Zephyr API Documentation 4.3.99
A Scalable Open Source RTOS
Loading...
Searching...
No Matches
kernel.h
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016, Wind River Systems, Inc.
3 *
4 * SPDX-License-Identifier: Apache-2.0
5 */
6
12
13#ifndef ZEPHYR_INCLUDE_KERNEL_H_
14#define ZEPHYR_INCLUDE_KERNEL_H_
15
16#if !defined(_ASMLANGUAGE)
18#include <errno.h>
19#include <limits.h>
20#include <stdbool.h>
21#include <zephyr/toolchain.h>
26
27#ifdef __cplusplus
28extern "C" {
29#endif
30
31/*
32 * Zephyr currently assumes the size of a couple standard types to simplify
33 * print string formats. Let's make sure this doesn't change without notice.
34 */
35BUILD_ASSERT(sizeof(int32_t) == sizeof(int));
36BUILD_ASSERT(sizeof(int64_t) == sizeof(long long));
37BUILD_ASSERT(sizeof(intptr_t) == sizeof(long));
38
47
48#define K_ANY NULL
49
50#if (CONFIG_NUM_COOP_PRIORITIES + CONFIG_NUM_PREEMPT_PRIORITIES) == 0
51#error Zero available thread priorities defined!
52#endif
53
54#define K_PRIO_COOP(x) (-(CONFIG_NUM_COOP_PRIORITIES - (x)))
55#define K_PRIO_PREEMPT(x) (x)
56
57#define K_HIGHEST_THREAD_PRIO (-CONFIG_NUM_COOP_PRIORITIES)
58#define K_LOWEST_THREAD_PRIO CONFIG_NUM_PREEMPT_PRIORITIES
59#define K_IDLE_PRIO K_LOWEST_THREAD_PRIO
60#define K_HIGHEST_APPLICATION_THREAD_PRIO (K_HIGHEST_THREAD_PRIO)
61#define K_LOWEST_APPLICATION_THREAD_PRIO (K_LOWEST_THREAD_PRIO - 1)
62
63#ifdef CONFIG_POLL
64#define Z_POLL_EVENT_OBJ_INIT(obj) \
65 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events),
66#define Z_DECL_POLL_EVENT sys_dlist_t poll_events;
67#else
68#define Z_POLL_EVENT_OBJ_INIT(obj)
69#define Z_DECL_POLL_EVENT
70#endif
71
72struct k_thread;
73struct k_mutex;
74struct k_sem;
75struct k_msgq;
76struct k_mbox;
77struct k_pipe;
78struct k_queue;
79struct k_fifo;
80struct k_lifo;
81struct k_stack;
82struct k_mem_slab;
83struct k_timer;
84struct k_poll_event;
85struct k_poll_signal;
86struct k_mem_domain;
87struct k_mem_partition;
88struct k_futex;
89struct k_event;
90
96
97/* private, used by k_poll and k_work_poll */
98struct k_work_poll;
99typedef int (*_poller_cb_t)(struct k_poll_event *event, uint32_t state);
100
105
119static inline void
121{
122#ifdef CONFIG_SCHED_THREAD_USAGE_ANALYSIS
123 thread->base.usage.longest = 0ULL;
124#endif
125}
126
127typedef void (*k_thread_user_cb_t)(const struct k_thread *thread,
128 void *user_data);
129
145void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data);
146
165#ifdef CONFIG_SMP
166void k_thread_foreach_filter_by_cpu(unsigned int cpu,
167 k_thread_user_cb_t user_cb, void *user_data);
168#else
169static inline
170void k_thread_foreach_filter_by_cpu(unsigned int cpu,
171 k_thread_user_cb_t user_cb, void *user_data)
172{
173 __ASSERT(cpu == 0, "cpu filter out of bounds");
174 ARG_UNUSED(cpu);
175 k_thread_foreach(user_cb, user_data);
176}
177#endif
178
207 k_thread_user_cb_t user_cb, void *user_data);
208
240#ifdef CONFIG_SMP
242 k_thread_user_cb_t user_cb, void *user_data);
243#else
244static inline
245void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu,
246 k_thread_user_cb_t user_cb, void *user_data)
247{
248 __ASSERT(cpu == 0, "cpu filter out of bounds");
249 ARG_UNUSED(cpu);
250 k_thread_foreach_unlocked(user_cb, user_data);
251}
252#endif
253
255
261
262#endif /* !_ASMLANGUAGE */
263
264
265/*
266 * Thread user options. May be needed by assembly code. Common part uses low
267 * bits, arch-specific use high bits.
