGU_IDX))
237
247#define K_SSE_REGS (BIT(7))
248
249/* end - thread options */
250
251#if !defined(_ASMLANGUAGE)
266__syscall k_thread_stack_t *k_thread_stack_alloc(size_t size, int flags);
267
281
330__syscall k_tid_t k_thread_create(struct k_thread *new_thread,
331 k_thread_stack_t *stack,
332 size_t stack_size,
334 void *p1, void *p2, void *p3,
335 int prio, uint32_t options, k_timeout_t delay);
336
359 void *p1, void *p2,
360 void *p3);
361
375#define k_thread_access_grant(thread, ...) \
376 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), thread, __VA_ARGS__)
377
392static inline void k_thread_heap_assign(struct k_thread *thread,
393 struct k_heap *heap)
394{
395 thread->resource_pool = heap;
396}
397
398#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
419__syscall int k_thread_stack_space_get(const struct k_thread *thread,
420 size_t *unused_ptr);
421#endif
422
423#if (K_HEAP_MEM_POOL_SIZE > 0)
436void k_thread_system_pool_assign(struct k_thread *thread);
437#endif /* (K_HEAP_MEM_POOL_SIZE > 0) */
438
458__syscall int k_thread_join(struct k_thread *thread, k_timeout_t timeout);
459
474__syscall int32_t k_sleep(k_timeout_t timeout);
475
487static inline int32_t k_msleep(int32_t ms)
488{
489 return k_sleep(Z_TIMEOUT_MS(ms));
490}
491
509
526__syscall void k_busy_wait(uint32_t usec_to_wait);
527
539bool k_can_yield(void);
540
548__syscall void k_yield(void);
549
559__syscall void k_wakeup(k_tid_t thread);
560
574__attribute_const__
576
583__attribute_const__
584static inline k_tid_t k_current_get(void)
585{
586#ifdef CONFIG_CURRENT_THREAD_USE_TLS
587
588 /* Thread-local cache of current thread ID, set in z_thread_entry() */
589 extern __thread k_tid_t z_tls_current;
590
591 return z_tls_current;
592#else
594#endif
595}
596
616__syscall void k_thread_abort(k_tid_t thread);
617
618
628__syscall void k_thread_start(k_tid_t thread);
629
630k_ticks_t z_timeout_expires(const struct _timeout *timeout);
631k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
632
633#ifdef CONFIG_SYS_CLOCK_EXISTS
634
643
644static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
645 const struct k_thread *t)
646{
647 return z_timeout_expires(&t->base.timeout);
648}
649
658
659static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
660 const struct k_thread *t)
661{
662 return z_timeout_remaining(&t->base.timeout);
663}
664
665#endif /* CONFIG_SYS_CLOCK_EXISTS */
666
671struct _static_thread_data {
672 struct k_thread *init_thread;
673 k_thread_stack_t *init_stack;
674 unsigned int init_stack_size;
676 void *init_p1;
677 void *init_p2;
678 void *init_p3;
679 int init_prio;
680 uint32_t init_options;
681 const char *init_name;
682#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
683 int32_t init_delay_ms;
684#else
685 k_timeout_t init_delay;
686#endif
687};
688
689#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
690#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay_ms = (ms)
691#define Z_THREAD_INIT_DELAY(thread) SYS_TIMEOUT_MS((thread)->init_delay_ms)
692#else
693#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay = SYS_TIMEOUT_MS(ms)
694#define Z_THREAD_INIT_DELAY(thread) (thread)->init_delay
695#endif
696
697#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
698 entry, p1, p2, p3, \
699 prio, options, delay, tname) \
700 { \
701 .init_thread = (thread), \
702 .init_stack = (stack), \
703 .init_stack_size = (stack_size), \
704 .init_entry = (k_thread_entry_t)entry, \
705 .init_p1 = (void *)p1, \
706 .init_p2 = (void *)p2, \
707 .init_p3 = (void *)p3, \
708 .init_prio = (prio), \
709 .init_options = (options), \
710 .init_name = STRINGIFY(tname), \
711 Z_THREAD_INIT_DELAY_INITIALIZER(delay) \
712 }
713
714/*
715 * Refer to K_THREAD_DEFINE() and K_KERNEL_THREAD_DEFINE() for
716 * information on arguments.
717 */
718#define Z_THREAD_COMMON_DEFINE(name, stack_size, \
719 entry, p1, p2, p3, \
720 prio, options, delay) \
721 struct k_thread _k_thread_obj_##name; \
722 STRUCT_SECTION_ITERABLE(_static_thread_data, \
723 _k_thread_data_##name) = \
724 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
725 _k_thread_stack_##name, stack_size,\
726 entry, p1, p2, p3, prio, options, \
727 delay, name); \
728 const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
729
765#define K_THREAD_DEFINE(name, stack_size, \
766 entry, p1, p2, p3, \
767 prio, options, delay) \
768 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
769 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
770 prio, options, delay)
771
802#define K_KERNEL_THREAD_DEFINE(name, stack_size, \
803 entry, p1, p2, p3, \
804 prio, options, delay) \
805 K_KERNEL_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
806 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
807 prio, options, delay)
808
818__syscall int k_thread_priority_get(k_tid_t thread);
819
845__syscall void k_thread_priority_set(k_tid_t thread, int prio);
846
847
848#ifdef CONFIG_SCHED_DEADLINE
881__syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
882#endif
883
884#ifdef CONFIG_SCHED_CPU_MASK
898
912
926
940
951int k_thread_cpu_pin(k_tid_t thread, int cpu);
952#endif
953
974__syscall void k_thread_suspend(k_tid_t thread);
975
986__syscall void k_thread_resume(k_tid_t thread);
987
1014void k_sched_time_slice_set(int32_t slice, int prio);
1015
1054void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
1055 k_thread_timeslice_fn_t expired, void *data);
1056
1075bool k_is_in_isr(void);
1076
1093__syscall int k_is_preempt_thread(void);
1094
1106static inline bool k_is_pre_kernel(void)
1107{
1108 extern bool z_sys_post_kernel; /* in init.c */
1109
1110 return !z_sys_post_kernel;
1111}
1112
1147void k_sched_lock(void);
1148
1157
1170__syscall void k_thread_custom_data_set(void *value);
1171
1179__syscall void *k_thread_custom_data_get(void);
1180
1194__syscall int k_thread_name_set(k_tid_t thread, const char *str);
1195
1204const char *k_thread_name_get(k_tid_t thread);
1205
1217__syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1218 size_t size);
1219
1232const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size);
1233
1251#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1252
1265#define K_NSEC(t) Z_TIMEOUT_NS(t)
1266
1279#define K_USEC(t) Z_TIMEOUT_US(t)
1280
1291#define K_CYC(t) Z_TIMEOUT_CYC(t)
1292
1303#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1304
1315#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1316
1327#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1328
1339#define K_MINUTES(m) K_SECONDS((m) * 60)
1340
1351#define K_HOURS(h) K_MINUTES((h) * 60)
1352
1361#define K_FOREVER Z_FOREVER
1362
1363#ifdef CONFIG_TIMEOUT_64BIT
1364
1376#define K_TIMEOUT_ABS_TICKS(t) \
1377 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)MAX(t, 0)))
1378
1390#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1391
1404#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1405
1418#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1419
1432#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1433
1434#endif
1435
1444struct k_timer {
1445 /*
1446 * _timeout structure must be first here if we want to use
1447 * dynamic timer allocation. timeout.node is used in the double-linked
1448 * list of free timers
1449 */
1450 struct _timeout timeout;
1451
1452 /* wait queue for the (single) thread waiting on this timer */
1453 _wait_q_t wait_q;
1454
1455 /* runs in ISR context */
1456 void (*expiry_fn)(struct k_timer *timer);
1457
1458 /* runs in the context of the thread that calls k_timer_stop() */
1459 void (*stop_fn)(struct k_timer *timer);
1460
1461 /* timer period */
1462 k_timeout_t period;
1463
1464 /* timer status */
1465 uint32_t status;
1466
1467 /* user-specific data, also used to support legacy features */
1468 void *user_data;
1469
1471
1472#ifdef CONFIG_OBJ_CORE_TIMER
1473 struct k_obj_core obj_core;
1474#endif
1475};
1476
1477#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1478 { \
1479 .timeout = { \
