Zephyr API Documentation 4.3.99
A Scalable Open Source RTOS
Loading...
Searching...
No Matches
kernel.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
12
13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
15
16#if !defined(_ASMLANGUAGE)
18#include <errno.h>
19#include <limits.h>
20#include <stdbool.h>
21#include <zephyr/toolchain.h>
26
27#ifdef __cplusplus
28extern "C" {
29#endif
30
31/*
32 * Zephyr currently assumes the size of a couple standard types to simplify
33 * print string formats. Let's make sure this doesn't change without notice.
34 */
35BUILD_ASSERT(sizeof(int32_t) == sizeof(int));
36BUILD_ASSERT(sizeof(int64_t) == sizeof(long long));
37BUILD_ASSERT(sizeof(intptr_t) == sizeof(long));
38
47
48#define K_ANY NULL
49
50#if (CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES) == 0
51#error Zero available thread priorities defined!
52#endif
53
54#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
55#define K_PRIO_PREEMPT(x) (x)
56
57#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
58#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
59#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
60#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
61#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
62
63#ifdef CONFIG_POLL
64#define Z_POLL_EVENT_OBJ_INIT(obj) \
65 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
66#define Z_DECL_POLL_EVENT sys_dlist_t poll_events;
67#else
68#define Z_POLL_EVENT_OBJ_INIT(obj)
69#define Z_DECL_POLL_EVENT
70#endif
71
72struct k_thread;
73struct k_mutex;
74struct k_sem;
75struct k_msgq;
76struct k_mbox;
77struct k_pipe;
78struct k_queue;
79struct k_fifo;
80struct k_lifo;
81struct k_stack;
82struct k_mem_slab;
83struct k_timer;
84struct k_poll_event;
85struct k_poll_signal;
86struct k_mem_domain;
87struct k_mem_partition;
88struct k_futex;
89struct k_event;
90
96
97/* private, used by k_poll and k_work_poll */
98struct k_work_poll;
99typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
100
105
119static inline void
121{
122#ifdef CONFIG_SCHED_THREAD_USAGE_ANALYSIS
123 thread->base.usage.longest = 0ULL;
124#endif
125}
126
127typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
128 void *user_data);
129
145void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data);
146
165#ifdef CONFIG_SMP
166void k_thread_foreach_filter_by_cpu(unsigned int cpu,
167 k_thread_user_cb_t user_cb, void *user_data);
168#else
169static inline
170void k_thread_foreach_filter_by_cpu(unsigned int cpu,
171 k_thread_user_cb_t user_cb, void *user_data)
172{
173 __ASSERT(cpu == 0, "cpu filter out of bounds");
174 ARG_UNUSED(cpu);
175 k_thread_foreach(user_cb, user_data);
176}
177#endif
178
207 k_thread_user_cb_t user_cb, void *user_data);
208
240#ifdef CONFIG_SMP
242 k_thread_user_cb_t user_cb, void *user_data);
243#else
244static inline
245void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu,
246 k_thread_user_cb_t user_cb, void *user_data)
247{
248 __ASSERT(cpu == 0, "cpu filter out of bounds");
249 ARG_UNUSED(cpu);
250 k_thread_foreach_unlocked(user_cb, user_data);
251}
252#endif
253
255
261
262#endif /* !_ASMLANGUAGE */
263
264
265/*
266 * Thread user options. May be needed by assembly code. Common part uses low
267 * bits, arch-specific use high bits.
268 */
269
273#define K_ESSENTIAL (BIT(0))
274
275#define K_FP_IDX 1
285#define K_FP_REGS (BIT(K_FP_IDX))
286
293#define K_USER (BIT(2))
294
303#define K_INHERIT_PERMS (BIT(3))
304
314#define K_CALLBACK_STATE (BIT(4))
315
325#define K_DSP_IDX 6
326#define K_DSP_REGS (BIT(K_DSP_IDX))
327
336#define K_AGU_IDX 7
337#define K_AGU_REGS (BIT(K_AGU_IDX))
338
348#define K_SSE_REGS (BIT(7))
349
350/* end - thread options */
351
352#if !defined(_ASMLANGUAGE)
377__syscall k_thread_stack_t *k_thread_stack_alloc(size_t size, int flags);
378
392
444__syscall k_tid_t k_thread_create(struct k_thread *new_thread,
445 k_thread_stack_t *stack,
446 size_t stack_size,
448 void *p1, void *p2, void *p3,
449 int prio, uint32_t options, k_timeout_t delay);
450
473 void *p1, void *p2,
474 void *p3);
475
489#define k_thread_access_grant(thread, ...) \
490 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), (thread), __VA_ARGS__)
491
506static inline void k_thread_heap_assign(struct k_thread *thread,
507 struct k_heap *heap)
508{
509 thread->resource_pool = heap;
510}
511
512#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
533__syscall int k_thread_stack_space_get(const struct k_thread *thread,
534 size_t *unused_ptr);
535#endif
536
537#if (K_HEAP_MEM_POOL_SIZE > 0)
550void k_thread_system_pool_assign(struct k_thread *thread);
551#endif /* (K_HEAP_MEM_POOL_SIZE > 0) */
552
572__syscall int k_thread_join(struct k_thread *thread, k_timeout_t timeout);
573
587__syscall int32_t k_sleep(k_timeout_t timeout);
588
600static inline int32_t k_msleep(int32_t ms)
601{
602 return k_sleep(Z_TIMEOUT_MS(ms));
603}
604
622
639__syscall void k_busy_wait(uint32_t usec_to_wait);
640
652bool k_can_yield(void);
653
661__syscall void k_yield(void);
662
672__syscall void k_wakeup(k_tid_t thread);
673
687__attribute_const__
689
701static inline bool k_is_pre_kernel(void)
702{
703 extern bool z_sys_post_kernel; /* in init.c */
704
705 /*
706 * If called from userspace, it must be post kernel.
707 * This guard is necessary because z_sys_post_kernel memory
708 * is not accessible to user threads.
709 */
710 if (k_is_user_context()) {
711 return false;
712 }
713
714 /*
715 * Some compilers might optimize by pre-reading
716 * z_sys_post_kernel. This is absolutely not desirable.
717 * We are trying to avoid reading it if we are in user
718 * context as reading z_sys_post_kernel in user context
719 * will result in access fault. So add a compiler barrier
720 * here to stop that kind of optimizations.
721 */
722 compiler_barrier();
723
724 return !z_sys_post_kernel;
725}
726
733__attribute_const__
734static inline k_tid_t k_current_get(void)
735{
736 __ASSERT(!k_is_pre_kernel(), "k_current_get called pre-kernel");
737
738#ifdef CONFIG_CURRENT_THREAD_USE_TLS
739
740 /* Thread-local cache of current thread ID, set in z_thread_entry() */
741 extern Z_THREAD_LOCAL k_tid_t z_tls_current;
742
743 return z_tls_current;
744#else
746#endif
747}
748
768__syscall void k_thread_abort(k_tid_t thread);
769
770k_ticks_t z_timeout_expires(const struct _timeout *timeout);
771k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
772
773#ifdef CONFIG_SYS_CLOCK_EXISTS
774
782__syscall k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread);
783
784static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
785 const struct k_thread *thread)
786{
787 return z_timeout_expires(&thread->base.timeout);
788}
789
798
799static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
800 const struct k_thread *thread)
801{
802 return z_timeout_remaining(&thread->base.timeout);
803}
804
805#endif /* CONFIG_SYS_CLOCK_EXISTS */
806
810
811struct _static_thread_data {
812 struct k_thread *init_thread;
813 k_thread_stack_t *init_stack;
814 unsigned int init_stack_size;
815 k_thread_entry_t init_entry;
816 void *init_p1;
817 void *init_p2;
818 void *init_p3;
819 int init_prio;
820 uint32_t init_options;
821 const char *init_name;
822#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
823 int32_t init_delay_ms;
824#else
825 k_timeout_t init_delay;
826#endif
827};
828
829#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
830#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay_ms = (ms)
831#define Z_THREAD_INIT_DELAY(thread) SYS_TIMEOUT_MS((thread)->init_delay_ms)
832#else
833#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay = SYS_TIMEOUT_MS_INIT(ms)
834#define Z_THREAD_INIT_DELAY(thread) (thread)->init_delay
835#endif
836
837#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
838 entry, p1, p2, p3, \
839 prio, options, delay, tname) \
840 { \
841 .init_thread = (thread), \
842 .init_stack = (stack), \
843 .init_stack_size = (stack_size), \
844 .init_entry = (k_thread_entry_t)entry, \
845 .init_p1 = (void *)p1, \
846 .init_p2 = (void *)p2, \
847 .init_p3 = (void *)p3, \
848 .init_prio = (prio), \
849 .init_options = (options), \
850 .init_name = STRINGIFY(tname), \
851 Z_THREAD_INIT_DELAY_INITIALIZER(delay) \
852 }
853
854/*
855 * Refer to K_THREAD_DEFINE() and K_KERNEL_THREAD_DEFINE() for
856 * information on arguments.