268 */
269
273#define K_ESSENTIAL (BIT(0))
274
275#define K_FP_IDX 1
285#define K_FP_REGS (BIT(K_FP_IDX))
286
293#define K_USER (BIT(2))
294
303#define K_INHERIT_PERMS (BIT(3))
304
314#define K_CALLBACK_STATE (BIT(4))
315
325#define K_DSP_IDX 6
326#define K_DSP_REGS (BIT(K_DSP_IDX))
327
336#define K_AGU_IDX 7
337#define K_AGU_REGS (BIT(K_AGU_IDX))
338
348#define K_SSE_REGS (BIT(7))
349
350/* end - thread options */
351
352#if !defined(_ASMLANGUAGE)
377__syscall k_thread_stack_t *k_thread_stack_alloc(size_t size, int flags);
378
392
444__syscall k_tid_t k_thread_create(struct k_thread *new_thread,
445 k_thread_stack_t *stack,
446 size_t stack_size,
448 void *p1, void *p2, void *p3,
449 int prio, uint32_t options, k_timeout_t delay);
450
473 void *p1, void *p2,
474 void *p3);
475
489#define k_thread_access_grant(thread, ...) \
490 FOR_EACH_FIXED_ARG(k_object_access_grant, (;), (thread), __VA_ARGS__)
491
506static inline void k_thread_heap_assign(struct k_thread *thread,
507 struct k_heap *heap)
508{
509 thread->resource_pool = heap;
510}
511
512#if defined(CONFIG_INIT_STACKS) && defined(CONFIG_THREAD_STACK_INFO)
533__syscall int k_thread_stack_space_get(const struct k_thread *thread,
534 size_t *unused_ptr);
535
551__syscall int k_thread_runtime_stack_unused_threshold_pct_set(struct k_thread *thread,
552 uint32_t pct);
553
569__syscall int k_thread_runtime_stack_unused_threshold_set(struct k_thread *thread,
570 size_t threshold);
571
584__syscall size_t k_thread_runtime_stack_unused_threshold_get(struct k_thread *thread);
585
597typedef void (*k_thread_stack_safety_handler_t)(const struct k_thread *thread,
598 size_t unused_space, void *arg);
599
614int k_thread_runtime_stack_safety_full_check(const struct k_thread *thread,
615 size_t *unused_ptr,
616 k_thread_stack_safety_handler_t handler,
617 void *arg);
618
633int k_thread_runtime_stack_safety_threshold_check(const struct k_thread *thread,
634 size_t *unused_ptr,
635 k_thread_stack_safety_handler_t handler,
636 void *arg);
637#endif
638
639#if (K_HEAP_MEM_POOL_SIZE > 0)
652void k_thread_system_pool_assign(struct k_thread *thread);
653#endif /* (K_HEAP_MEM_POOL_SIZE > 0) */
654
674__syscall int k_thread_join(struct k_thread *thread, k_timeout_t timeout);
675
689__syscall int32_t k_sleep(k_timeout_t timeout);
690
702static inline int32_t k_msleep(int32_t ms)
703{
704 return k_sleep(Z_TIMEOUT_MS(ms));
705}
706
724
741__syscall void k_busy_wait(uint32_t usec_to_wait);
742
754bool k_can_yield(void);
755
763__syscall void k_yield(void);
764
774__syscall void k_wakeup(k_tid_t thread);
775
789__attribute_const__
791
803static inline bool k_is_pre_kernel(void)
804{
805 extern bool z_sys_post_kernel; /* in init.c */
806
807 /*
808 * If called from userspace, it must be post kernel.
809 * This guard is necessary because z_sys_post_kernel memory
810 * is not accessible to user threads.
811 */
812 if (k_is_user_context()) {
813 return false;
814 }
815
816 /*
817 * Some compilers might optimize by pre-reading
818 * z_sys_post_kernel. This is absolutely not desirable.
819 * We are trying to avoid reading it if we are in user
820 * context as reading z_sys_post_kernel in user context
821 * will result in access fault. So add a compiler barrier
822 * here to stop that kind of optimizations.