1480 .node = {},\
1481 .fn = z_timer_expiration_handler, \
1482 .dticks = 0, \
1483 }, \
1484 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1485 .expiry_fn = expiry, \
1486 .stop_fn = stop, \
1487 .status = 0, \
1488 .user_data = 0, \
1489 }
1490
1511typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1512
1527typedef void (*k_timer_stop_t)(struct k_timer *timer);
1528
1540#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1541 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1542 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1543
1553void k_timer_init(struct k_timer *timer,
1554 k_timer_expiry_t expiry_fn,
1555 k_timer_stop_t stop_fn);
1556
1571__syscall void k_timer_start(struct k_timer *timer,
1572 k_timeout_t duration, k_timeout_t period);
1573
1590__syscall void k_timer_stop(struct k_timer *timer);
1591
1604__syscall uint32_t k_timer_status_get(struct k_timer *timer);
1605
1623__syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1624
1625#ifdef CONFIG_SYS_CLOCK_EXISTS
1626
1637__syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1638
1639static inline k_ticks_t z_impl_k_timer_expires_ticks(
1640 const struct k_timer *timer)
1641{
1642 return z_timeout_expires(&timer->timeout);
1643}
1644
1652__syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1653
1654static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1655 const struct k_timer *timer)
1656{
1657 return z_timeout_remaining(&timer->timeout);
1658}
1659
1670static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
1671{
1673}
1674
1675#endif /* CONFIG_SYS_CLOCK_EXISTS */
1676
1689__syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
1690
1694static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
1695 void *user_data)
1696{
1697 timer->user_data = user_data;
1698}
1699
1707__syscall void *k_timer_user_data_get(const struct k_timer *timer);
1708
1709static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
1710{
1711 return timer->user_data;
1712}
1713
1731__syscall int64_t k_uptime_ticks(void);
1732
1746static inline int64_t k_uptime_get(void)
1747{
1749}
1750
1770static inline uint32_t k_uptime_get_32(void)
1771{
1772 return (uint32_t)k_uptime_get();
1773}
1774
1786static inline int64_t k_uptime_delta(int64_t *reftime)
1787{
1788 int64_t uptime, delta;
1789
1790 uptime = k_uptime_get();
1791 delta = uptime - *reftime;
1792 *reftime = uptime;
1793
1794 return delta;
1795}
1796
1805static inline uint32_t k_cycle_get_32(void)
1806{
1807 return arch_k_cycle_get_32();
1808}
1809
1820static inline uint64_t k_cycle_get_64(void)
1821{
1822 if (!IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
1823 __ASSERT(0, "64-bit cycle counter not enabled on this platform. "
1824 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
1825 return 0;
1826 }
1827
1828 return arch_k_cycle_get_64();
1829}
1830
1835struct k_queue {
1838 _wait_q_t wait_q;
1839
1840 Z_DECL_POLL_EVENT
1841
1843};
1844
1849#define Z_QUEUE_INITIALIZER(obj) \
1850 { \
1851 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
1852 .lock = { }, \
1853 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1854 Z_POLL_EVENT_OBJ_INIT(obj) \
1855 }
1856
1874__syscall void k_queue_init(struct k_queue *queue);
1875
1889__syscall void k_queue_cancel_wait(struct k_queue *queue);
1890
1903void k_queue_append(struct k_queue *queue, void *data);
1904
1921__syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
1922
1935void k_queue_prepend(struct k_queue *queue, void *data);
1936
1953__syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
1954
1968void k_queue_insert(struct k_queue *queue, void *prev, void *data);
1969
1988int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
1989
2005int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
2006
2025__syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
2026
2043bool k_queue_remove(struct k_queue *queue, void *data);
2044
2059bool k_queue_unique_append(struct k_queue *queue, void *data);
2060
2074__syscall int k_queue_is_empty(struct k_queue *queue);
2075
2076static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
2077{
2078 return (int)sys_sflist_is_empty(&queue->data_q);
2079}
2080
2090__syscall void *k_queue_peek_head(struct k_queue *queue);
2091
2101__syscall void *k_queue_peek_tail(struct k_queue *queue);
2102
2112#define K_QUEUE_DEFINE(name) \
2113 STRUCT_SECTION_ITERABLE(k_queue, name) = \
2114 Z_QUEUE_INITIALIZER(name)
2115
2118#ifdef CONFIG_USERSPACE
2128struct k_futex {
2130};
2131
2139struct z_futex_data {
2140 _wait_q_t wait_q;
2141 struct k_spinlock lock;
2142};
2143
2144#define Z_FUTEX_DATA_INITIALIZER(obj) \
2145 { \
2146 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2147 }
2148
2174__syscall int k_futex_wait(struct k_futex *futex, int expected,
2175 k_timeout_t timeout);
2176
2191__syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
2192
2194#endif
2195
2207struct k_event {
2208 _wait_q_t wait_q;
2211
2213
2214#ifdef CONFIG_OBJ_CORE_EVENT
2215 struct k_obj_core obj_core;
2216#endif
2217
2218};
2219
2220#define Z_EVENT_INITIALIZER(obj) \
2221 { \
2222 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2223 .events = 0 \
2224 }
2225
2233__syscall void k_event_init(struct k_event *event);
2234
2250__syscall uint32_t k_event_post(struct k_event *event, uint32_t events);
2251
2267__syscall uint32_t k_event_set(struct k_event *event, uint32_t events);
2268
2283__syscall uint32_t k_event_set_masked(struct k_event *event, uint32_t events,
2284 uint32_t events_mask);
2285
2296__syscall uint32_t k_event_clear(struct k_event *event, uint32_t events);
2297
2319__syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2320 bool reset, k_timeout_t timeout);
2321
2343__syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2344 bool reset, k_timeout_t timeout);
2345
2354static inline uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
2355{
2356 return k_event_wait(event, events_mask, false, K_NO_WAIT);
2357}
2358
2368#define K_EVENT_DEFINE(name) \
2369 STRUCT_SECTION_ITERABLE(k_event, name) = \
2370 Z_EVENT_INITIALIZER(name);
2371
2374struct k_fifo {
2375 struct k_queue _queue;
2376#ifdef CONFIG_OBJ_CORE_FIFO
2377 struct k_obj_core obj_core;
2378#endif
2379};
2380
2384#define Z_FIFO_INITIALIZER(obj) \
2385 { \
2386 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2387 }
2388
2406#define k_fifo_init(fifo) \
2407 ({ \
2408 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2409 k_queue_init(&(fifo)->_queue); \
2410 K_OBJ_CORE_INIT(K_OBJ_CORE(fifo), _obj_type_fifo); \
2411 K_OBJ_CORE_LINK(K_OBJ_CORE(fifo)); \
2412 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2413 })
2414
2426#define k_fifo_cancel_wait(fifo) \
2427 ({ \
2428 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2429 k_queue_cancel_wait(&(fifo)->_queue); \
2430 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2431 })
2432
2445#define k_fifo_put(fifo, data) \
2446 ({ \
2447 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, data); \
2448 k_queue_append(&(fifo)->_queue, data); \
2449 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, data); \
2450 })
2451
2468#define k_fifo_alloc_put(fifo, data) \
2469 ({ \
2470 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, data); \
2471 int fap_ret = k_queue_alloc_append(&(fifo)->_queue, data); \
2472 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, data, fap_ret); \
2473 fap_ret; \
2474 })
2475
2490#define k_fifo_put_list(fifo, head, tail) \
2491 ({ \
2492 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2493 k_queue_append_list(&(fifo)->_queue, head, tail); \
2494 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2495 })
2496
2510#define k_fifo_put_slist(fifo, list) \
2511 ({ \
2512 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2513 k_queue_merge_slist(&(fifo)->_queue, list); \
2514 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2515 })
2516
2534#define k_fifo_get(fifo, timeout) \
2535 ({ \