857 */
858#define Z_THREAD_COMMON_DEFINE(name, stack_size, \
859 entry, p1, p2, p3, \
860 prio, options, delay) \
861 struct k_thread _k_thread_obj_##name; \
862 STRUCT_SECTION_ITERABLE(_static_thread_data, \
863 _k_thread_data_##name) = \
864 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
865 _k_thread_stack_##name, stack_size,\
866 entry, p1, p2, p3, prio, options, \
867 delay, name); \
868 __maybe_unused const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
869
873
905#define K_THREAD_DEFINE(name, stack_size, \
906 entry, p1, p2, p3, \
907 prio, options, delay) \
908 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
909 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
910 prio, options, delay)
911
942#define K_KERNEL_THREAD_DEFINE(name, stack_size, \
943 entry, p1, p2, p3, \
944 prio, options, delay) \
945 K_KERNEL_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
946 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
947 prio, options, delay)
948
958__syscall int k_thread_priority_get(k_tid_t thread);
959
985__syscall void k_thread_priority_set(k_tid_t thread, int prio);
986
987
988#ifdef CONFIG_SCHED_DEADLINE
1020__syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
1021
1062__syscall void k_thread_absolute_deadline_set(k_tid_t thread, int deadline);
1063#endif
1064
1083__syscall void k_reschedule(void);
1084
1085#ifdef CONFIG_SCHED_CPU_MASK
1099
1113
1127
1141
1152int k_thread_cpu_pin(k_tid_t thread, int cpu);
1153#endif
1154
1176__syscall void k_thread_suspend(k_tid_t thread);
1177
1189__syscall void k_thread_resume(k_tid_t thread);
1190
1204static inline void k_thread_start(k_tid_t thread)
1205{
1206 k_wakeup(thread);
1207}
1208
1235void k_sched_time_slice_set(int32_t slice, int prio);
1236
1275void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
1276 k_thread_timeslice_fn_t expired, void *data);
1277
1279
1284
1296bool k_is_in_isr(void);
1297
1314__syscall int k_is_preempt_thread(void);
1315
1319
1324
1350void k_sched_lock(void);
1351
1360
1373__syscall void k_thread_custom_data_set(void *value);
1374
1382__syscall void *k_thread_custom_data_get(void);
1383
1397__syscall int k_thread_name_set(k_tid_t thread, const char *str);
1398
1407const char *k_thread_name_get(k_tid_t thread);
1408
1420__syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1421 size_t size);
1422
1435const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size);
1436
1440
1445
1454#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1455
1468#define K_NSEC(t) Z_TIMEOUT_NS(t)
1469
1482#define K_USEC(t) Z_TIMEOUT_US(t)
1483
1494#define K_CYC(t) Z_TIMEOUT_CYC(t)
1495
1506#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1507
1518#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1519
1530#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1531
1542#define K_MINUTES(m) K_SECONDS((m) * 60)
1543
1554#define K_HOURS(h) K_MINUTES((h) * 60)
1555
1564#define K_FOREVER Z_FOREVER
1565
1566#ifdef CONFIG_TIMEOUT_64BIT
1567
1579#define K_TIMEOUT_ABS_TICKS(t) \
1580 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)CLAMP(t, 0, (INT64_MAX - 1))))
1581
1593#define K_TIMEOUT_ABS_SEC(t) K_TIMEOUT_ABS_TICKS(k_sec_to_ticks_ceil64(t))
1594
1606#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1607
1620#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1621
1634#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1635
1648#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1649
1650#endif
1651
1655
1662struct k_timer {
1666
1667 /*
1668 * _timeout structure must be first here if we want to use
1669 * dynamic timer allocation. timeout.node is used in the double-linked
1670 * list of free timers
1671 */
1672 struct _timeout timeout;
1673
1674 /* wait queue for the (single) thread waiting on this timer */
1675 _wait_q_t wait_q;
1676
1677 /* runs in ISR context */
1678 void (*expiry_fn)(struct k_timer *timer);
1679
1680 /* runs in the context of the thread that calls k_timer_stop() */
1681 void (*stop_fn)(struct k_timer *timer);
1682
1683 /* timer period */
1684 k_timeout_t period;
1685
1686 /* timer status */
1687 uint32_t status;
1688
1689 /* user-specific data, also used to support legacy features */
1690 void *user_data;
1691
1693
1694#ifdef CONFIG_OBJ_CORE_TIMER
1695 struct k_obj_core obj_core;
1696#endif
1700};
1701
1705#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1706 { \
1707 .timeout = { \
1708 .node = {},\
1709 .fn = z_timer_expiration_handler, \
1710 .dticks = 0, \
1711 }, \
1712 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1713 .expiry_fn = expiry, \
1714 .stop_fn = stop, \
1715 .period = {}, \
1716 .status = 0, \
1717 .user_data = 0, \
1718 }
1719
1723
1729
1740typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1741
1756typedef void (*k_timer_stop_t)(struct k_timer *timer);
1757
1769#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1770 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1771 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1772
1782void k_timer_init(struct k_timer *timer,
1783 k_timer_expiry_t expiry_fn,
1784 k_timer_stop_t stop_fn);
1785
1803__syscall void k_timer_start(struct k_timer *timer,
1804 k_timeout_t duration, k_timeout_t period);
1805
1822__syscall void k_timer_stop(struct k_timer *timer);
1823
1836__syscall uint32_t k_timer_status_get(struct k_timer *timer);
1837
1855__syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1856
1857#ifdef CONFIG_SYS_CLOCK_EXISTS
1858
1869__syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1870
1871static inline k_ticks_t z_impl_k_timer_expires_ticks(
1872 const struct k_timer *timer)
1873{
1874 return z_timeout_expires(&timer->timeout);
1875}
1876
1887__syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1888
1889static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1890 const struct k_timer *timer)
1891{
1892 return z_timeout_remaining(&timer->timeout);
1893}
1894
1905static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
1906{
1908}
1909
1910#endif /* CONFIG_SYS_CLOCK_EXISTS */
1911
1924__syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
1925
1929static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
1930 void *user_data)
1931{
1932 timer->user_data = user_data;
1933}
1934
1942__syscall void *k_timer_user_data_get(const struct k_timer *timer);
1943
1944static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
1945{
1946 return timer->user_data;
1947}
1948
1950
1956
1966__syscall int64_t k_uptime_ticks(void);
1967
1981static inline int64_t k_uptime_get(void)
1982{
1984}
1985
2005static inline uint32_t k_uptime_get_32(void)
2006{
2007 return (uint32_t)k_uptime_get();
2008}
2009
2018static inline uint32_t k_uptime_seconds(void)
2019{
2021}
2022
2034static inline int64_t k_uptime_delta(int64_t *reftime)
2035{
2036 int64_t uptime, delta;
2037
2038 uptime = k_uptime_get();
2039 delta = uptime - *reftime;
2040 *reftime = uptime;
2041
2042 return delta;
2043}
2044
2053static inline uint32_t k_cycle_get_32(void)
2054{
2055 return arch_k_cycle_get_32();
2056}
2057
2068static inline uint64_t k_cycle_get_64(void)
2069{
2070 if (!IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
2071 __ASSERT(0, "64-bit cycle counter not enabled on this platform. "
2072 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
2073 return 0;
2074 }
2075
2076 return arch_k_cycle_get_64();
2077}
2078
2082
2083struct k_queue {
2086 _wait_q_t wait_q;
2087
2088 Z_DECL_POLL_EVENT
2089
2091};
2092
2096
2097#define Z_QUEUE_INITIALIZER(obj) \
2098 { \
2099 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
2100 .lock = { }, \
2101 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2102 Z_POLL_EVENT_OBJ_INIT(obj) \
2103 }
2104
2108
2114
2122__syscall void k_queue_init(struct k_queue *queue);
2123
2137__syscall void k_queue_cancel_wait(struct k_queue *queue);
2138
2151void k_queue_append(struct k_queue *queue, void *data);
2152
2169__syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
2170
2183void k_queue_prepend(struct k_queue *queue, void *data);
2184
2201__syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
2202
2216void k_queue_insert(struct k_queue *queue, void *prev, void *data);
2217
2236int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
2237
2253int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
2254
2272__syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
2273
2290bool k_queue_remove(struct k_queue *queue, void *data);
2291
2306bool k_queue_unique_append(struct k_queue *queue, void *data);
2307
2321__syscall int k_queue_is_empty(struct k_queue *queue);
2322
2323static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
2324{
2325 return sys_sflist_is_empty(&queue->data_q) ? 1 : 0;
2326}
2327