823 */
824 compiler_barrier();
825
826 return !z_sys_post_kernel;
827}
828
835__attribute_const__
836static inline k_tid_t k_current_get(void)
837{
838 __ASSERT(!k_is_pre_kernel(), "k_current_get called pre-kernel");
839
840#ifdef CONFIG_CURRENT_THREAD_USE_TLS
841
842 /* Thread-local cache of current thread ID, set in z_thread_entry() */
843 extern Z_THREAD_LOCAL k_tid_t z_tls_current;
844
845 return z_tls_current;
846#else
848#endif
849}
850
870__syscall void k_thread_abort(k_tid_t thread);
871
872k_ticks_t z_timeout_expires(const struct _timeout *timeout);
873k_ticks_t z_timeout_remaining(const struct _timeout *timeout);
874
875#ifdef CONFIG_SYS_CLOCK_EXISTS
876
884__syscall k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread);
885
886static inline k_ticks_t z_impl_k_thread_timeout_expires_ticks(
887 const struct k_thread *thread)
888{
889 return z_timeout_expires(&thread->base.timeout);
890}
891
900
901static inline k_ticks_t z_impl_k_thread_timeout_remaining_ticks(
902 const struct k_thread *thread)
903{
904 return z_timeout_remaining(&thread->base.timeout);
905}
906
907#endif /* CONFIG_SYS_CLOCK_EXISTS */
908
912
913struct _static_thread_data {
914 struct k_thread *init_thread;
915 k_thread_stack_t *init_stack;
916 unsigned int init_stack_size;
917 k_thread_entry_t init_entry;
918 void *init_p1;
919 void *init_p2;
920 void *init_p3;
921 int init_prio;
922 uint32_t init_options;
923 const char *init_name;
924#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
925 int32_t init_delay_ms;
926#else
927 k_timeout_t init_delay;
928#endif
929};
930
931#ifdef CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME
932#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay_ms = (ms)
933#define Z_THREAD_INIT_DELAY(thread) SYS_TIMEOUT_MS((thread)->init_delay_ms)
934#else
935#define Z_THREAD_INIT_DELAY_INITIALIZER(ms) .init_delay = SYS_TIMEOUT_MS_INIT(ms)
936#define Z_THREAD_INIT_DELAY(thread) (thread)->init_delay
937#endif
938
939#define Z_THREAD_INITIALIZER(thread, stack, stack_size, \
940 entry, p1, p2, p3, \
941 prio, options, delay, tname) \
942 { \
943 .init_thread = (thread), \
944 .init_stack = (stack), \
945 .init_stack_size = (stack_size), \
946 .init_entry = (k_thread_entry_t)entry, \
947 .init_p1 = (void *)p1, \
948 .init_p2 = (void *)p2, \
949 .init_p3 = (void *)p3, \
950 .init_prio = (prio), \
951 .init_options = (options), \
952 .init_name = STRINGIFY(tname), \
953 Z_THREAD_INIT_DELAY_INITIALIZER(delay) \
954 }
955
956/*
957 * Refer to K_THREAD_DEFINE() and K_KERNEL_THREAD_DEFINE() for
958 * information on arguments.
959 */
960#define Z_THREAD_COMMON_DEFINE(name, stack_size, \
961 entry, p1, p2, p3, \
962 prio, options, delay) \
963 struct k_thread _k_thread_obj_##name; \
964 const STRUCT_SECTION_ITERABLE(_static_thread_data, \
965 _k_thread_data_##name) = \
966 Z_THREAD_INITIALIZER(&_k_thread_obj_##name, \
967 _k_thread_stack_##name, stack_size,\
968 entry, p1, p2, p3, prio, options, \
969 delay, name); \
970 __maybe_unused const k_tid_t name = (k_tid_t)&_k_thread_obj_##name
971
975
1007#define K_THREAD_DEFINE(name, stack_size, \
1008 entry, p1, p2, p3, \
1009 prio, options, delay) \
1010 K_THREAD_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
1011 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
1012 prio, options, delay)
1013
1044#define K_KERNEL_THREAD_DEFINE(name, stack_size, \
1045 entry, p1, p2, p3, \
1046 prio, options, delay) \
1047 K_KERNEL_STACK_DEFINE(_k_thread_stack_##name, stack_size); \
1048 Z_THREAD_COMMON_DEFINE(name, stack_size, entry, p1, p2, p3, \
1049 prio, options, delay)
1050
1060__syscall int k_thread_priority_get(k_tid_t thread);
1061
1087__syscall void k_thread_priority_set(k_tid_t thread, int prio);
1088
1089
1090#ifdef CONFIG_SCHED_DEADLINE
1122__syscall void k_thread_deadline_set(k_tid_t thread, int deadline);
1123
1164__syscall void k_thread_absolute_deadline_set(k_tid_t thread, int deadline);
1165#endif
1166
1185__syscall void k_reschedule(void);
1186
1187#ifdef CONFIG_SCHED_CPU_MASK
1201
1215
1229
1243
1254int k_thread_cpu_pin(k_tid_t thread, int cpu);
1255#endif
1256
1278__syscall void k_thread_suspend(k_tid_t thread);
1279
1291__syscall void k_thread_resume(k_tid_t thread);
1292