2536 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2537 void *fg_ret = k_queue_get(&(fifo)->_queue, timeout); \
2538 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, fg_ret); \
2539 fg_ret; \
2540 })
2541
2555#define k_fifo_is_empty(fifo) \
2556 k_queue_is_empty(&(fifo)->_queue)
2557
2571#define k_fifo_peek_head(fifo) \
2572 ({ \
2573 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2574 void *fph_ret = k_queue_peek_head(&(fifo)->_queue); \
2575 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, fph_ret); \
2576 fph_ret; \
2577 })
2578
2590#define k_fifo_peek_tail(fifo) \
2591 ({ \
2592 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2593 void *fpt_ret = k_queue_peek_tail(&(fifo)->_queue); \
2594 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, fpt_ret); \
2595 fpt_ret; \
2596 })
2597
2607#define K_FIFO_DEFINE(name) \
2608 STRUCT_SECTION_ITERABLE(k_fifo, name) = \
2609 Z_FIFO_INITIALIZER(name)
2610
2613struct k_lifo {
2614 struct k_queue _queue;
2615#ifdef CONFIG_OBJ_CORE_LIFO
2616 struct k_obj_core obj_core;
2617#endif
2618};
2619
2624#define Z_LIFO_INITIALIZER(obj) \
2625 { \
2626 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2627 }
2628
2646#define k_lifo_init(lifo) \
2647 ({ \
2648 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2649 k_queue_init(&(lifo)->_queue); \
2650 K_OBJ_CORE_INIT(K_OBJ_CORE(lifo), _obj_type_lifo); \
2651 K_OBJ_CORE_LINK(K_OBJ_CORE(lifo)); \
2652 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2653 })
2654
2667#define k_lifo_put(lifo, data) \
2668 ({ \
2669 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, data); \
2670 k_queue_prepend(&(lifo)->_queue, data); \
2671 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, data); \
2672 })
2673
2690#define k_lifo_alloc_put(lifo, data) \
2691 ({ \
2692 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, data); \
2693 int lap_ret = k_queue_alloc_prepend(&(lifo)->_queue, data); \
2694 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, data, lap_ret); \
2695 lap_ret; \
2696 })
2697
2715#define k_lifo_get(lifo, timeout) \
2716 ({ \
2717 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
2718 void *lg_ret = k_queue_get(&(lifo)->_queue, timeout); \
2719 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, lg_ret); \
2720 lg_ret; \
2721 })
2722
2732#define K_LIFO_DEFINE(name) \
2733 STRUCT_SECTION_ITERABLE(k_lifo, name) = \
2734 Z_LIFO_INITIALIZER(name)
2735
2741#define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
2742
2743typedef uintptr_t stack_data_t;
2744
2745struct k_stack {
2746 _wait_q_t wait_q;
2747 struct k_spinlock lock;
2748 stack_data_t *base, *next, *top;
2749
2750 uint8_t flags;
2751
2753
2754#ifdef CONFIG_OBJ_CORE_STACK
2755 struct k_obj_core obj_core;
2756#endif
2757};
2758
2759#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
2760 { \
2761 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2762 .base = stack_buffer, \
2763 .next = stack_buffer, \
2764 .top = stack_buffer + stack_num_entries, \
2765 }
2766
2786void k_stack_init(struct k_stack *stack,
2787 stack_data_t *buffer, uint32_t num_entries);
2788
2789
2804__syscall int32_t k_stack_alloc_init(struct k_stack *stack,
2805 uint32_t num_entries);
2806
2818int k_stack_cleanup(struct k_stack *stack);
2819
2833__syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
2834
2855__syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
2856 k_timeout_t timeout);
2857
2868#define K_STACK_DEFINE(name, stack_num_entries) \
2869 stack_data_t __noinit \
2870 _k_stack_buf_##name[stack_num_entries]; \
2871 STRUCT_SECTION_ITERABLE(k_stack, name) = \
2872 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
2873 stack_num_entries)
2874
2881struct k_work;
2882struct k_work_q;
2883struct k_work_queue_config;
2884extern struct k_work_q k_sys_work_q;
2885
2900struct k_mutex {
2902 _wait_q_t wait_q;
2905
2908
2911
2913
2914#ifdef CONFIG_OBJ_CORE_MUTEX
2915 struct k_obj_core obj_core;
2916#endif
2917};
2918
2922#define Z_MUTEX_INITIALIZER(obj) \
2923 { \
2924 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2925 .owner = NULL, \
2926 .lock_count = 0, \
2927 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
2928 }
2929
2943#define K_MUTEX_DEFINE(name) \
2944 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
2945 Z_MUTEX_INITIALIZER(name)
2946
2959__syscall int k_mutex_init(struct k_mutex *mutex);
2960
2961
2983__syscall int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout);
2984
3005__syscall int k_mutex_unlock(struct k_mutex *mutex);
3006
3013 _wait_q_t wait_q;
3014
3015#ifdef CONFIG_OBJ_CORE_CONDVAR
3016 struct k_obj_core obj_core;
3017#endif
3018};
3019
3020#define Z_CONDVAR_INITIALIZER(obj) \
3021 { \
3022 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3023 }
3024
3037__syscall int k_condvar_init(struct k_condvar *condvar);
3038
3045__syscall int k_condvar_signal(struct k_condvar *condvar);
3046
3054__syscall int k_condvar_broadcast(struct k_condvar *condvar);
3055
3073__syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
3074 k_timeout_t timeout);
3075
3086#define K_CONDVAR_DEFINE(name) \
3087 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
3088 Z_CONDVAR_INITIALIZER(name)
3097struct k_sem {
3098 _wait_q_t wait_q;
3099 unsigned int count;
3100 unsigned int limit;
3101
3102 Z_DECL_POLL_EVENT
3103
3105
3106#ifdef CONFIG_OBJ_CORE_SEM
3107 struct k_obj_core obj_core;
3108#endif
3109};
3110
3111#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
3112 { \
3113 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3114 .count = initial_count, \
3115 .limit = count_limit, \
3116 Z_POLL_EVENT_OBJ_INIT(obj) \
3117 }
3118
3137#define K_SEM_MAX_LIMIT UINT_MAX
3138
3154__syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
3155 unsigned int limit);
3156
3175__syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
3176
3187__syscall void k_sem_give(struct k_sem *sem);
3188
3198__syscall void k_sem_reset(struct k_sem *sem);
3199
3209__syscall unsigned int k_sem_count_get(struct k_sem *sem);
3210
3214static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
3215{
3216 return sem->count;
3217}
3218
3230#define K_SEM_DEFINE(name, initial_count, count_limit) \
3231 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3232 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3233 BUILD_ASSERT(((count_limit) != 0) && \
3234 ((initial_count) <= (count_limit)) && \
3235 ((count_limit) <= K_SEM_MAX_LIMIT));
3236
3243struct k_work_delayable;
3244struct k_work_sync;
3245
3262typedef void (*k_work_handler_t)(struct k_work *work);
3263
3277void k_work_init(struct k_work *work,
3279
3294int k_work_busy_get(const struct k_work *work);
3295
3309static inline bool k_work_is_pending(const struct k_work *work);
3310
3332 struct k_work *work);
3333
3342int k_work_submit(struct k_work *work);
3343
3368bool k_work_flush(struct k_work *work,
3369 struct k_work_sync *sync);
3370
3390int k_work_cancel(struct k_work *work);
3391
3422bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3423
3434
3455 k_thread_stack_t *stack, size_t stack_size,
3456 int prio, const struct k_work_queue_config *cfg);
3457
3467static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
3468
3492int k_work_queue_drain(struct k_work_q *queue, bool plug);
3493
3508
3524
3536static inline struct k_work_delayable *
3538
3553
3568static inline bool k_work_delayable_is_pending(
3569 const struct k_work_delayable *dwork);
3570
3585 const struct k_work_delayable *dwork);
3586
3601 const struct k_work_delayable *dwork);
3602
3629 struct k_work_delayable *dwork,
3630 k_timeout_t delay);
3631
3646 k_timeout_t delay);
3647
3684 struct k_work_delayable *dwork,
3685 k_timeout_t delay);
3686
3700 k_timeout_t delay);
3701
3727 struct k_work_sync *sync);
3728
3750
3780 struct k_work_sync *sync);
3781
3782enum {
3787 /* The atomic API is used for all work and queue flags fields to
3788 * enforce sequential consistency in SMP environments.