2337__syscall void *k_queue_peek_head(struct k_queue *queue);
2338
2348__syscall void *k_queue_peek_tail(struct k_queue *queue);
2349
2359#define K_QUEUE_DEFINE(name) \
2360 STRUCT_SECTION_ITERABLE(k_queue, name) = \
2361 Z_QUEUE_INITIALIZER(name)
2362
2364
2365#ifdef CONFIG_USERSPACE
2375struct k_futex {
2377};
2378
2386struct z_futex_data {
2387 _wait_q_t wait_q;
2388 struct k_spinlock lock;
2389};
2390
2391#define Z_FUTEX_DATA_INITIALIZER(obj) \
2392 { \
2393 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2394 }
2395
2401
2421__syscall int k_futex_wait(struct k_futex *futex, int expected,
2422 k_timeout_t timeout);
2423
2438__syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
2439
2441#endif
2442
2448
2453
2460
2461struct k_event {
2465 _wait_q_t wait_q;
2466 uint32_t events;
2467 struct k_spinlock lock;
2468
2470
2471#ifdef CONFIG_OBJ_CORE_EVENT
2472 struct k_obj_core obj_core;
2473#endif
2477
2478};
2479
2483
2484#define Z_EVENT_INITIALIZER(obj) \
2485 { \
2486 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2487 .events = 0, \
2488 .lock = {}, \
2489 }
2493
2501__syscall void k_event_init(struct k_event *event);
2502
2520__syscall uint32_t k_event_post(struct k_event *event, uint32_t events);
2521
2539__syscall uint32_t k_event_set(struct k_event *event, uint32_t events);
2540
2557__syscall uint32_t k_event_set_masked(struct k_event *event, uint32_t events,
2558 uint32_t events_mask);
2559
2572__syscall uint32_t k_event_clear(struct k_event *event, uint32_t events);
2573
2598__syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2599 bool reset, k_timeout_t timeout);
2600
2625__syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2626 bool reset, k_timeout_t timeout);
2627
2647__syscall uint32_t k_event_wait_safe(struct k_event *event, uint32_t events,
2648 bool reset, k_timeout_t timeout);
2649
2669__syscall uint32_t k_event_wait_all_safe(struct k_event *event, uint32_t events,
2670 bool reset, k_timeout_t timeout);
2671
2672
2673
2684static inline uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
2685{
2686 return k_event_wait(event, events_mask, false, K_NO_WAIT);
2687}
2688
2698#define K_EVENT_DEFINE(name) \
2699 STRUCT_SECTION_ITERABLE(k_event, name) = \
2700 Z_EVENT_INITIALIZER(name);
2701
2703
2704struct k_fifo {
2705 struct k_queue _queue;
2706#ifdef CONFIG_OBJ_CORE_FIFO
2707 struct k_obj_core obj_core;
2708#endif
2709};
2710
2714#define Z_FIFO_INITIALIZER(obj) \
2715 { \
2716 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2717 }
2718
2722
2728
2736#define k_fifo_init(fifo) \
2737 ({ \
2738 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2739 k_queue_init(&(fifo)->_queue); \
2740 K_OBJ_CORE_INIT(K_OBJ_CORE(fifo), _obj_type_fifo); \
2741 K_OBJ_CORE_LINK(K_OBJ_CORE(fifo)); \
2742 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2743 })
2744
2756#define k_fifo_cancel_wait(fifo) \
2757 ({ \
2758 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2759 k_queue_cancel_wait(&(fifo)->_queue); \
2760 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2761 })
2762
2775#define k_fifo_put(fifo, data) \
2776 ({ \
2777 void *_data = data; \
2778 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, _data); \
2779 k_queue_append(&(fifo)->_queue, _data); \
2780 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, _data); \
2781 })
2782
2799#define k_fifo_alloc_put(fifo, data) \
2800 ({ \
2801 void *_data = data; \
2802 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, _data); \
2803 int fap_ret = k_queue_alloc_append(&(fifo)->_queue, _data); \
2804 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, _data, fap_ret); \
2805 fap_ret; \
2806 })
2807
2822#define k_fifo_put_list(fifo, head, tail) \
2823 ({ \
2824 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2825 k_queue_append_list(&(fifo)->_queue, head, tail); \
2826 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2827 })
2828
2842#define k_fifo_put_slist(fifo, list) \
2843 ({ \
2844 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2845 k_queue_merge_slist(&(fifo)->_queue, list); \
2846 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2847 })
2848
2866#define k_fifo_get(fifo, timeout) \
2867 ({ \
2868 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2869 void *fg_ret = k_queue_get(&(fifo)->_queue, timeout); \
2870 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, fg_ret); \
2871 fg_ret; \
2872 })
2873
2887#define k_fifo_is_empty(fifo) \
2888 k_queue_is_empty(&(fifo)->_queue)
2889
2903#define k_fifo_peek_head(fifo) \
2904 ({ \
2905 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
2906 void *fph_ret = k_queue_peek_head(&(fifo)->_queue); \
2907 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, fph_ret); \
2908 fph_ret; \
2909 })
2910
2922#define k_fifo_peek_tail(fifo) \
2923 ({ \
2924 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
2925 void *fpt_ret = k_queue_peek_tail(&(fifo)->_queue); \
2926 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, fpt_ret); \
2927 fpt_ret; \
2928 })
2929
2939#define K_FIFO_DEFINE(name) \
2940 STRUCT_SECTION_ITERABLE(k_fifo, name) = \
2941 Z_FIFO_INITIALIZER(name)
2942
2944
2945struct k_lifo {
2946 struct k_queue _queue;
2947#ifdef CONFIG_OBJ_CORE_LIFO
2948 struct k_obj_core obj_core;
2949#endif
2950};
2951
2955
2956#define Z_LIFO_INITIALIZER(obj) \
2957 { \
2958 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2959 }
2960
2964
2970
2978#define k_lifo_init(lifo) \
2979 ({ \
2980 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
2981 k_queue_init(&(lifo)->_queue); \
2982 K_OBJ_CORE_INIT(K_OBJ_CORE(lifo), _obj_type_lifo); \
2983 K_OBJ_CORE_LINK(K_OBJ_CORE(lifo)); \
2984 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
2985 })
2986
2999#define k_lifo_put(lifo, data) \
3000 ({ \
3001 void *_data = data; \
3002 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, _data); \
3003 k_queue_prepend(&(lifo)->_queue, _data); \
3004 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, _data); \
3005 })
3006
3023#define k_lifo_alloc_put(lifo, data) \
3024 ({ \
3025 void *_data = data; \
3026 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, _data); \
3027 int lap_ret = k_queue_alloc_prepend(&(lifo)->_queue, _data); \
3028 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, _data, lap_ret); \
3029 lap_ret; \
3030 })
3031
3049#define k_lifo_get(lifo, timeout) \
3050 ({ \
3051 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
3052 void *lg_ret = k_queue_get(&(lifo)->_queue, timeout); \
3053 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, lg_ret); \
3054 lg_ret; \
3055 })
3056
3066#define K_LIFO_DEFINE(name) \
3067 STRUCT_SECTION_ITERABLE(k_lifo, name) = \
3068 Z_LIFO_INITIALIZER(name)
3069
3071
3075#define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
3076
3077typedef uintptr_t stack_data_t;
3078
3079struct k_stack {
3080 _wait_q_t wait_q;
3081 struct k_spinlock lock;
3082 stack_data_t *base, *next, *top;
3083
3084 uint8_t flags;
3085
3087
3088#ifdef CONFIG_OBJ_CORE_STACK
3089 struct k_obj_core obj_core;
3090#endif
3091};
3092
3093#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
3094 { \
3095 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3096 .base = (stack_buffer), \
3097 .next = (stack_buffer), \
3098 .top = (stack_buffer) + (stack_num_entries), \
3099 }
3100
3104
3110
3120void k_stack_init(struct k_stack *stack,
3121 stack_data_t *buffer, uint32_t num_entries);
3122
3123
3137
3138__syscall int32_t k_stack_alloc_init(struct k_stack *stack,
3139 uint32_t num_entries);
3140
3152int k_stack_cleanup(struct k_stack *stack);
3153
3167__syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
3168
3189__syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
3190 k_timeout_t timeout);
3191
3202#define K_STACK_DEFINE(name, stack_num_entries) \
3203 stack_data_t __noinit \
3204 _k_stack_buf_##name[stack_num_entries]; \
3205 STRUCT_SECTION_ITERABLE(k_stack, name) = \
3206 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
3207 stack_num_entries)
3208
3210
3214
3215struct k_work;
3216struct k_work_q;
3217struct k_work_queue_config;
3218extern struct k_work_q k_sys_work_q;
3219
3223
3229
3234struct k_mutex {
3236 _wait_q_t wait_q;
3239
3242
3245
3247
3248#ifdef CONFIG_OBJ_CORE_MUTEX
3249 struct k_obj_core obj_core;
3250#endif
3251};
3252
3256#define Z_MUTEX_INITIALIZER(obj) \
3257 { \
3258 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3259 .owner = NULL, \
3260 .lock_count = 0, \
3261 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
3262 }
3263
3267
3277#define K_MUTEX_DEFINE(name) \
3278 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
3279 Z_MUTEX_INITIALIZER(name)
3280
3293__syscall int k_mutex_init(struct k_mutex *mutex);
3294