1306static inline void k_thread_start(k_tid_t thread)
1307{
1308 k_wakeup(thread);
1309}
1310
1337void k_sched_time_slice_set(int32_t slice, int prio);
1338
1377void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks,
1378 k_thread_timeslice_fn_t expired, void *data);
1379
1381
1386
1398bool k_is_in_isr(void);
1399
1416__syscall int k_is_preempt_thread(void);
1417
1421
1426
1452void k_sched_lock(void);
1453
1462
1475__syscall void k_thread_custom_data_set(void *value);
1476
1484__syscall void *k_thread_custom_data_get(void);
1485
1499__syscall int k_thread_name_set(k_tid_t thread, const char *str);
1500
1509const char *k_thread_name_get(k_tid_t thread);
1510
1522__syscall int k_thread_name_copy(k_tid_t thread, char *buf,
1523 size_t size);
1524
1537const char *k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size);
1538
1542
1547
1556#define K_NO_WAIT Z_TIMEOUT_NO_WAIT
1557
1570#define K_NSEC(t) Z_TIMEOUT_NS(t)
1571
1584#define K_USEC(t) Z_TIMEOUT_US(t)
1585
1596#define K_CYC(t) Z_TIMEOUT_CYC(t)
1597
1608#define K_TICKS(t) Z_TIMEOUT_TICKS(t)
1609
1620#define K_MSEC(ms) Z_TIMEOUT_MS(ms)
1621
1632#define K_SECONDS(s) K_MSEC((s) * MSEC_PER_SEC)
1633
1644#define K_MINUTES(m) K_SECONDS((m) * 60)
1645
1656#define K_HOURS(h) K_MINUTES((h) * 60)
1657
1666#define K_FOREVER Z_FOREVER
1667
1668#ifdef CONFIG_TIMEOUT_64BIT
1669
1681#define K_TIMEOUT_ABS_TICKS(t) \
1682 Z_TIMEOUT_TICKS(Z_TICK_ABS((k_ticks_t)CLAMP(t, 0, (INT64_MAX - 1))))
1683
1695#define K_TIMEOUT_ABS_SEC(t) K_TIMEOUT_ABS_TICKS(k_sec_to_ticks_ceil64(t))
1696
1708#define K_TIMEOUT_ABS_MS(t) K_TIMEOUT_ABS_TICKS(k_ms_to_ticks_ceil64(t))
1709
1722#define K_TIMEOUT_ABS_US(t) K_TIMEOUT_ABS_TICKS(k_us_to_ticks_ceil64(t))
1723
1736#define K_TIMEOUT_ABS_NS(t) K_TIMEOUT_ABS_TICKS(k_ns_to_ticks_ceil64(t))
1737
1750#define K_TIMEOUT_ABS_CYC(t) K_TIMEOUT_ABS_TICKS(k_cyc_to_ticks_ceil64(t))
1751
1752#endif
1753
1757
1764struct k_timer {
1768
1769 /*
1770 * _timeout structure must be first here if we want to use
1771 * dynamic timer allocation. timeout.node is used in the double-linked
1772 * list of free timers
1773 */
1774 struct _timeout timeout;
1775
1776 /* wait queue for the (single) thread waiting on this timer */
1777 _wait_q_t wait_q;
1778
1779 /* runs in ISR context */
1780 void (*expiry_fn)(struct k_timer *timer);
1781
1782 /* runs in the context of the thread that calls k_timer_stop() */
1783 void (*stop_fn)(struct k_timer *timer);
1784
1785 /* timer period */
1786 k_timeout_t period;
1787
1788 /* timer status */
1789 uint32_t status;
1790
1791 /* user-specific data, also used to support legacy features */
1792 void *user_data;
1793
1795
1796#ifdef CONFIG_OBJ_CORE_TIMER
1797 struct k_obj_core obj_core;
1798#endif
1802};
1803
1807#define Z_TIMER_INITIALIZER(obj, expiry, stop) \
1808 { \
1809 .timeout = { \
1810 .node = {},\
1811 .fn = z_timer_expiration_handler, \
1812 .dticks = 0, \
1813 }, \
1814 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
1815 .expiry_fn = expiry, \
1816 .stop_fn = stop, \
1817 .period = {}, \
1818 .status = 0, \
1819 .user_data = 0, \
1820 }
1821
1825
1831
1842typedef void (*k_timer_expiry_t)(struct k_timer *timer);
1843
1858typedef void (*k_timer_stop_t)(struct k_timer *timer);
1859
1871#define K_TIMER_DEFINE(name, expiry_fn, stop_fn) \
1872 STRUCT_SECTION_ITERABLE(k_timer, name) = \
1873 Z_TIMER_INITIALIZER(name, expiry_fn, stop_fn)
1874
1884void k_timer_init(struct k_timer *timer,
1885 k_timer_expiry_t expiry_fn,
1886 k_timer_stop_t stop_fn);
1887
1905__syscall void k_timer_start(struct k_timer *timer,
1906 k_timeout_t duration, k_timeout_t period);
1907
1924__syscall void k_timer_stop(struct k_timer *timer);
1925
1938__syscall uint32_t k_timer_status_get(struct k_timer *timer);
1939
1957__syscall uint32_t k_timer_status_sync(struct k_timer *timer);
1958
1959#ifdef CONFIG_SYS_CLOCK_EXISTS
1960
1971__syscall k_ticks_t k_timer_expires_ticks(const struct k_timer *timer);
1972
1973static inline k_ticks_t z_impl_k_timer_expires_ticks(
1974 const struct k_timer *timer)
1975{
1976 return z_timeout_expires(&timer->timeout);
1977}
1978
1989__syscall k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer);
1990
1991static inline k_ticks_t z_impl_k_timer_remaining_ticks(
1992 const struct k_timer *timer)