3789 */
3790
3791 /* Bits that represent the work item states. At least nine of the
3792 * combinations are distinct valid stable states.
3793 */
3794 K_WORK_RUNNING_BIT = 0,
3795 K_WORK_CANCELING_BIT = 1,
3796 K_WORK_QUEUED_BIT = 2,
3797 K_WORK_DELAYED_BIT = 3,
3798 K_WORK_FLUSHING_BIT = 4,
3799
3800 K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
3801 | BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT) | BIT(K_WORK_FLUSHING_BIT),
3802
3803 /* Static work flags */
3804 K_WORK_DELAYABLE_BIT = 8,
3805 K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
3806
3807 /* Dynamic work queue flags */
3808 K_WORK_QUEUE_STARTED_BIT = 0,
3809 K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
3810 K_WORK_QUEUE_BUSY_BIT = 1,
3811 K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
3812 K_WORK_QUEUE_DRAIN_BIT = 2,
3813 K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
3814 K_WORK_QUEUE_PLUGGED_BIT = 3,
3815 K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
3816
3817 /* Static work queue flags */
3818 K_WORK_QUEUE_NO_YIELD_BIT = 8,
3819 K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
3820
3824 /* Transient work flags */
3825
3831 K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
3832
3837 K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
3838
3844 K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
3845
3851 K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
3852
3857 K_WORK_FLUSHING = BIT(K_WORK_FLUSHING_BIT),
3858};
3859
3861struct k_work {
3862 /* All fields are protected by the work module spinlock. No fields
3863 * are to be accessed except through kernel API.
3864 */
3865
3866 /* Node to link into k_work_q pending list. */
3868
3869 /* The function to be invoked by the work queue thread. */
3871
3872 /* The queue on which the work item was last submitted. */
3874
3875 /* State of the work item.
3876 *
3877 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
3878 *
3879 * It can be RUNNING and CANCELING simultaneously.
3880 */
3882};
3883
3884#define Z_WORK_INITIALIZER(work_handler) { \
3885 .handler = work_handler, \
3886}
3887
3890 /* The work item. */
3891 struct k_work work;
3892
3893 /* Timeout used to submit work after a delay. */
3894 struct _timeout timeout;
3895
3896 /* The queue to which the work should be submitted. */
3898};
3899
3900#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
3901 .work = { \
3902 .handler = work_handler, \
3903 .flags = K_WORK_DELAYABLE, \
3904 }, \
3905}
3906
3923#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
3924 struct k_work_delayable work \
3925 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
3926
3931/* Record used to wait for work to flush.
3932 *
3933 * The work item is inserted into the queue that will process (or is
3934 * processing) the item, and will be processed as soon as the item
3935 * completes. When the flusher is processed the semaphore will be
3936 * signaled, releasing the thread waiting for the flush.
3937 */
3938struct z_work_flusher {
3939 struct k_work work;
3940 struct k_sem sem;
3941};
3942
3943/* Record used to wait for work to complete a cancellation.
3944 *
3945 * The work item is inserted into a global queue of pending cancels.
3946 * When a cancelling work item goes idle any matching waiters are
3947 * removed from pending_cancels and are woken.
3948 */
3949struct z_work_canceller {
3950 sys_snode_t node;
3951 struct k_work *work;
3952 struct k_sem sem;
3953};
3954
3973 union {
3974 struct z_work_flusher flusher;
3975 struct z_work_canceller canceller;
3976 };
3977};
3978
3990 const char *name;
3991
4005};
4006
4008struct k_work_q {
4009 /* The thread that animates the work. */
4011
4012 /* All the following fields must be accessed only while the
4013 * work module spinlock is held.
4014 */
4015
4016 /* List of k_work items to be worked. */
4018
4019 /* Wait queue for idle work thread. */
4020 _wait_q_t notifyq;
4021
4022 /* Wait queue for threads waiting for the queue to drain. */
4023 _wait_q_t drainq;
4024
4025 /* Flags describing queue state. */
4027};
4028
4029/* Provide the implementation for inline functions declared above */
4030
4031static inline bool k_work_is_pending(const struct k_work *work)
4032{
4033 return k_work_busy_get(work) != 0;
4034}
4035
4036static inline struct k_work_delayable *
4038{
4039 return CONTAINER_OF(work, struct k_work_delayable, work);
4040}
4041
4043 const struct k_work_delayable *dwork)
4044{
4045 return k_work_delayable_busy_get(dwork) != 0;
4046}
4047
4049 const struct k_work_delayable *dwork)
4050{
4051 return z_timeout_expires(&dwork->timeout);
4052}
4053
4055 const struct k_work_delayable *dwork)
4056{
4057 return z_timeout_remaining(&dwork->timeout);
4058}
4059
4061{
4062 return &queue->thread;
4063}
4064
4067struct k_work_user;
4068
4083typedef void (*k_work_user_handler_t)(struct k_work_user *work);
4084
4089struct k_work_user_q {
4090 struct k_queue queue;
4091 struct k_thread thread;
4092};
4093
4094enum {
4095 K_WORK_USER_STATE_PENDING, /* Work item pending state */
4096};
4097
4098struct k_work_user {
4099 void *_reserved; /* Used by k_queue implementation. */
4100 k_work_user_handler_t handler;
4102};
4103
4108#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
4109#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
4110#else
4111#define Z_WORK_USER_INITIALIZER(work_handler) \
4112 { \
4113 ._reserved = NULL, \
4114 .handler = work_handler, \
4115 .flags = 0 \
4116 }
4117#endif
4118
4130#define K_WORK_USER_DEFINE(work, work_handler) \
4131 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4132
4142static inline void k_work_user_init(struct k_work_user *work,
4143 k_work_user_handler_t handler)
4144{
4145 *work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
4146}
4147
4164static inline bool k_work_user_is_pending(struct k_work_user *work)
4165{
4166 return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
4167}
4168
4187static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
4188 struct k_work_user *work)
4189{
4190 int ret = -EBUSY;
4191
4192 if (!atomic_test_and_set_bit(&work->flags,
4193 K_WORK_USER_STATE_PENDING)) {
4194 ret = k_queue_alloc_append(&work_q->queue, work);
4195
4196 /* Couldn't insert into the queue. Clear the pending bit
4197 * so the work item can be submitted again
4198 */
4199 if (ret != 0) {
4200 atomic_clear_bit(&work->flags,
4201 K_WORK_USER_STATE_PENDING);
4202 }
4203 }
4204
4205 return ret;
4206}
4207
4227void k_work_user_queue_start(struct k_work_user_q *work_q,
4228 k_thread_stack_t *stack,
4229 size_t stack_size, int prio,
4230 const char *name);
4231
4242static inline k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
4243{
4244 return &work_q->thread;
4245}
4246
4253struct k_work_poll {
4254 struct k_work work;
4255 struct k_work_q *workq;
4256 struct z_poller poller;
4257 struct k_poll_event *events;
4258 int num_events;
4259 k_work_handler_t real_handler;
4260 struct _timeout timeout;
4261 int poll_result;
4262};
4263
4284#define K_WORK_DEFINE(work, work_handler) \
4285 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4286
4296void k_work_poll_init(struct k_work_poll *work,
4297 k_work_handler_t handler);
4298
4334 struct k_work_poll *work,
4335 struct k_poll_event *events,
4336 int num_events,