3295
3317__syscall int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout);
3318
3339__syscall int k_mutex_unlock(struct k_mutex *mutex);
3340
3344
3345
3347 _wait_q_t wait_q;
3348
3349#ifdef CONFIG_OBJ_CORE_CONDVAR
3350 struct k_obj_core obj_core;
3351#endif
3352};
3353
3354#define Z_CONDVAR_INITIALIZER(obj) \
3355 { \
3356 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3357 }
3358
3364
3371__syscall int k_condvar_init(struct k_condvar *condvar);
3372
3379__syscall int k_condvar_signal(struct k_condvar *condvar);
3380
3388__syscall int k_condvar_broadcast(struct k_condvar *condvar);
3389
3407__syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
3408 k_timeout_t timeout);
3409
3420#define K_CONDVAR_DEFINE(name) \
3421 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
3422 Z_CONDVAR_INITIALIZER(name)
3423
3426
3432
3439struct k_sem {
3443 _wait_q_t wait_q;
3444 unsigned int count;
3445 unsigned int limit;
3446
3447 Z_DECL_POLL_EVENT
3448
3450
3451#ifdef CONFIG_OBJ_CORE_SEM
3452 struct k_obj_core obj_core;
3453#endif
3455};
3456
3460
3461#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
3462 { \
3463 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3464 .count = (initial_count), \
3465 .limit = (count_limit), \
3466 Z_POLL_EVENT_OBJ_INIT(obj) \
3467 }
3468
3472
3481#define K_SEM_MAX_LIMIT UINT_MAX
3482
3498__syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
3499 unsigned int limit);
3500
3519__syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
3520
3531__syscall void k_sem_give(struct k_sem *sem);
3532
3542__syscall void k_sem_reset(struct k_sem *sem);
3543
3553__syscall unsigned int k_sem_count_get(struct k_sem *sem);
3554
3558static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
3559{
3560 return sem->count;
3561}
3562
3574#define K_SEM_DEFINE(name, initial_count, count_limit) \
3575 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3576 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3577 BUILD_ASSERT(((count_limit) != 0) && \
3578 (((initial_count) < (count_limit)) || ((initial_count) == (count_limit))) && \
3579 ((count_limit) <= K_SEM_MAX_LIMIT));
3580
3582
3583#if defined(CONFIG_SCHED_IPI_SUPPORTED) || defined(__DOXYGEN__)
3584struct k_ipi_work;
3585
3586
3587typedef void (*k_ipi_func_t)(struct k_ipi_work *work);
3588
3599 sys_dnode_t node[CONFIG_MP_MAX_NUM_CPUS]; /* Node in IPI work queue */
3600 k_ipi_func_t func; /* Function to execute on target CPU */
3601 struct k_event event; /* Event to signal when processed */
3602 uint32_t bitmask; /* Bitmask of targeted CPUs */
3604};
3605
3606
3614static inline void k_ipi_work_init(struct k_ipi_work *work)
3615{
3616 k_event_init(&work->event);
3617 for (unsigned int i = 0; i < CONFIG_MP_MAX_NUM_CPUS; i++) {
3618 sys_dnode_init(&work->node[i]);
3619 }
3620 work->bitmask = 0;
3621}
3622
3641int k_ipi_work_add(struct k_ipi_work *work, uint32_t cpu_bitmask,
3642 k_ipi_func_t func);
3643
3666int k_ipi_work_wait(struct k_ipi_work *work, k_timeout_t timeout);
3667
3677
3678#endif /* CONFIG_SCHED_IPI_SUPPORTED */
3679
3683
3684struct k_work_delayable;
3685struct k_work_sync;
3686
3690
3696
3703typedef void (*k_work_handler_t)(struct k_work *work);
3704
3718void k_work_init(struct k_work *work,
3720
3735int k_work_busy_get(const struct k_work *work);
3736
3750static inline bool k_work_is_pending(const struct k_work *work);
3751
3773 struct k_work *work);
3774
3783int k_work_submit(struct k_work *work);
3784
3809bool k_work_flush(struct k_work *work,
3810 struct k_work_sync *sync);
3811
3831int k_work_cancel(struct k_work *work);
3832
3863bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3864
3875
3896 k_thread_stack_t *stack, size_t stack_size,
3897 int prio, const struct k_work_queue_config *cfg);
3898
3909void k_work_queue_run(struct k_work_q *queue, const struct k_work_queue_config *cfg);
3910
3920static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
3921
3945int k_work_queue_drain(struct k_work_q *queue, bool plug);
3946
3961
3978
3994
4006static inline struct k_work_delayable *
4008
4023
4038static inline bool k_work_delayable_is_pending(
4039 const struct k_work_delayable *dwork);
4040
4055 const struct k_work_delayable *dwork);
4056
4071 const struct k_work_delayable *dwork);
4072
4101 struct k_work_delayable *dwork,
4102 k_timeout_t delay);
4103
4118 k_timeout_t delay);
4119
4156 struct k_work_delayable *dwork,
4157 k_timeout_t delay);
4158
4172 k_timeout_t delay);
4173
4199 struct k_work_sync *sync);
4200
4222
4252 struct k_work_sync *sync);
4253
4254enum {
4258
4259 /* The atomic API is used for all work and queue flags fields to
4260 * enforce sequential consistency in SMP environments.
4261 */
4262
4263 /* Bits that represent the work item states. At least nine of the
4264 * combinations are distinct valid stable states.
4265 */
4266 K_WORK_RUNNING_BIT = 0,
4267 K_WORK_CANCELING_BIT = 1,
4268 K_WORK_QUEUED_BIT = 2,
4269 K_WORK_DELAYED_BIT = 3,
4270 K_WORK_FLUSHING_BIT = 4,
4271
4272 K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
4273 | BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT) | BIT(K_WORK_FLUSHING_BIT),
4274
4275 /* Static work flags */
4276 K_WORK_DELAYABLE_BIT = 8,
4277 K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
4278
4279 /* Dynamic work queue flags */
4280 K_WORK_QUEUE_STARTED_BIT = 0,
4281 K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
4282 K_WORK_QUEUE_BUSY_BIT = 1,
4283 K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
4284 K_WORK_QUEUE_DRAIN_BIT = 2,
4285 K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
4286 K_WORK_QUEUE_PLUGGED_BIT = 3,
4287 K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
4288 K_WORK_QUEUE_STOP_BIT = 4,
4289 K_WORK_QUEUE_STOP = BIT(K_WORK_QUEUE_STOP_BIT),
4290
4291 /* Static work queue flags */
4292 K_WORK_QUEUE_NO_YIELD_BIT = 8,
4293 K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
4294
4298 /* Transient work flags */
4299
4305 K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
4306
4311 K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
4312
4318 K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
4319
4325 K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
4326
4331 K_WORK_FLUSHING = BIT(K_WORK_FLUSHING_BIT),
4332};
4333
4335struct k_work {
4336 /* All fields are protected by the work module spinlock. No fields
4337 * are to be accessed except through kernel API.
4338 */
4339
4340 /* Node to link into k_work_q pending list. */
4342
4343 /* The function to be invoked by the work queue thread. */
4345
4346 /* The queue on which the work item was last submitted. */
4348
4349 /* State of the work item.
4350 *
4351 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
4352 *
4353 * It can be RUNNING and CANCELING simultaneously.
4354 */
4356};
4357
4358#define Z_WORK_INITIALIZER(work_handler) { \
4359 .handler = (work_handler), \
4360}
4361
4364 /* The work item. */
4365 struct k_work work;
4366
4367 /* Timeout used to submit work after a delay. */
4368 struct _timeout timeout;
4369
4370 /* The queue to which the work should be submitted. */
4372};
4373
4374#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
4375 .work = { \
4376 .handler = (work_handler), \
4377 .flags = K_WORK_DELAYABLE, \
4378 }, \
4379}
4380
4397#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
4398 struct k_work_delayable work \
4399 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
4400
4404
4405/* Record used to wait for work to flush.
4406 *
4407 * The work item is inserted into the queue that will process (or is
4408 * processing) the item, and will be processed as soon as the item
4409 * completes. When the flusher is processed the semaphore will be
4410 * signaled, releasing the thread waiting for the flush.
4411 */
4412struct z_work_flusher {
4413 struct k_work work;
4414 struct k_sem sem;
4415};
4416
4417/* Record used to wait for work to complete a cancellation.
4418 *
4419 * The work item is inserted into a global queue of pending cancels.
4420 * When a cancelling work item goes idle any matching waiters are
4421 * removed from pending_cancels and are woken.
4422 */
4423struct z_work_canceller {
4424 sys_snode_t node;
4425 struct k_work *work;
4426 struct k_sem sem;
4427};
4428
4432
4447 union {
4448 struct z_work_flusher flusher;
4449 struct z_work_canceller canceller;
4450 };
4451};
4452
4464 const char *name;
4465
4479
4484
4494};
4495
4497struct k_work_q {
4498 /* The thread that animates the work. */
4500
4501 /* The thread ID that animates the work. This may be an external thread
4502 * if k_work_queue_run() is used.
4503 */
4505
4506 /* All the following fields must be accessed only while the
4507 * work module spinlock is held.