1993{
1994 return z_timeout_remaining(&timer->timeout);
1995}
1996
2007static inline uint32_t k_timer_remaining_get(struct k_timer *timer)
2008{
2010}
2011
2012#endif /* CONFIG_SYS_CLOCK_EXISTS */
2013
2026__syscall void k_timer_user_data_set(struct k_timer *timer, void *user_data);
2027
2031static inline void z_impl_k_timer_user_data_set(struct k_timer *timer,
2032 void *user_data)
2033{
2034 timer->user_data = user_data;
2035}
2036
2044__syscall void *k_timer_user_data_get(const struct k_timer *timer);
2045
2046static inline void *z_impl_k_timer_user_data_get(const struct k_timer *timer)
2047{
2048 return timer->user_data;
2049}
2050
2052
2058
2068__syscall int64_t k_uptime_ticks(void);
2069
2083static inline int64_t k_uptime_get(void)
2084{
2086}
2087
2107static inline uint32_t k_uptime_get_32(void)
2108{
2109 return (uint32_t)k_uptime_get();
2110}
2111
2120static inline uint32_t k_uptime_seconds(void)
2121{
2123}
2124
2136static inline int64_t k_uptime_delta(int64_t *reftime)
2137{
2138 int64_t uptime, delta;
2139
2140 uptime = k_uptime_get();
2141 delta = uptime - *reftime;
2142 *reftime = uptime;
2143
2144 return delta;
2145}
2146
2155static inline uint32_t k_cycle_get_32(void)
2156{
2157 return arch_k_cycle_get_32();
2158}
2159
2170static inline uint64_t k_cycle_get_64(void)
2171{
2172 if (!IS_ENABLED(CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER)) {
2173 __ASSERT(0, "64-bit cycle counter not enabled on this platform. "
2174 "See CONFIG_TIMER_HAS_64BIT_CYCLE_COUNTER");
2175 return 0;
2176 }
2177
2178 return arch_k_cycle_get_64();
2179}
2180
2184
2185struct k_queue {
2188 _wait_q_t wait_q;
2189
2190 Z_DECL_POLL_EVENT
2191
2193};
2194
2198
2199#define Z_QUEUE_INITIALIZER(obj) \
2200 { \
2201 .data_q = SYS_SFLIST_STATIC_INIT(&obj.data_q), \
2202 .lock = { }, \
2203 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2204 Z_POLL_EVENT_OBJ_INIT(obj) \
2205 }
2206
2210
2216
2224__syscall void k_queue_init(struct k_queue *queue);
2225
2239__syscall void k_queue_cancel_wait(struct k_queue *queue);
2240
2253void k_queue_append(struct k_queue *queue, void *data);
2254
2271__syscall int32_t k_queue_alloc_append(struct k_queue *queue, void *data);
2272
2285void k_queue_prepend(struct k_queue *queue, void *data);
2286
2303__syscall int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data);
2304
2318void k_queue_insert(struct k_queue *queue, void *prev, void *data);
2319
2338int k_queue_append_list(struct k_queue *queue, void *head, void *tail);
2339
2355int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list);
2356
2374__syscall void *k_queue_get(struct k_queue *queue, k_timeout_t timeout);
2375
2392bool k_queue_remove(struct k_queue *queue, void *data);
2393
2408bool k_queue_unique_append(struct k_queue *queue, void *data);
2409
2423__syscall int k_queue_is_empty(struct k_queue *queue);
2424
2425static inline int z_impl_k_queue_is_empty(struct k_queue *queue)
2426{
2427 return sys_sflist_is_empty(&queue->data_q) ? 1 : 0;
2428}
2429
2439__syscall void *k_queue_peek_head(struct k_queue *queue);
2440
2450__syscall void *k_queue_peek_tail(struct k_queue *queue);
2451
2461#define K_QUEUE_DEFINE(name) \
2462 STRUCT_SECTION_ITERABLE(k_queue, name) = \
2463 Z_QUEUE_INITIALIZER(name)
2464
2466
2467#ifdef CONFIG_USERSPACE
2477struct k_futex {
2479};
2480
2488struct z_futex_data {
2489 _wait_q_t wait_q;
2490 struct k_spinlock lock;
2491};
2492
2493#define Z_FUTEX_DATA_INITIALIZER(obj) \
2494 { \
2495 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q) \
2496 }
2497
2503
2523__syscall int k_futex_wait(struct k_futex *futex, int expected,
2524 k_timeout_t timeout);
2525
2540__syscall int k_futex_wake(struct k_futex *futex, bool wake_all);
2541
2543#endif
2544
2550
2555
2562
2563struct k_event {
2567 _wait_q_t wait_q;
2568 uint32_t events;
2569 struct k_spinlock lock;
2570
2572
2573#ifdef CONFIG_OBJ_CORE_EVENT
2574 struct k_obj_core obj_core;
2575#endif
2579
2580};
2581
2585
2586#define Z_EVENT_INITIALIZER(obj) \
2587 { \
2588 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
2589 .events = 0, \
2590 .lock = {}, \
2591 }
2595
2603__syscall void k_event_init(struct k_event *event);
2604
2622__syscall uint32_t k_event_post(struct k_event *event, uint32_t events);