4337 k_timeout_t timeout);
4338
4370int k_work_poll_submit(struct k_work_poll *work,
4371 struct k_poll_event *events,
4372 int num_events,
4373 k_timeout_t timeout);
4374
4389int k_work_poll_cancel(struct k_work_poll *work);
4390
4402struct k_msgq {
4404 _wait_q_t wait_q;
4408 size_t msg_size;
4421
4422 Z_DECL_POLL_EVENT
4423
4426
4428
4429#ifdef CONFIG_OBJ_CORE_MSGQ
4430 struct k_obj_core obj_core;
4431#endif
4432};
4438#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4439 { \
4440 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4441 .msg_size = q_msg_size, \
4442 .max_msgs = q_max_msgs, \
4443 .buffer_start = q_buffer, \
4444 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4445 .read_ptr = q_buffer, \
4446 .write_ptr = q_buffer, \
4447 .used_msgs = 0, \
4448 Z_POLL_EVENT_OBJ_INIT(obj) \
4449 }
4450
4456#define K_MSGQ_FLAG_ALLOC BIT(0)
4457
4463 size_t msg_size;
4468};
4469
4470
4489#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4490 static char __noinit __aligned(q_align) \
4491 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4492 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4493 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4494 (q_msg_size), (q_max_msgs))
4495
4510void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
4511 uint32_t max_msgs);
4512
4532__syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
4533 uint32_t max_msgs);
4534
4545int k_msgq_cleanup(struct k_msgq *msgq);
4546
4568__syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
4569
4590__syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
4591
4606__syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
4607
4624__syscall int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx);
4625
4635__syscall void k_msgq_purge(struct k_msgq *msgq);
4636
4647__syscall uint32_t k_msgq_num_free_get(struct k_msgq *msgq);
4648
4657__syscall void k_msgq_get_attrs(struct k_msgq *msgq,
4658 struct k_msgq_attrs *attrs);
4659
4660
4661static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
4662{
4663 return msgq->max_msgs - msgq->used_msgs;
4664}
4665
4675__syscall uint32_t k_msgq_num_used_get(struct k_msgq *msgq);
4676
4677static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
4678{
4679 return msgq->used_msgs;
4680}
4681
4696 size_t size;
4700 void *tx_data;
4706 k_tid_t _syncing_thread;
4707#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
4709 struct k_sem *_async_sem;
4710#endif
4711};
4716struct k_mbox {
4718 _wait_q_t tx_msg_queue;
4720 _wait_q_t rx_msg_queue;
4722
4724
4725#ifdef CONFIG_OBJ_CORE_MAILBOX
4726 struct k_obj_core obj_core;
4727#endif
4728};
4733#define Z_MBOX_INITIALIZER(obj) \
4734 { \
4735 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
4736 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
4737 }
4738
4752#define K_MBOX_DEFINE(name) \
4753 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
4754 Z_MBOX_INITIALIZER(name) \
4755
4763void k_mbox_init(struct k_mbox *mbox);
4764
4784int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4785 k_timeout_t timeout);
4786
4800void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
4801 struct k_sem *sem);
4802
4820int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
4821 void *buffer, k_timeout_t timeout);
4822
4836void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
4837
4847struct k_pipe {
4848 unsigned char *buffer;
4849 size_t size;
4850 size_t bytes_used;
4851 size_t read_index;
4855 struct {
4856 _wait_q_t readers;
4857 _wait_q_t writers;
4860 Z_DECL_POLL_EVENT
4861
4865
4866#ifdef CONFIG_OBJ_CORE_PIPE
4867 struct k_obj_core obj_core;
4868#endif
4869};
4870
4874#define K_PIPE_FLAG_ALLOC BIT(0)
4876#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
4877 { \
4878 .buffer = pipe_buffer, \
4879 .size = pipe_buffer_size, \
4880 .bytes_used = 0, \
4881 .read_index = 0, \
4882 .write_index = 0, \
4883 .lock = {}, \
4884 .wait_q = { \
4885 .readers = Z_WAIT_Q_INIT(&obj.wait_q.readers), \
4886 .writers = Z_WAIT_Q_INIT(&obj.wait_q.writers) \
4887 }, \
4888 Z_POLL_EVENT_OBJ_INIT(obj) \
4889 .flags = 0, \
4890 }
4891
4909#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
4910 static unsigned char __noinit __aligned(pipe_align) \
4911 _k_pipe_buf_##name[pipe_buffer_size]; \
4912 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
4913 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
4914
4926void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size);
4927
4939int k_pipe_cleanup(struct k_pipe *pipe);
4940
4956__syscall int k_pipe_alloc_init(struct k_pipe *pipe, size_t size);
4957
4976__syscall int k_pipe_put(struct k_pipe *pipe, const void *data,
4977 size_t bytes_to_write, size_t *bytes_written,
4978 size_t min_xfer, k_timeout_t timeout);
4979
4999__syscall int k_pipe_get(struct k_pipe *pipe, void *data,
5000 size_t bytes_to_read, size_t *bytes_read,
5001 size_t min_xfer, k_timeout_t timeout);
5002
5011__syscall size_t k_pipe_read_avail(struct k_pipe *pipe);
5012
5021__syscall size_t k_pipe_write_avail(struct k_pipe *pipe);
5022
5033__syscall void k_pipe_flush(struct k_pipe *pipe);
5034
5046__syscall void k_pipe_buffer_flush(struct k_pipe *pipe);
5047
5054struct k_mem_slab_info {
5055 uint32_t num_blocks;
5056 size_t block_size;
5057 uint32_t num_used;
5058#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5059 uint32_t max_used;
5060#endif
5061};
5062
5063struct k_mem_slab {
5064 _wait_q_t wait_q;
5065 struct k_spinlock lock;
5066 char *buffer;
5067 char *free_list;
5068 struct k_mem_slab_info info;
5069
5071
5072#ifdef CONFIG_OBJ_CORE_MEM_SLAB
5073 struct k_obj_core obj_core;
5074#endif
5075};
5076
5077#define Z_MEM_SLAB_INITIALIZER(_slab, _slab_buffer, _slab_block_size, \
5078 _slab_num_blocks) \
5079 { \
5080 .wait_q = Z_WAIT_Q_INIT(&(_slab).wait_q), \
5081 .lock = {}, \
5082 .buffer = _slab_buffer, \
5083 .free_list = NULL, \
5084 .info = {_slab_num_blocks, _slab_block_size, 0} \
5085 }
5086
5087
5121#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
5122 char __noinit_named(k_mem_slab_buf_##name) \
5123 __aligned(WB_UP(slab_align)) \
5124 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5125 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5126 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5127 WB_UP(slab_block_size), slab_num_blocks)
5128
5143#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
5144 static char __noinit_named(k_mem_slab_buf_##name) \
5145 __aligned(WB_UP(slab_align)) \
5146 _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5147 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = \
5148 Z_MEM_SLAB_INITIALIZER(name, _k_mem_slab_buf_##name, \
5149 WB_UP(slab_block_size), slab_num_blocks)
5150
5172int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
5173 size_t block_size, uint32_t num_blocks);
5174
5197int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
5198 k_timeout_t timeout);
5199
5209void k_mem_slab_free(struct k_mem_slab *slab, void *mem);
5210
5221static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
5222{
5223 return slab->info.num_used;
5224}
5225
5236static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5237{
5238#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5239 return slab->info.max_used;
5240#else
5241 ARG_UNUSED(slab);