4508 */
4509
4510 /* List of k_work items to be worked. */
4512
4513 /* Wait queue for idle work thread. */
4514 _wait_q_t notifyq;
4515
4516 /* Wait queue for threads waiting for the queue to drain. */
4517 _wait_q_t drainq;
4518
4519 /* Flags describing queue state. */
4521
4522#if defined(CONFIG_WORKQUEUE_WORK_TIMEOUT)
4523 struct _timeout work_timeout_record;
4524 struct k_work *work;
4525 k_timeout_t work_timeout;
4526#endif /* defined(CONFIG_WORKQUEUE_WORK_TIMEOUT) */
4527};
4528
4529/* Provide the implementation for inline functions declared above */
4530
4531static inline bool k_work_is_pending(const struct k_work *work)
4532{
4533 return k_work_busy_get(work) != 0;
4534}
4535
4536static inline struct k_work_delayable *
4541
4543 const struct k_work_delayable *dwork)
4544{
4545 return k_work_delayable_busy_get(dwork) != 0;
4546}
4547
4549 const struct k_work_delayable *dwork)
4550{
4551 return z_timeout_expires(&dwork->timeout);
4552}
4553
4555 const struct k_work_delayable *dwork)
4556{
4557 return z_timeout_remaining(&dwork->timeout);
4558}
4559
4561{
4562 return queue->thread_id;
4563}
4564
4566
4567struct k_work_user;
4568
4573
4583typedef void (*k_work_user_handler_t)(struct k_work_user *work);
4584
4588
4589struct k_work_user_q {
4590 struct k_queue queue;
4591 struct k_thread thread;
4592};
4593
4594enum {
4595 K_WORK_USER_STATE_PENDING, /* Work item pending state */
4596};
4597
4598struct k_work_user {
4599 void *_reserved; /* Used by k_queue implementation. */
4600 k_work_user_handler_t handler;
4602};
4603
4607
4608#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
4609#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
4610#else
4611#define Z_WORK_USER_INITIALIZER(work_handler) \
4612 { \
4613 ._reserved = NULL, \
4614 .handler = (work_handler), \
4615 .flags = 0 \
4616 }
4617#endif
4618
4630#define K_WORK_USER_DEFINE(work, work_handler) \
4631 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4632
4642static inline void k_work_user_init(struct k_work_user *work,
4643 k_work_user_handler_t handler)
4644{
4645 *work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
4646}
4647
4664static inline bool k_work_user_is_pending(struct k_work_user *work)
4665{
4666 return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
4667}
4668
4687static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
4688 struct k_work_user *work)
4689{
4690 int ret = -EBUSY;
4691
4692 if (!atomic_test_and_set_bit(&work->flags,
4693 K_WORK_USER_STATE_PENDING)) {
4694 ret = k_queue_alloc_append(&work_q->queue, work);
4695
4696 /* Couldn't insert into the queue. Clear the pending bit
4697 * so the work item can be submitted again
4698 */
4699 if (ret != 0) {
4700 atomic_clear_bit(&work->flags,
4701 K_WORK_USER_STATE_PENDING);
4702 }
4703 }
4704
4705 return ret;
4706}
4707
4727void k_work_user_queue_start(struct k_work_user_q *work_q,
4728 k_thread_stack_t *stack,
4729 size_t stack_size, int prio,
4730 const char *name);
4731
4742static inline k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
4743{
4744 return &work_q->thread;
4745}
4746
4748
4752
4753struct k_work_poll {
4754 struct k_work work;
4755 struct k_work_q *workq;
4756 struct z_poller poller;
4757 struct k_poll_event *events;
4758 int num_events;
4759 k_work_handler_t real_handler;
4760 struct _timeout timeout;
4761 int poll_result;
4762};
4763
4767
4772
4784#define K_WORK_DEFINE(work, work_handler) \
4785 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4786
4796void k_work_poll_init(struct k_work_poll *work,
4797 k_work_handler_t handler);
4798
4834 struct k_work_poll *work,
4835 struct k_poll_event *events,
4836 int num_events,
4837 k_timeout_t timeout);
4838
4870int k_work_poll_submit(struct k_work_poll *work,
4871 struct k_poll_event *events,
4872 int num_events,
4873 k_timeout_t timeout);
4874
4889int k_work_poll_cancel(struct k_work_poll *work);
4890
4892
4898
4902struct k_msgq {
4904 _wait_q_t wait_q;
4908 size_t msg_size;
4921
4922 Z_DECL_POLL_EVENT
4923
4926
4928
4929#ifdef CONFIG_OBJ_CORE_MSGQ
4930 struct k_obj_core obj_core;
4931#endif
4932};
4933
4936
4937
4938#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
4939 { \
4940 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
4941 .lock = {}, \
4942 .msg_size = q_msg_size, \
4943 .max_msgs = q_max_msgs, \
4944 .buffer_start = q_buffer, \
4945 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
4946 .read_ptr = q_buffer, \
4947 .write_ptr = q_buffer, \
4948 .used_msgs = 0, \
4949 Z_POLL_EVENT_OBJ_INIT(obj) \
4950 .flags = 0, \
4951 }
4952
4956
4957
4958#define K_MSGQ_FLAG_ALLOC BIT(0)
4959
4971
4972
4991#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
4992 static char __noinit __aligned(q_align) \
4993 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
4994 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
4995 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
4996 (q_msg_size), (q_max_msgs))
4997
5012void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
5013 uint32_t max_msgs);
5014
5034__syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
5035 uint32_t max_msgs);
5036
5047int k_msgq_cleanup(struct k_msgq *msgq);
5048
5069__syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
5070
5095__syscall int k_msgq_put_front(struct k_msgq *msgq, const void *data);
5096
5117__syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
5118
5133__syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
5134
5151__syscall int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx);
5152
5162__syscall void k_msgq_purge(struct k_msgq *msgq);
5163
5174__syscall uint32_t k_msgq_num_free_get(struct k_msgq *msgq);
5175
5184__syscall void k_msgq_get_attrs(struct k_msgq *msgq,
5185 struct k_msgq_attrs *attrs);
5186
5187
5188static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
5189{
5190 return msgq->max_msgs - msgq->used_msgs;
5191}
5192
5202__syscall uint32_t k_msgq_num_used_get(struct k_msgq *msgq);
5203
5204static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
5205{
5206 return msgq->used_msgs;
5207}
5208
5210
5216
5223 size_t size;
5227 void *tx_data;
5233 k_tid_t _syncing_thread;
5234#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
5236 struct k_sem *_async_sem;
5237#endif
5238};
5239
5243struct k_mbox {
5245 _wait_q_t tx_msg_queue;
5247 _wait_q_t rx_msg_queue;
5249
5251
5252#ifdef CONFIG_OBJ_CORE_MAILBOX
5253 struct k_obj_core obj_core;
5254#endif
5255};
5256
5259
5260#define Z_MBOX_INITIALIZER(obj) \
5261 { \
5262 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
5263 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
5264 }
5265
5269
5279#define K_MBOX_DEFINE(name) \
5280 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
5281 Z_MBOX_INITIALIZER(name) \
5282
5283
5290void k_mbox_init(struct k_mbox *mbox);
5291
5311int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
5312 k_timeout_t timeout);
5313
5327void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
5328 struct k_sem *sem);
5329
5347int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
5348 void *buffer, k_timeout_t timeout);
5349
5363void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
5364
5366
5372
5382__syscall void k_pipe_init(struct k_pipe *pipe, uint8_t *buffer, size_t buffer_size);
5383
5388
5389struct k_pipe {
5390 size_t waiting;
5393 _wait_q_t data;
5394 _wait_q_t space;
5396
5397 Z_DECL_POLL_EVENT
5398#ifdef CONFIG_OBJ_CORE_PIPE
5399 struct k_obj_core obj_core;
5400#endif
5402};
5403
5407#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
5408{ \
5409 .waiting = 0, \
5410 .buf = RING_BUF_INIT(pipe_buffer, pipe_buffer_size), \
5411 .data = Z_WAIT_Q_INIT(&obj.data), \
5412 .space = Z_WAIT_Q_INIT(&obj.space), \
5413 .flags = PIPE_FLAG_OPEN, \
5414 Z_POLL_EVENT_OBJ_INIT(obj) \
5415}
5419
5433#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
5434 static unsigned char __noinit __aligned(pipe_align) \
5435 _k_pipe_buf_##name[pipe_buffer_size]; \
5436 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
5437 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
5438
5439
5456__syscall int k_pipe_write(struct k_pipe *pipe, const uint8_t *data, size_t len,
5457 k_timeout_t timeout);
5458
5474__syscall int k_pipe_read(struct k_pipe *pipe, uint8_t *data, size_t len,
5475 k_timeout_t timeout);
5476
5486__syscall void k_pipe_reset(struct k_pipe *pipe);
5487
5496__syscall void k_pipe_close(struct k_pipe *pipe);
5498
5502struct k_mem_slab_info {
5503 uint32_t num_blocks;
5504 size_t block_size;
5505 uint32_t num_used;
5506#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5507 uint32_t max_used;
5508#endif
5509};
5510
5511struct k_mem_slab {
5512 _wait_q_t wait_q;
5513 struct k_spinlock lock;
5514 char *buffer;
5515 char *free_list;
5516 struct k_mem_slab_info info;
5517
5519
5520#ifdef CONFIG_OBJ_CORE_MEM_SLAB
5521 struct k_obj_core obj_core;
5522#endif
5523};
5524
5525#define Z_MEM_SLAB_INITIALIZER(_slab, _slab_buffer, _slab_block_size, \
5526 _slab_num_blocks) \
5527 { \
5528 .wait_q = Z_WAIT_Q_INIT(&(_slab).wait_q), \
5529 .lock = {}, \
5530 .buffer = _slab_buffer, \
5531 .free_list = NULL, \
5532 .info = {_slab_num_blocks, _slab_block_size, 0} \
5533 }
5534
5535
5539
5545
5571#define K_MEM_SLAB_DEFINE_IN_SECT(name, in_section, slab_block_size, slab_num_blocks, slab_align) \
5572 BUILD_ASSERT(((slab_block_size) % (slab_align)) == 0, \
5573 "slab_block_size must be a multiple of slab_align"); \
5574 BUILD_ASSERT((((slab_align) & ((slab_align) - 1)) == 0), \
5575 "slab_align must be a power of 2"); \
5576 char in_section __aligned(WB_UP( \