2623
2641__syscall uint32_t k_event_set(struct k_event *event, uint32_t events);
2642
2659__syscall uint32_t k_event_set_masked(struct k_event *event, uint32_t events,
2660 uint32_t events_mask);
2661
2674__syscall uint32_t k_event_clear(struct k_event *event, uint32_t events);
2675
2700__syscall uint32_t k_event_wait(struct k_event *event, uint32_t events,
2701 bool reset, k_timeout_t timeout);
2702
2727__syscall uint32_t k_event_wait_all(struct k_event *event, uint32_t events,
2728 bool reset, k_timeout_t timeout);
2729
2749__syscall uint32_t k_event_wait_safe(struct k_event *event, uint32_t events,
2750 bool reset, k_timeout_t timeout);
2751
2771__syscall uint32_t k_event_wait_all_safe(struct k_event *event, uint32_t events,
2772 bool reset, k_timeout_t timeout);
2773
2774
2775
2786static inline uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
2787{
2788 return k_event_wait(event, events_mask, false, K_NO_WAIT);
2789}
2790
2800#define K_EVENT_DEFINE(name) \
2801 STRUCT_SECTION_ITERABLE(k_event, name) = \
2802 Z_EVENT_INITIALIZER(name);
2803
2805
2806struct k_fifo {
2807 struct k_queue _queue;
2808#ifdef CONFIG_OBJ_CORE_FIFO
2809 struct k_obj_core obj_core;
2810#endif
2811};
2812
2816#define Z_FIFO_INITIALIZER(obj) \
2817 { \
2818 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
2819 }
2820
2824
2830
2838#define k_fifo_init(fifo) \
2839 ({ \
2840 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, init, fifo); \
2841 k_queue_init(&(fifo)->_queue); \
2842 K_OBJ_CORE_INIT(K_OBJ_CORE(fifo), _obj_type_fifo); \
2843 K_OBJ_CORE_LINK(K_OBJ_CORE(fifo)); \
2844 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, init, fifo); \
2845 })
2846
2858#define k_fifo_cancel_wait(fifo) \
2859 ({ \
2860 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, cancel_wait, fifo); \
2861 k_queue_cancel_wait(&(fifo)->_queue); \
2862 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, cancel_wait, fifo); \
2863 })
2864
2877#define k_fifo_put(fifo, data) \
2878 ({ \
2879 void *_data = data; \
2880 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put, fifo, _data); \
2881 k_queue_append(&(fifo)->_queue, _data); \
2882 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put, fifo, _data); \
2883 })
2884
2901#define k_fifo_alloc_put(fifo, data) \
2902 ({ \
2903 void *_data = data; \
2904 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, alloc_put, fifo, _data); \
2905 int fap_ret = k_queue_alloc_append(&(fifo)->_queue, _data); \
2906 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, alloc_put, fifo, _data, fap_ret); \
2907 fap_ret; \
2908 })
2909
2924#define k_fifo_put_list(fifo, head, tail) \
2925 ({ \
2926 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_list, fifo, head, tail); \
2927 k_queue_append_list(&(fifo)->_queue, head, tail); \
2928 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_list, fifo, head, tail); \
2929 })
2930
2944#define k_fifo_put_slist(fifo, list) \
2945 ({ \
2946 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, put_slist, fifo, list); \
2947 k_queue_merge_slist(&(fifo)->_queue, list); \
2948 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, put_slist, fifo, list); \
2949 })
2950
2968#define k_fifo_get(fifo, timeout) \
2969 ({ \
2970 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, get, fifo, timeout); \
2971 void *fg_ret = k_queue_get(&(fifo)->_queue, timeout); \
2972 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, get, fifo, timeout, fg_ret); \
2973 fg_ret; \
2974 })
2975
2989#define k_fifo_is_empty(fifo) \
2990 k_queue_is_empty(&(fifo)->_queue)
2991
3005#define k_fifo_peek_head(fifo) \
3006 ({ \
3007 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_head, fifo); \
3008 void *fph_ret = k_queue_peek_head(&(fifo)->_queue); \
3009 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_head, fifo, fph_ret); \
3010 fph_ret; \
3011 })
3012
3024#define k_fifo_peek_tail(fifo) \
3025 ({ \
3026 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_fifo, peek_tail, fifo); \
3027 void *fpt_ret = k_queue_peek_tail(&(fifo)->_queue); \
3028 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_fifo, peek_tail, fifo, fpt_ret); \
3029 fpt_ret; \
3030 })
3031
3041#define K_FIFO_DEFINE(name) \