5242 return 0;
5243#endif
5244}
5245
5256static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5257{
5258 return slab->info.num_blocks - slab->info.num_used;
5259}
5260
5273int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats);
5274
5286int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab);
5287
5295/* kernel synchronized heap struct */
5296
5297struct k_heap {
5299 _wait_q_t wait_q;
5301};
5302
5316void k_heap_init(struct k_heap *h, void *mem,
5317 size_t bytes) __attribute_nonnull(1);
5318
5338void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5339 k_timeout_t timeout) __attribute_nonnull(1);
5340
5362void *k_heap_alloc(struct k_heap *h, size_t bytes,
5363 k_timeout_t timeout) __attribute_nonnull(1);
5364
5375void k_heap_free(struct k_heap *h, void *mem) __attribute_nonnull(1);
5376
5377/* Hand-calculated minimum heap sizes needed to return a successful
5378 * 1-byte allocation. See details in lib/os/heap.[ch]
5379 */
5380#define Z_HEAP_MIN_SIZE (sizeof(void *) > 4 ? 56 : 44)
5381
5398#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5399 char in_section \
5400 __aligned(8) /* CHUNK_UNIT */ \
5401 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5402 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5403 .heap = { \
5404 .init_mem = kheap_##name, \
5405 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5406 }, \
5407 }
5408
5423#define K_HEAP_DEFINE(name, bytes) \
5424 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5425 __noinit_named(kheap_buf_##name))
5426
5441#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
5442 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
5443
5472void *k_aligned_alloc(size_t align, size_t size);
5473
5485void *k_malloc(size_t size);
5486
5497void k_free(void *ptr);
5498
5510void *k_calloc(size_t nmemb, size_t size);
5511
5514/* polling API - PRIVATE */
5515
5516#ifdef CONFIG_POLL
5517#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
5518#else
5519#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
5520#endif
5521
5522/* private - types bit positions */
5523enum _poll_types_bits {
5524 /* can be used to ignore an event */
5525 _POLL_TYPE_IGNORE,
5526
5527 /* to be signaled by k_poll_signal_raise() */
5528 _POLL_TYPE_SIGNAL,
5529
5530 /* semaphore availability */
5531 _POLL_TYPE_SEM_AVAILABLE,
5532
5533 /* queue/FIFO/LIFO data availability */
5534 _POLL_TYPE_DATA_AVAILABLE,
5535
5536 /* msgq data availability */
5537 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
5538
5539 /* pipe data availability */
5540 _POLL_TYPE_PIPE_DATA_AVAILABLE,
5541
5542 _POLL_NUM_TYPES
5543};
5544
5545#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
5546
5547/* private - states bit positions */
5548enum _poll_states_bits {
5549 /* default state when creating event */
5550 _POLL_STATE_NOT_READY,
5551
5552 /* signaled by k_poll_signal_raise() */
5553 _POLL_STATE_SIGNALED,
5554
5555 /* semaphore is available */
5556 _POLL_STATE_SEM_AVAILABLE,
5557
5558 /* data is available to read on queue/FIFO/LIFO */
5559 _POLL_STATE_DATA_AVAILABLE,
5560
5561 /* queue/FIFO/LIFO wait was cancelled */
5562 _POLL_STATE_CANCELLED,
5563
5564 /* data is available to read on a message queue */
5565 _POLL_STATE_MSGQ_DATA_AVAILABLE,
5566
5567 /* data is available to read from a pipe */
5568 _POLL_STATE_PIPE_DATA_AVAILABLE,
5569
5570 _POLL_NUM_STATES
5571};
5572
5573#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
5574
5575#define _POLL_EVENT_NUM_UNUSED_BITS \
5576 (32 - (0 \
5577 + 8 /* tag */ \
5578 + _POLL_NUM_TYPES \
5579 + _POLL_NUM_STATES \
5580 + 1 /* modes */ \
5581 ))
5582
5583/* end of polling API - PRIVATE */
5584
5585
5592/* Public polling API */
5593
5594/* public - values for k_poll_event.type bitfield */
5595#define K_POLL_TYPE_IGNORE 0
5596#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
5597#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
5598#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
5599#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
5600#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
5601#define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
5602
5603/* public - polling modes */
5605 /* polling thread does not take ownership of objects when available */
5607
5610
5611/* public - values for k_poll_event.state bitfield */
5612#define K_POLL_STATE_NOT_READY 0
5613#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
5614#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
5615#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
5616#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
5617#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
5618#define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
5619#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
5620
5621/* public - poll signal object */
5625
5630 unsigned int signaled;
5631
5634};
5635
5636#define K_POLL_SIGNAL_INITIALIZER(obj) \
5637 { \
5638 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
5639 .signaled = 0, \
5640 .result = 0, \
5641 }
5648 sys_dnode_t _node;
5649
5651 struct z_poller *poller;
5652
5655
5657 uint32_t type:_POLL_NUM_TYPES;
5658
5660 uint32_t state:_POLL_NUM_STATES;
5661
5664
5666 uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
5667
5669 union {
5670 void *obj;
5672 struct k_sem *sem;
5673 struct k_fifo *fifo;
5675 struct k_msgq *msgq;
5676#ifdef CONFIG_PIPES
5677 struct k_pipe *pipe;
5678#endif
5679 };
5680};
5681
5682#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
5683 { \
5684 .poller = NULL, \
5685 .type = _event_type, \
5686 .state = K_POLL_STATE_NOT_READY, \
5687 .mode = _event_mode, \
5688 .unused = 0, \
5689 { \
5690 .obj = _event_obj, \
5691 }, \
5692 }
5693
5694#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
5695 event_tag) \
5696 { \
5697 .tag = event_tag, \
5698 .type = _event_type, \
5699 .state = K_POLL_STATE_NOT_READY, \
5700 .mode = _event_mode, \
5701 .unused = 0, \
5702 { \
5703 .obj = _event_obj, \
5704 }, \
5705 }
5706
5722void k_poll_event_init(struct k_poll_event *event, uint32_t type,
5723 int mode, void *obj);
5724
5768__syscall int k_poll(struct k_poll_event *events, int num_events,
5769 k_timeout_t timeout);
5770
5779__syscall void k_poll_signal_init(struct k_poll_signal *sig);
5780
5781/*
5782 * @brief Reset a poll signal object's state to unsignaled.
5783 *
5784 * @param sig A poll signal object
5785 */
5786__syscall void k_poll_signal_reset(struct k_poll_signal *sig);
5787
5798__syscall void k_poll_signal_check(struct k_poll_signal *sig,
5799 unsigned int *signaled, int *result);
5800
5825__syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
5826
5847static inline void k_cpu_idle(void)
5848{
5849 arch_cpu_idle();
5850}
5851
5866static inline void k_cpu_atomic_idle(unsigned int key)
5867{
5869}
5870
5879#ifdef ARCH_EXCEPT
5880/* This architecture has direct support for triggering a CPU exception */
5881#define z_except_reason(reason) ARCH_EXCEPT(reason)
5882#else
5883
5884#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
5885#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
5886#else
5887#define __EXCEPT_LOC()
5888#endif
5889
5890/* NOTE: This is the implementation for arches that do not implement
5891 * ARCH_EXCEPT() to generate a real CPU exception.