5577 slab_align)) _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5578 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = Z_MEM_SLAB_INITIALIZER( \
5579 name, _k_mem_slab_buf_##name, WB_UP(slab_block_size), slab_num_blocks)
5580
5604#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
5605 K_MEM_SLAB_DEFINE_IN_SECT(name, __noinit_named(k_mem_slab_buf_##name), slab_block_size, \
5606 slab_num_blocks, slab_align)
5607
5624#define K_MEM_SLAB_DEFINE_IN_SECT_STATIC(name, in_section, slab_block_size, slab_num_blocks, \
5625 slab_align) \
5626 BUILD_ASSERT(((slab_block_size) % (slab_align)) == 0, \
5627 "slab_block_size must be a multiple of slab_align"); \
5628 BUILD_ASSERT((((slab_align) & ((slab_align) - 1)) == 0), \
5629 "slab_align must be a power of 2"); \
5630 static char in_section __aligned(WB_UP( \
5631 slab_align)) _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5632 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = Z_MEM_SLAB_INITIALIZER( \
5633 name, _k_mem_slab_buf_##name, WB_UP(slab_block_size), slab_num_blocks)
5634
5649#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
5650 K_MEM_SLAB_DEFINE_IN_SECT_STATIC(name, __noinit_named(k_mem_slab_buf_##name), \
5651 slab_block_size, slab_num_blocks, slab_align)
5652
5674int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
5675 size_t block_size, uint32_t num_blocks);
5676
5699int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
5700 k_timeout_t timeout);
5701
5713void k_mem_slab_free(struct k_mem_slab *slab, void *mem);
5714
5727static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
5728{
5729 return slab->info.num_used;
5730}
5731
5744static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5745{
5746#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5747 return slab->info.max_used;
5748#else
5749 ARG_UNUSED(slab);
5750 return 0;
5751#endif
5752}
5753
5766static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5767{
5768 return slab->info.num_blocks - slab->info.num_used;
5769}
5770
5784
5785int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats);
5786
5800int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab);
5801
5803
5808
5809/* kernel synchronized heap struct */
5810
5811struct k_heap {
5813 _wait_q_t wait_q;
5815};
5816
5830void k_heap_init(struct k_heap *h, void *mem,
5831 size_t bytes) __attribute_nonnull(1);
5832
5853void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5854 k_timeout_t timeout) __attribute_nonnull(1);
5855
5877void *k_heap_alloc(struct k_heap *h, size_t bytes,
5878 k_timeout_t timeout) __attribute_nonnull(1);
5879
5902void *k_heap_calloc(struct k_heap *h, size_t num, size_t size, k_timeout_t timeout)
5903 __attribute_nonnull(1);
5904
5928void *k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
5929 __attribute_nonnull(1);
5930
5941void k_heap_free(struct k_heap *h, void *mem) __attribute_nonnull(1);
5942
5943/* Minimum heap sizes needed to return a successful 1-byte allocation.
5944 * Assumes a chunk aligned (8 byte) memory buffer.
5945 */
5946#ifdef CONFIG_SYS_HEAP_RUNTIME_STATS
5947#define Z_HEAP_MIN_SIZE ((sizeof(void *) > 4) ? 80 : 52)
5948#else
5949#define Z_HEAP_MIN_SIZE ((sizeof(void *) > 4) ? 56 : 44)
5950#endif /* CONFIG_SYS_HEAP_RUNTIME_STATS */
5951
5968#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
5969 char in_section \
5970 __aligned(8) /* CHUNK_UNIT */ \
5971 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
5972 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
5973 .heap = { \
5974 .init_mem = kheap_##name, \
5975 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
5976 }, \
5977 }
5978
5993#define K_HEAP_DEFINE(name, bytes) \
5994 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
5995 __noinit_named(kheap_buf_##name))
5996
6011#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
6012 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
6013
6023int k_heap_array_get(struct k_heap **heap);
6024
6028
6035
6054void *k_aligned_alloc(size_t align, size_t size);
6055
6067void *k_malloc(size_t size);
6068
6079void k_free(void *ptr);
6080
6092void *k_calloc(size_t nmemb, size_t size);
6093
6111void *k_realloc(void *ptr, size_t size);
6112
6114
6115/* polling API - PRIVATE */
6116
6117#ifdef CONFIG_POLL
6118#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
6119#else
6120#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
6121#endif
6122
6123/* private - types bit positions */
6124enum _poll_types_bits {
6125 /* can be used to ignore an event */
6126 _POLL_TYPE_IGNORE,
6127
6128 /* to be signaled by k_poll_signal_raise() */
6129 _POLL_TYPE_SIGNAL,
6130
6131 /* semaphore availability */
6132 _POLL_TYPE_SEM_AVAILABLE,
6133
6134 /* queue/FIFO/LIFO data availability */
6135 _POLL_TYPE_DATA_AVAILABLE,
6136
6137 /* msgq data availability */
6138 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
6139
6140 /* pipe data availability */
6141 _POLL_TYPE_PIPE_DATA_AVAILABLE,
6142
6143 _POLL_NUM_TYPES
6144};
6145
6146#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
6147
6148/* private - states bit positions */
6149enum _poll_states_bits {
6150 /* default state when creating event */
6151 _POLL_STATE_NOT_READY,
6152
6153 /* signaled by k_poll_signal_raise() */
6154 _POLL_STATE_SIGNALED,
6155
6156 /* semaphore is available */
6157 _POLL_STATE_SEM_AVAILABLE,
6158
6159 /* data is available to read on queue/FIFO/LIFO */
6160 _POLL_STATE_DATA_AVAILABLE,
6161
6162 /* queue/FIFO/LIFO wait was cancelled */
6163 _POLL_STATE_CANCELLED,
6164
6165 /* data is available to read on a message queue */
6166 _POLL_STATE_MSGQ_DATA_AVAILABLE,
6167
6168 /* data is available to read from a pipe */
6169 _POLL_STATE_PIPE_DATA_AVAILABLE,
6170
6171 _POLL_NUM_STATES
6172};
6173
6174#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
6175
6176#define _POLL_EVENT_NUM_UNUSED_BITS \
6177 (32 - (0 \
6178 + 8 /* tag */ \
6179 + _POLL_NUM_TYPES \
6180 + _POLL_NUM_STATES \
6181 + 1 /* modes */ \
6182 ))
6183
6184/* end of polling API - PRIVATE */
6185
6186
6194
6195/* Public polling API */
6196
6197/* public - values for k_poll_event.type bitfield */
6198#define K_POLL_TYPE_IGNORE 0
6199#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
6200#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
6201#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
6202#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
6203#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
6204#define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
6205
6206/* public - polling modes */
6208 /* polling thread does not take ownership of objects when available */
6210
6212};
6213
6214/* public - values for k_poll_event.state bitfield */
6215#define K_POLL_STATE_NOT_READY 0
6216#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
6217#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
6218#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
6219#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
6220#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
6221#define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
6222#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
6223
6224/* public - poll signal object */
6228
6233 unsigned int signaled;
6234
6237};
6238
6239#define K_POLL_SIGNAL_INITIALIZER(obj) \
6240 { \
6241 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
6242 .signaled = 0, \
6243 .result = 0, \
6244 }
6245
6251 sys_dnode_t _node;
6252
6254 struct z_poller *poller;
6255
6258
6260 uint32_t type:_POLL_NUM_TYPES;
6261
6263 uint32_t state:_POLL_NUM_STATES;
6264
6267
6269 uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
6270
6272 union {
6273 /* The typed_* fields below are used by K_POLL_EVENT_*INITIALIZER() macros to ensure
6274 * type safety of polled objects.
6275 */
6283 };
6284};
6285
6286#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
6287 { \
6288 .poller = NULL, \
6289 .type = _event_type, \
6290 .state = K_POLL_STATE_NOT_READY, \
6291 .mode = _event_mode, \
6292 .unused = 0, \
6293 { \
6294 .typed_##_event_type = _event_obj, \
6295 }, \
6296 }
6297
6298#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
6299 event_tag) \
6300 { \
6301 .tag = event_tag, \
6302 .type = _event_type, \
6303 .state = K_POLL_STATE_NOT_READY, \
6304 .mode = _event_mode, \
6305 .unused = 0, \
6306 { \
6307 .typed_##_event_type = _event_obj, \
6308 }, \
6309 }
6310
6325
6326void k_poll_event_init(struct k_poll_event *event, uint32_t type,
6327 int mode, void *obj);
6328
6371
6372__syscall int k_poll(struct k_poll_event *events, int num_events,
6373 k_timeout_t timeout);
6374
6382
6383__syscall void k_poll_signal_init(struct k_poll_signal *sig);
6384
6390__syscall void k_poll_signal_reset(struct k_poll_signal *sig);
6391
6402__syscall void k_poll_signal_check(struct k_poll_signal *sig,
6403 unsigned int *signaled, int *result);
6404
6428
6429__syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
6430
6432
6451static inline void k_cpu_idle(void)
6452{
6453 arch_cpu_idle();
6454}
6455
6470static inline void k_cpu_atomic_idle(unsigned int key)
6471{
6473}
6474
6478
6483#ifdef ARCH_EXCEPT
6484/* This architecture has direct support for triggering a CPU exception */
6485#define z_except_reason(reason) ARCH_EXCEPT(reason)
6486#else
6487
6488#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
6489#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
6490#else
6491#define __EXCEPT_LOC()
6492#endif
6493
6494/* NOTE: This is the implementation for arches that do not implement
6495 * ARCH_EXCEPT() to generate a real CPU exception.