3042 STRUCT_SECTION_ITERABLE(k_fifo, name) = \
3043 Z_FIFO_INITIALIZER(name)
3044
3046
3047struct k_lifo {
3048 struct k_queue _queue;
3049#ifdef CONFIG_OBJ_CORE_LIFO
3050 struct k_obj_core obj_core;
3051#endif
3052};
3053
3057
3058#define Z_LIFO_INITIALIZER(obj) \
3059 { \
3060 ._queue = Z_QUEUE_INITIALIZER(obj._queue) \
3061 }
3062
3066
3072
3080#define k_lifo_init(lifo) \
3081 ({ \
3082 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, init, lifo); \
3083 k_queue_init(&(lifo)->_queue); \
3084 K_OBJ_CORE_INIT(K_OBJ_CORE(lifo), _obj_type_lifo); \
3085 K_OBJ_CORE_LINK(K_OBJ_CORE(lifo)); \
3086 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, init, lifo); \
3087 })
3088
3101#define k_lifo_put(lifo, data) \
3102 ({ \
3103 void *_data = data; \
3104 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, put, lifo, _data); \
3105 k_queue_prepend(&(lifo)->_queue, _data); \
3106 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, put, lifo, _data); \
3107 })
3108
3125#define k_lifo_alloc_put(lifo, data) \
3126 ({ \
3127 void *_data = data; \
3128 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, alloc_put, lifo, _data); \
3129 int lap_ret = k_queue_alloc_prepend(&(lifo)->_queue, _data); \
3130 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, alloc_put, lifo, _data, lap_ret); \
3131 lap_ret; \
3132 })
3133
3151#define k_lifo_get(lifo, timeout) \
3152 ({ \
3153 SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_lifo, get, lifo, timeout); \
3154 void *lg_ret = k_queue_get(&(lifo)->_queue, timeout); \
3155 SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_lifo, get, lifo, timeout, lg_ret); \
3156 lg_ret; \
3157 })
3158
3168#define K_LIFO_DEFINE(name) \
3169 STRUCT_SECTION_ITERABLE(k_lifo, name) = \
3170 Z_LIFO_INITIALIZER(name)
3171
3173
3177#define K_STACK_FLAG_ALLOC ((uint8_t)1) /* Buffer was allocated */
3178
3179typedef uintptr_t stack_data_t;
3180
3181struct k_stack {
3182 _wait_q_t wait_q;
3183 struct k_spinlock lock;
3184 stack_data_t *base, *next, *top;
3185
3186 uint8_t flags;
3187
3189
3190#ifdef CONFIG_OBJ_CORE_STACK
3191 struct k_obj_core obj_core;
3192#endif
3193};
3194
3195#define Z_STACK_INITIALIZER(obj, stack_buffer, stack_num_entries) \
3196 { \
3197 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3198 .base = (stack_buffer), \
3199 .next = (stack_buffer), \
3200 .top = (stack_buffer) + (stack_num_entries), \
3201 }
3202
3206
3212
3222void k_stack_init(struct k_stack *stack,
3223 stack_data_t *buffer, uint32_t num_entries);
3224
3225
3239
3240__syscall int32_t k_stack_alloc_init(struct k_stack *stack,
3241 uint32_t num_entries);
3242
3254int k_stack_cleanup(struct k_stack *stack);
3255
3269__syscall int k_stack_push(struct k_stack *stack, stack_data_t data);
3270
3291__syscall int k_stack_pop(struct k_stack *stack, stack_data_t *data,
3292 k_timeout_t timeout);
3293
3304#define K_STACK_DEFINE(name, stack_num_entries) \
3305 stack_data_t __noinit \
3306 _k_stack_buf_##name[stack_num_entries]; \
3307 STRUCT_SECTION_ITERABLE(k_stack, name) = \
3308 Z_STACK_INITIALIZER(name, _k_stack_buf_##name, \
3309 stack_num_entries)
3310
3312
3316
3317struct k_work;
3318struct k_work_q;
3319struct k_work_queue_config;
3320extern struct k_work_q k_sys_work_q;
3321
3325
3331
3336struct k_mutex {
3338 _wait_q_t wait_q;
3341
3344
3347
3349
3350#ifdef CONFIG_OBJ_CORE_MUTEX
3351 struct k_obj_core obj_core;
3352#endif
3353};
3354
3358#define Z_MUTEX_INITIALIZER(obj) \
3359 { \
3360 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3361 .owner = NULL, \
3362 .lock_count = 0, \
3363 .owner_orig_prio = K_LOWEST_APPLICATION_THREAD_PRIO, \
3364 }
3365
3369
3379#define K_MUTEX_DEFINE(name) \
3380 STRUCT_SECTION_ITERABLE(k_mutex, name) = \
3381 Z_MUTEX_INITIALIZER(name)
3382
3395__syscall int k_mutex_init(struct k_mutex *mutex);
3396
3397
3419__syscall int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout);
3420
3441__syscall int k_mutex_unlock(struct k_mutex *mutex);
3442
3446
3447
3449 _wait_q_t wait_q;
3450
3451#ifdef CONFIG_OBJ_CORE_CONDVAR
3452 struct k_obj_core obj_core;
3453#endif
3454};
3455
3456#define Z_CONDVAR_INITIALIZER(obj) \
3457 { \
3458 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
3459 }
3460
3466