5892 *
5893 * We won't have a real exception frame to determine the PC value when
5894 * the oops occurred, so print file and line number before we jump into
5895 * the fatal error handler.
5896 */
5897#define z_except_reason(reason) do { \
5898 __EXCEPT_LOC(); \
5899 z_fatal_error(reason, NULL); \
5900 } while (false)
5901
5902#endif /* _ARCH__EXCEPT */
5918#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
5919
5928#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
5929
5934/*
5935 * private APIs that are utilized by one or more public APIs
5936 */
5937
5941#ifdef CONFIG_MULTITHREADING
5945void z_init_static_threads(void);
5946#else
5950#define z_init_static_threads() do { } while (false)
5951#endif
5952
5956void z_timer_expiration_handler(struct _timeout *t);
5961#ifdef CONFIG_PRINTK
5969__syscall void k_str_out(char *c, size_t n);
5970#endif
5971
5998__syscall int k_float_disable(struct k_thread *thread);
5999
6038__syscall int k_float_enable(struct k_thread *thread, unsigned int options);
6039
6053
6061
6072
6083
6092
6101
6102#ifdef __cplusplus
6103}
6104#endif
6105
6106#include <zephyr/tracing/tracing.h>
6107#include <syscalls/kernel.h>
6108
6109#endif /* !_ASMLANGUAGE */
6110
6111#endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition: arch_interface.h:45
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition: arch_interface.h:47
long atomic_t
Definition: atomic_types.h:15
System error numbers.
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static uint32_t arch_k_cycle_get_32(void)
Obtain the current cycle count, in units specified by CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC.
static uint64_t arch_k_cycle_get_64(void)
As for arch_k_cycle_get_32(), but with a 64 bit return value.
static bool atomic_test_bit(const atomic_t *target, int bit)
Atomically test a bit.
Definition: atomic.h:127
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition: atomic.h:191
static bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit.
Definition: atomic.h:170
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition: kernel.h:1805
#define K_NO_WAIT
Generate null timeout delay.
Definition: kernel.h:1251
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition: kernel.h:1770
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition: sys_clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition: kernel.h:1786
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition: kernel.h:1820
static int64_t k_uptime_get(void)
Get system uptime.
Definition: kernel.h:1746
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition: kernel.h:5847
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition: kernel.h:5866
struct _dnode sys_dnode_t
Doubly-linked list node structure.
Definition: dlist.h:55
struct _dnode sys_dlist_t
Doubly-linked list structure.
Definition: dlist.h:51
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
uint32_t k_event_set_masked(struct k_event *event, uint32_t events, uint32_t events_mask)
Set or clear the events in an event object.
static uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
Test the events currently tracked in the event object.
Definition: kernel.h:2354
uint32_t k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
uint32_t k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_clear(struct k_event *event, uint32_t events)
Clear the events in an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events.
struct _sflist sys_sflist_t
Flagged single-linked list structure.
Definition: sflist.h:60
static bool sys_sflist_is_empty(sys_sflist_t *list)
Test if the given list is empty.
Definition: sflist.h:335
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition: kernel.h:1106
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void *mem)
Free memory allocated from a memory slab.
int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats)
Get the memory stats for a memory slab.
int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
Reset the maximum memory usage for a slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition: kernel.h:5221
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition: kernel.h:5236
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition: kernel.h:5256
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to a message queue.
int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx)
Peek/read a message from a message queue at the specified index.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
size_t k_pipe_read_avail(struct k_pipe *pipe)
Query the number of bytes that may be read from pipe.
int k_pipe_alloc_init(struct k_pipe *pipe, size_t size)
Initialize a pipe and allocate a buffer for it.
void k_pipe_flush(struct k_pipe *pipe)
Flush the pipe of write data.
void k_pipe_buffer_flush(struct k_pipe *pipe)
Flush the pipe's internal buffer.
int k_pipe_cleanup(struct k_pipe *pipe)
Release a pipe's allocated buffer.
int k_pipe_get(struct k_pipe *pipe, void *data, size_t bytes_to_read, size_t *bytes_read, size_t min_xfer, k_timeout_t timeout)
Read data from a pipe.
void k_pipe_init(struct k_pipe *pipe, unsigned char *buffer, size_t size)
Initialize a pipe.
size_t k_pipe_write_avail(struct k_pipe *pipe)
Query the number of bytes that may be written to pipe.
int k_pipe_put(struct k_pipe *pipe, const void *data, size_t bytes_to_write, size_t *bytes_written, size_t min_xfer, k_timeout_t timeout)
Write data to a pipe.
void k_poll_signal_reset(struct k_poll_signal *sig)
k_poll_modes
Definition: kernel.h:5604
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition: kernel.h:5606
@ K_POLL_NUM_MODES
Definition: kernel.h:5608
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
struct _slist sys_slist_t
Single-linked list structure.
Definition: slist.h:49
struct _snode sys_snode_t
Single-linked list node structure.
Definition: slist.h:39
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition: tracing_macros.h:354
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition: util_macro.h:124
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition: util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition: util.h:265
#define EBUSY
Mount device busy.
Definition: errno.h:55
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
const char * k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
bool k_can_yield(void)
Check whether it is possible to yield in the current context.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition: kernel.h:392
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *t)
Get time remaining before a thread wakes up, in system ticks.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition: kernel.h:487
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, k_thread_timeslice_fn_t expired, void *data)
Set thread time slice.
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition: kernel.h:584
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *t)
Get time when a thread wakes up, in system ticks.
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
void k_thread_start(k_tid_t thread)
Start an inactive thread.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
int k_thread_stack_free(k_thread_stack_t *stack)
Free a dynamically allocated thread stack.
__attribute_const__ k_tid_t k_sched_current_thread_query(void)
Query thread ID of the current thread.
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set deadline expiration time for scheduler.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition: kernel.h:103
k_thread_stack_t * k_thread_stack_alloc(size_t size, int flags)
Dynamically allocate a thread stack.
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition: kernel.h:1527
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition: kernel.h:1511
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition: kernel.h:1670
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
#define k_ticks_to_ms_floor32(t)
Convert ticks to milliseconds.
Definition: time_units.h:1254
#define k_ticks_to_ms_floor64(t)
Convert ticks to milliseconds.
Definition: time_units.h:1269
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition: kernel.h:4060
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition: kernel.h:4031
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition: kernel.h:4048
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition: kernel.h:4187
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition: kernel.h:4164
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition: kernel.h:3262
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition: kernel.h:4042
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition: kernel.h:4142
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
static k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
Access the user mode thread that animates a work queue.
Definition: kernel.h:4242
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition: kernel.h:4037
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition: kernel.h:4054
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition: kernel.h:4083
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition: kernel.h:3837
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition: kernel.h:3844
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition: kernel.h:3851
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition: kernel.h:3831
@ K_WORK_FLUSHING
Flag indicating a synced work item that is being flushed.
Definition: kernel.h:3857
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
execution_context_types
Definition: kernel.h:88
@ K_ISR
Definition: kernel.h:89
@ K_COOP_THREAD
Definition: kernel.h:90
@ K_PREEMPT_THREAD
Definition: kernel.h:91
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
Header files included by kernel.h.
void(* k_thread_timeslice_fn_t)(struct k_thread *thread, void *data)
Definition: kernel_structs.h:268
Memory Statistics.
flags
Definition: parser.h:96
state
Definition: parser_state.h:29
__UINT32_TYPE__ uint32_t
Definition: stdint.h:90
__INTPTR_TYPE__ intptr_t
Definition: stdint.h:104
__INT32_TYPE__ int32_t
Definition: stdint.h:74
__UINT64_TYPE__ uint64_t
Definition: stdint.h:91
__UINT8_TYPE__ uint8_t
Definition: stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition: stdint.h:105
__INT64_TYPE__ int64_t
Definition: stdint.h:75
Structure to store initialization entry information.