6496 *
6497 * We won't have a real exception frame to determine the PC value when
6498 * the oops occurred, so print file and line number before we jump into
6499 * the fatal error handler.
6500 */
6501#define z_except_reason(reason) do { \
6502 __EXCEPT_LOC(); \
6503 z_fatal_error(reason, NULL); \
6504 } while (false)
6505
6506#endif /* _ARCH__EXCEPT */
6510
6522#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
6523
6532#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
6533
6537
6538/*
6539 * private APIs that are utilized by one or more public APIs
6540 */
6541
6545void z_timer_expiration_handler(struct _timeout *timeout);
6549
6550#ifdef CONFIG_PRINTK
6558__syscall void k_str_out(char *c, size_t n);
6559#endif
6560
6566
6587__syscall int k_float_disable(struct k_thread *thread);
6588
6627__syscall int k_float_enable(struct k_thread *thread, unsigned int options);
6628
6632
6642
6650
6659
6670
6681
6690
6699
6700#ifdef __cplusplus
6701}
6702#endif
6703
6704#include <zephyr/tracing/tracing.h>
6705#include <zephyr/syscalls/kernel.h>
6706
6707#endif /* !_ASMLANGUAGE */
6708
6709#endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
static uint32_t arch_k_cycle_get_32(void)
Definition misc.h:26
static uint64_t arch_k_cycle_get_64(void)
Definition misc.h:33
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition arch_interface.h:48
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition arch_interface.h:46
long atomic_t
Definition atomic_types.h:15
System error numbers.
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static _Bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit and test it.
Definition atomic.h:172
static _Bool atomic_test_bit(const atomic_t *target, int bit)
Atomically get and test a bit.
Definition atomic.h:129
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition atomic.h:193
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition kernel.h:2053
#define K_NO_WAIT
Generate null timeout delay.
Definition kernel.h:1454
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition kernel.h:2005
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition kernel.h:2034
static uint32_t k_uptime_seconds(void)
Get system uptime in seconds.
Definition kernel.h:2018
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition kernel.h:2068
static int64_t k_uptime_get(void)
Get system uptime.
Definition kernel.h:1981
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition kernel.h:6451
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition kernel.h:6470
struct _dnode sys_dnode_t
Doubly-linked list node structure.
Definition dlist.h:54
struct _dnode sys_dlist_t
Doubly-linked list structure.
Definition dlist.h:50
static void sys_dnode_init(sys_dnode_t *node)
initialize node to its state when not in a list
Definition dlist.h:219
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
uint32_t k_event_set_masked(struct k_event *event, uint32_t events, uint32_t events_mask)
Set or clear the events in an event object.
uint32_t k_event_wait_all_safe(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events (safe version)
static uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
Test the events currently tracked in the event object.
Definition kernel.h:2684
uint32_t k_event_wait_safe(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events (safe version)
uint32_t k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
uint32_t k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_clear(struct k_event *event, uint32_t events)
Clear the events in an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events.
static bool sys_sflist_is_empty(const sys_sflist_t *list)
Test if the given list is empty.
Definition sflist.h:336
struct _sflist sys_sflist_t
Flagged single-linked list structure.
Definition sflist.h:54
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
int k_heap_array_get(struct k_heap **heap)
Get the array of statically defined heaps.
void * k_heap_calloc(struct k_heap *h, size_t num, size_t size, k_timeout_t timeout)
Allocate and initialize memory for an array of objects from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc()
void k_free(void *ptr)
Free memory allocated from heap.
void * k_realloc(void *ptr, size_t size)
Expand the size of an existing allocation.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
Reallocate memory from a k_heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void *mem)
Free memory allocated from a memory slab.
int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats)
Get the memory stats for a memory slab.
int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
Reset the maximum memory usage for a slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition kernel.h:5727
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition kernel.h:5744
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition kernel.h:5766
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to the end of a message queue.
int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx)
Peek/read a message from a message queue at the specified index.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put_front(struct k_msgq *msgq, const void *data)
Send a message to the front of a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
int k_pipe_write(struct k_pipe *pipe, const uint8_t *data, size_t len, k_timeout_t timeout)
Write data to a pipe.
void k_pipe_close(struct k_pipe *pipe)
Close a pipe.
void k_pipe_reset(struct k_pipe *pipe)
Reset a pipe This routine resets the pipe, discarding any unread data and unblocking any threads wait...
void k_pipe_init(struct k_pipe *pipe, uint8_t *buffer, size_t buffer_size)
initialize a pipe
pipe_flags
Definition kernel.h:5384
int k_pipe_read(struct k_pipe *pipe, uint8_t *data, size_t len, k_timeout_t timeout)
Read data from a pipe This routine reads up to len bytes of data from pipe.
@ PIPE_FLAG_RESET
Definition kernel.h:5386
@ PIPE_FLAG_OPEN
Definition kernel.h:5385
void k_poll_signal_reset(struct k_poll_signal *sig)
Reset a poll signal object's state to unsignaled.
k_poll_modes
Definition kernel.h:6207
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition kernel.h:6209
@ K_POLL_NUM_MODES
Definition kernel.h:6211
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
struct _slist sys_slist_t
Single-linked list structure.
Definition slist.h:49
struct _snode sys_snode_t
Single-linked list node structure.
Definition slist.h:39
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition tracing_macros.h:375
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition util_macro.h:148
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition util.h:281
#define EBUSY
Mount device busy.
Definition errno.h:54
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
const char * k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
void k_thread_absolute_deadline_set(k_tid_t thread, int deadline)
Set absolute deadline expiration time for scheduler.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
bool k_can_yield(void)
Check whether it is possible to yield in the current context.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition kernel.h:506
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *thread)
Get time remaining before a thread wakes up, in system ticks.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition kernel.h:600
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, k_thread_timeslice_fn_t expired, void *data)
Set thread time slice.
static void k_thread_runtime_stats_longest_frame_reset(__maybe_unused struct k_thread *thread)
Resets thread longest frame usage data for specified thread.
Definition kernel.h:120
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition kernel.h:734
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_thread_foreach_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in running on specified cpu.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
int k_thread_stack_free(k_thread_stack_t *stack)
Free a dynamically allocated thread stack.
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread)
Get time when a thread wakes up, in system ticks.
__attribute_const__ k_tid_t k_sched_current_thread_query(void)
Query thread ID of the current thread.
static void k_thread_start(k_tid_t thread)
Start an inactive thread.
Definition kernel.h:1204
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_reschedule(void)
Invoke the scheduler.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set relative deadline expiration time for scheduler.
void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over the threads in running on current cpu without locking.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition kernel.h:701
int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition kernel.h:127
k_thread_stack_t * k_thread_stack_alloc(size_t size, int flags)
Dynamically allocate a thread stack.
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition kernel.h:1756
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition kernel.h:1740
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition kernel.h:1905
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
#define k_ticks_to_ms_floor32(t)
Convert ticks to milliseconds.
Definition time_units.h:1707
#define k_ticks_to_sec_floor32(t)
Convert ticks to seconds.
Definition time_units.h:1611
#define k_ticks_to_ms_floor64(t)
Convert ticks to milliseconds.
Definition time_units.h:1723
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition kernel.h:4560
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition kernel.h:4531
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition kernel.h:4548
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
int k_work_queue_stop(struct k_work_q *queue, k_timeout_t timeout)
Stop a work queue.
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition kernel.h:4687
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition kernel.h:4664
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition kernel.h:3703
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition kernel.h:4542
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition kernel.h:4642
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition kernel.h:4583
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
static k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
Access the user mode thread that animates a work queue.
Definition kernel.h:4742
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition kernel.h:4537
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition kernel.h:4554
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
void k_work_queue_run(struct k_work_q *queue, const struct k_work_queue_config *cfg)
Run work queue using calling thread.
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition kernel.h:4311
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition kernel.h:4318
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition kernel.h:4325
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition kernel.h:4305
@ K_WORK_FLUSHING
Flag indicating a synced work item that is being flushed.
Definition kernel.h:4331
#define BUILD_ASSERT(EXPR, MSG...)