Definition: init.h:103
Definition: kernel.h:3012
_wait_q_t wait_q
Definition: kernel.h:3013
Event Structure.
Definition: kernel.h:2207
struct k_spinlock lock
Definition: kernel.h:2210
uint32_t events
Definition: kernel.h:2209
_wait_q_t wait_q
Definition: kernel.h:2208
Definition: kernel.h:2374
futex structure
Definition: kernel.h:2128
atomic_t val
Definition: kernel.h:2129
Definition: kernel.h:5297
struct k_spinlock lock
Definition: kernel.h:5300
struct sys_heap heap
Definition: kernel.h:5298
_wait_q_t wait_q
Definition: kernel.h:5299
Definition: kernel.h:2613
Mailbox Message Structure.
Definition: kernel.h:4694
k_tid_t tx_target_thread
target thread id
Definition: kernel.h:4704
void * tx_data
sender's message data buffer
Definition: kernel.h:4700
k_tid_t rx_source_thread
source thread id
Definition: kernel.h:4702
uint32_t info
application-defined information value
Definition: kernel.h:4698
size_t size
size of message (in bytes)
Definition: kernel.h:4696
Mailbox Structure.
Definition: kernel.h:4716
_wait_q_t tx_msg_queue
Transmit messages queue.
Definition: kernel.h:4718
struct k_spinlock lock
Definition: kernel.h:4721
_wait_q_t rx_msg_queue
Receive message queue.
Definition: kernel.h:4720
Memory Domain.
Definition: mem_domain.h:80
Memory Partition.
Definition: mem_domain.h:55
Message Queue Attributes.
Definition: kernel.h:4461
uint32_t used_msgs
Used messages.
Definition: kernel.h:4467
size_t msg_size
Message Size.
Definition: kernel.h:4463
uint32_t max_msgs
Maximal number of messages.
Definition: kernel.h:4465
Message Queue Structure.
Definition: kernel.h:4402
size_t msg_size
Message size.
Definition: kernel.h:4408
char * read_ptr
Read pointer.
Definition: kernel.h:4416
uint32_t used_msgs
Number of used messages.
Definition: kernel.h:4420
char * buffer_end
End of message buffer.
Definition: kernel.h:4414
struct k_spinlock lock
Lock.
Definition: kernel.h:4406
char * write_ptr
Write pointer.
Definition: kernel.h:4418
char * buffer_start
Start of message buffer.
Definition: kernel.h:4412
uint8_t flags
Message queue.
Definition: kernel.h:4425
_wait_q_t wait_q
Message queue wait queue.
Definition: kernel.h:4404
uint32_t max_msgs
Maximal number of messages.
Definition: kernel.h:4410
Mutex Structure.
Definition: kernel.h:2900
uint32_t lock_count
Current lock count.
Definition: kernel.h:2907
_wait_q_t wait_q
Mutex wait queue.
Definition: kernel.h:2902
int owner_orig_prio
Original thread priority.
Definition: kernel.h:2910
struct k_thread * owner
Mutex owner.
Definition: kernel.h:2904
Object core structure.
Definition: obj_core.h:121
Pipe Structure.
Definition: kernel.h:4847
struct k_pipe::@239 wait_q
uint8_t flags
Wait queue.
Definition: kernel.h:4862
_wait_q_t readers
Reader wait queue.
Definition: kernel.h:4856
size_t write_index
Where in buffer to write.
Definition: kernel.h:4852
size_t bytes_used
Definition: kernel.h:4850
struct k_spinlock lock
Synchronization lock.
Definition: kernel.h:4853
_wait_q_t writers
Writer wait queue.
Definition: kernel.h:4857
size_t size
Buffer size.
Definition: kernel.h:4849
unsigned char * buffer
Pipe buffer: may be NULL.
Definition: kernel.h:4848
size_t read_index
Where in buffer to read from.
Definition: kernel.h:4851
Poll Event.
Definition: kernel.h:5646
struct k_poll_signal * signal
Definition: kernel.h:5671
uint32_t tag
optional user-specified tag, opaque, untouched by the API
Definition: kernel.h:5654
struct k_fifo * fifo
Definition: kernel.h:5673
struct k_msgq * msgq
Definition: kernel.h:5675
struct k_queue * queue
Definition: kernel.h:5674
uint32_t unused
unused bits in 32-bit word
Definition: kernel.h:5666
uint32_t type
bitfield of event types (bitwise-ORed K_POLL_TYPE_xxx values)
Definition: kernel.h:5657
struct k_sem * sem
Definition: kernel.h:5672
uint32_t state
bitfield of event states (bitwise-ORed K_POLL_STATE_xxx values)
Definition: kernel.h:5660
uint32_t mode
mode of operation, from enum k_poll_modes
Definition: kernel.h:5663
struct z_poller * poller
PRIVATE - DO NOT TOUCH.
Definition: kernel.h:5651
void * obj
Definition: kernel.h:5670
Definition: kernel.h:5622
sys_dlist_t poll_events
PRIVATE - DO NOT TOUCH.
Definition: kernel.h:5624
int result
custom result value passed to k_poll_signal_raise() if needed
Definition: kernel.h:5633
unsigned int signaled
1 if the event has been signaled, 0 otherwise.
Definition: kernel.h:5630
Definition: kernel.h:1835
struct k_spinlock lock
Definition: kernel.h:1837
_wait_q_t wait_q
Definition: kernel.h:1838
sys_sflist_t data_q
Definition: kernel.h:1836
Kernel Spin Lock.
Definition: spinlock.h:45
Definition: thread.h:197
Thread Structure.
Definition: thread.h:250
struct _thread_base base
Definition: thread.h:252
struct k_heap * resource_pool
resource pool
Definition: thread.h:333
struct __thread_entry entry
thread entry and parameters description
Definition: thread.h:279
Kernel timeout type.
Definition: sys_clock.h:65
A structure used to submit work after a delay.
Definition: kernel.h:3889
struct _timeout timeout
Definition: kernel.h:3894
struct k_work_q * queue
Definition: kernel.h:3897
struct k_work work
Definition: kernel.h:3891
A structure used to hold work until it can be processed.
Definition: kernel.h:4008
sys_slist_t pending
Definition: kernel.h:4017
_wait_q_t drainq
Definition: kernel.h:4023
_wait_q_t notifyq
Definition: kernel.h:4020
uint32_t flags
Definition: kernel.h:4026
struct k_thread thread
Definition: kernel.h:4010
A structure holding optional configuration items for a work queue.
Definition: kernel.h:3985
const char * name
The name to be given to the work queue thread.
Definition: kernel.h:3990
bool no_yield
Control whether the work queue thread should yield between items.
Definition: kernel.h:4004
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition: kernel.h:3972
struct z_work_canceller canceller
Definition: kernel.h:3975
struct z_work_flusher flusher
Definition: kernel.h:3974
A structure used to submit work.
Definition: kernel.h:3861
k_work_handler_t handler
Definition: kernel.h:3870
uint32_t flags
Definition: kernel.h:3881
struct k_work_q * queue
Definition: kernel.h:3873
sys_snode_t node
Definition: kernel.h:3867
Definition: sys_heap.h:56
Definition: mem_stats.h:24
Macros to abstract toolchain specific capabilities.