Definition llvm.h:51
struct k_thread * k_tid_t
Definition thread.h:368
struct k_thread_runtime_stats k_thread_runtime_stats_t
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
int k_ipi_work_add(struct k_ipi_work *work, uint32_t cpu_bitmask, k_ipi_func_t func)
Add an IPI work item to the IPI work queue.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
void k_ipi_work_signal(void)
Signal that there is one or more IPI work items to process.
int k_ipi_work_wait(struct k_ipi_work *work, k_timeout_t timeout)
Wait until the IPI work item has been processed by all targeted CPUs.
execution_context_types
Definition kernel.h:91
@ K_ISR
Definition kernel.h:92
@ K_COOP_THREAD
Definition kernel.h:93
@ K_PREEMPT_THREAD
Definition kernel.h:94
void(* k_ipi_func_t)(struct k_ipi_work *work)
Definition kernel.h:3587
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
static void k_ipi_work_init(struct k_ipi_work *work)
Initialize the specified IPI work item.
Definition kernel.h:3614
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
int k_thread_runtime_stats_cpu_get(int cpu, k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads on specified cpu.
Header files included by kernel.h.
void(* k_thread_timeslice_fn_t)(struct k_thread *thread, void *data)
Definition kernel_structs.h:314
Memory Statistics.
flags
Definition parser.h:97
state
Definition parser_state.h:29
__UINT32_TYPE__ uint32_t
Definition stdint.h:90
__INTPTR_TYPE__ intptr_t
Definition stdint.h:104
__INT32_TYPE__ int32_t
Definition stdint.h:74
__UINT64_TYPE__ uint64_t
Definition stdint.h:91
__UINT8_TYPE__ uint8_t
Definition stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition stdint.h:105
__INT64_TYPE__ int64_t
Definition stdint.h:75
Definition kernel.h:3346
_wait_q_t wait_q
Definition kernel.h:3347
Event Structure.
Definition kernel.h:2461
Definition kernel.h:2704
futex structure
Definition kernel.h:2375
atomic_t val
Definition kernel.h:2376
Definition kernel.h:5811
struct k_spinlock lock
Definition kernel.h:5814
struct sys_heap heap
Definition kernel.h:5812
_wait_q_t wait_q
Definition kernel.h:5813
IPI work item structure.
Definition kernel.h:3595
Definition kernel.h:2945
Mailbox Message Structure.
Definition kernel.h:5221
k_tid_t tx_target_thread
target thread id
Definition kernel.h:5231
void * tx_data
sender's message data buffer
Definition kernel.h:5227
k_tid_t rx_source_thread
source thread id
Definition kernel.h:5229
uint32_t info
application-defined information value
Definition kernel.h:5225
size_t size
size of message (in bytes)
Definition kernel.h:5223
Mailbox Structure.
Definition kernel.h:5243
_wait_q_t tx_msg_queue
Transmit messages queue.
Definition kernel.h:5245
struct k_spinlock lock
Definition kernel.h:5248
_wait_q_t rx_msg_queue
Receive message queue.
Definition kernel.h:5247
Memory Domain.
Definition mem_domain.h:80
Memory Partition.
Definition mem_domain.h:55
Message Queue Attributes.
Definition kernel.h:4963
uint32_t used_msgs
Used messages.
Definition kernel.h:4969
size_t msg_size
Message Size.
Definition kernel.h:4965
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:4967
Message Queue Structure.
Definition kernel.h:4902
size_t msg_size
Message size.
Definition kernel.h:4908
char * read_ptr
Read pointer.
Definition kernel.h:4916
uint32_t used_msgs
Number of used messages.
Definition kernel.h:4920
char * buffer_end
End of message buffer.
Definition kernel.h:4914
struct k_spinlock lock
Lock.
Definition kernel.h:4906
char * write_ptr
Write pointer.
Definition kernel.h:4918
char * buffer_start
Start of message buffer.
Definition kernel.h:4912
uint8_t flags
Message queue.
Definition kernel.h:4925
_wait_q_t wait_q
Message queue wait queue.
Definition kernel.h:4904
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:4910
Mutex Structure.
Definition kernel.h:3234
uint32_t lock_count
Current lock count.
Definition kernel.h:3241
_wait_q_t wait_q
Mutex wait queue.
Definition kernel.h:3236
int owner_orig_prio
Original thread priority.
Definition kernel.h:3244
struct k_thread * owner
Mutex owner.
Definition kernel.h:3238
Object core structure.
Definition obj_core.h:121
Definition kernel.h:5389
uint8_t flags
Definition kernel.h:5395
struct ring_buf buf
Definition kernel.h:5391
_wait_q_t data
Definition kernel.h:5393
_wait_q_t space
Definition kernel.h:5394
struct k_spinlock lock
Definition kernel.h:5392
size_t waiting
Definition kernel.h:5390
Poll Event.
Definition kernel.h:6249
struct k_msgq * typed_K_POLL_TYPE_MSGQ_DATA_AVAILABLE
Definition kernel.h:6281
void * typed_K_POLL_TYPE_IGNORE
Definition kernel.h:6276
struct k_poll_signal * signal
Definition kernel.h:6277
struct k_pipe * pipe
Definition kernel.h:6282
uint32_t tag
optional user-specified tag, opaque, untouched by the API
Definition kernel.h:6257
struct k_fifo * fifo
Definition kernel.h:6279
struct k_msgq * msgq
Definition kernel.h:6281
struct k_queue * queue
Definition kernel.h:6280
uint32_t unused
unused bits in 32-bit word
Definition kernel.h:6269
struct k_pipe * typed_K_POLL_TYPE_PIPE_DATA_AVAILABLE
Definition kernel.h:6282
uint32_t type
bitfield of event types (bitwise-ORed K_POLL_TYPE_xxx values)
Definition kernel.h:6260
struct k_sem * sem
Definition kernel.h:6278
struct k_queue * typed_K_POLL_TYPE_DATA_AVAILABLE
Definition kernel.h:6280
struct k_sem * typed_K_POLL_TYPE_SEM_AVAILABLE
Definition kernel.h:6278
uint32_t state
bitfield of event states (bitwise-ORed K_POLL_STATE_xxx values)
Definition kernel.h:6263
uint32_t mode
mode of operation, from enum k_poll_modes
Definition kernel.h:6266
struct z_poller * poller
PRIVATE - DO NOT TOUCH.
Definition kernel.h:6254
struct k_poll_signal * typed_K_POLL_TYPE_SIGNAL
Definition kernel.h:6277
void * obj
Definition kernel.h:6276
struct k_fifo * typed_K_POLL_TYPE_FIFO_DATA_AVAILABLE
Definition kernel.h:6279
Definition kernel.h:6225
sys_dlist_t poll_events
PRIVATE - DO NOT TOUCH.
Definition kernel.h:6227
int result
custom result value passed to k_poll_signal_raise() if needed
Definition kernel.h:6236
unsigned int signaled
1 if the event has been signaled, 0 otherwise.
Definition kernel.h:6233
Definition kernel.h:2083
struct k_spinlock lock
Definition kernel.h:2085
_wait_q_t wait_q
Definition kernel.h:2086
sys_sflist_t data_q
Definition kernel.h:2084
Semaphore structure.
Definition kernel.h:3439
Kernel Spin Lock.
Definition spinlock.h:45
Thread Structure.
Definition thread.h:252
struct _thread_base base
Definition thread.h:254
struct k_heap * resource_pool
resource pool
Definition thread.h:342
struct __thread_entry entry
thread entry and parameters description
Definition thread.h:281
Kernel timeout type.
Definition clock.h:65
Kernel timer structure.
Definition kernel.h:1662
A structure used to submit work after a delay.
Definition kernel.h:4363
struct _timeout timeout
Definition kernel.h:4368
struct k_work_q * queue
Definition kernel.h:4371
struct k_work work
Definition kernel.h:4365
A structure used to hold work until it can be processed.
Definition kernel.h:4497
sys_slist_t pending
Definition kernel.h:4511
_wait_q_t drainq
Definition kernel.h:4517
k_tid_t thread_id
Definition kernel.h:4504
_wait_q_t notifyq
Definition kernel.h:4514
uint32_t flags
Definition kernel.h:4520
struct k_thread thread
Definition kernel.h:4499
A structure holding optional configuration items for a work queue.
Definition kernel.h:4459
const char * name
The name to be given to the work queue thread.
Definition kernel.h:4464
uint32_t work_timeout_ms
Controls whether work queue monitors work timeouts.
Definition kernel.h:4493
bool essential
Control whether the work queue thread should be marked as essential thread.
Definition kernel.h:4483
bool no_yield
Control whether the work queue thread should yield between items.
Definition kernel.h:4478
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition kernel.h:4446
struct z_work_canceller canceller
Definition kernel.h:4449
struct z_work_flusher flusher
Definition kernel.h:4448
A structure used to submit work.
Definition kernel.h:4335
k_work_handler_t handler
Definition kernel.h:4344
uint32_t flags
Definition kernel.h:4355
struct k_work_q * queue
Definition kernel.h:4347
sys_snode_t node
Definition kernel.h:4341
A structure to represent a ring buffer.
Definition ring_buffer.h:50
Definition sys_heap.h:57
Definition mem_stats.h:24
static __pinned_func bool k_is_user_context(void)
Indicate whether the CPU is currently in user mode.
Definition syscall.h:115
Macros to abstract toolchain specific capabilities.
Main header file for tracing subsystem API.
Header file for tracing macros.