3473__syscall int k_condvar_init(struct k_condvar *condvar);
3474
3481__syscall int k_condvar_signal(struct k_condvar *condvar);
3482
3490__syscall int k_condvar_broadcast(struct k_condvar *condvar);
3491
3509__syscall int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex,
3510 k_timeout_t timeout);
3511
3522#define K_CONDVAR_DEFINE(name) \
3523 STRUCT_SECTION_ITERABLE(k_condvar, name) = \
3524 Z_CONDVAR_INITIALIZER(name)
3525
3528
3534
3541struct k_sem {
3545 _wait_q_t wait_q;
3546 unsigned int count;
3547 unsigned int limit;
3548
3549 Z_DECL_POLL_EVENT
3550
3552
3553#ifdef CONFIG_OBJ_CORE_SEM
3554 struct k_obj_core obj_core;
3555#endif
3557};
3558
3562
3563#define Z_SEM_INITIALIZER(obj, initial_count, count_limit) \
3564 { \
3565 .wait_q = Z_WAIT_Q_INIT(&(obj).wait_q), \
3566 .count = (initial_count), \
3567 .limit = (count_limit), \
3568 Z_POLL_EVENT_OBJ_INIT(obj) \
3569 }
3570
3574
3583#define K_SEM_MAX_LIMIT UINT_MAX
3584
3600__syscall int k_sem_init(struct k_sem *sem, unsigned int initial_count,
3601 unsigned int limit);
3602
3621__syscall int k_sem_take(struct k_sem *sem, k_timeout_t timeout);
3622
3633__syscall void k_sem_give(struct k_sem *sem);
3634
3644__syscall void k_sem_reset(struct k_sem *sem);
3645
3655__syscall unsigned int k_sem_count_get(struct k_sem *sem);
3656
3660static inline unsigned int z_impl_k_sem_count_get(struct k_sem *sem)
3661{
3662 return sem->count;
3663}
3664
3676#define K_SEM_DEFINE(name, initial_count, count_limit) \
3677 STRUCT_SECTION_ITERABLE(k_sem, name) = \
3678 Z_SEM_INITIALIZER(name, initial_count, count_limit); \
3679 BUILD_ASSERT(((count_limit) != 0) && \
3680 (((initial_count) < (count_limit)) || ((initial_count) == (count_limit))) && \
3681 ((count_limit) <= K_SEM_MAX_LIMIT));
3682
3684
3685#if defined(CONFIG_SCHED_IPI_SUPPORTED) || defined(__DOXYGEN__)
3686struct k_ipi_work;
3687
3688
3689typedef void (*k_ipi_func_t)(struct k_ipi_work *work);
3690
3701 sys_dnode_t node[CONFIG_MP_MAX_NUM_CPUS]; /* Node in IPI work queue */
3702 k_ipi_func_t func; /* Function to execute on target CPU */
3703 struct k_event event; /* Event to signal when processed */
3704 uint32_t bitmask; /* Bitmask of targeted CPUs */
3706};
3707
3708
3716static inline void k_ipi_work_init(struct k_ipi_work *work)
3717{
3718 k_event_init(&work->event);
3719 for (unsigned int i = 0; i < CONFIG_MP_MAX_NUM_CPUS; i++) {
3720 sys_dnode_init(&work->node[i]);
3721 }
3722 work->bitmask = 0;
3723}
3724
3743int k_ipi_work_add(struct k_ipi_work *work, uint32_t cpu_bitmask,
3744 k_ipi_func_t func);
3745
3768int k_ipi_work_wait(struct k_ipi_work *work, k_timeout_t timeout);
3769
3779
3780#endif /* CONFIG_SCHED_IPI_SUPPORTED */
3781
3785
3786struct k_work_delayable;
3787struct k_work_sync;
3788
3792
3798
3805typedef void (*k_work_handler_t)(struct k_work *work);
3806
3820void k_work_init(struct k_work *work,
3822
3837int k_work_busy_get(const struct k_work *work);
3838
3852static inline bool k_work_is_pending(const struct k_work *work);
3853
3875 struct k_work *work);
3876
3885int k_work_submit(struct k_work *work);
3886
3911bool k_work_flush(struct k_work *work,
3912 struct k_work_sync *sync);
3913
3933int k_work_cancel(struct k_work *work);
3934
3965bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync);
3966
3977
3998 k_thread_stack_t *stack, size_t stack_size,
3999 int prio, const struct k_work_queue_config *cfg);
4000
4011void k_work_queue_run(struct k_work_q *queue, const struct k_work_queue_config *cfg);
4012
4022static inline k_tid_t k_work_queue_thread_get(struct k_work_q *queue);
4023
4047int k_work_queue_drain(struct k_work_q *queue, bool plug);
4048
4063
4080
4096
4108static inline struct k_work_delayable *
4110
4125
4140static inline bool k_work_delayable_is_pending(
4141 const struct k_work_delayable *dwork);
4142
4157 const struct k_work_delayable *dwork);
4158
4173 const struct k_work_delayable *dwork);
4174
4203 struct k_work_delayable *dwork,
4204 k_timeout_t delay);
4205
4220 k_timeout_t delay);
4221
4258 struct k_work_delayable *dwork,
4259 k_timeout_t delay);
4260
4274 k_timeout_t delay);
4275
4301 struct k_work_sync *sync);
4302
4324
4354 struct k_work_sync *sync);
4355
4356enum {
4360
4361 /* The atomic API is used for all work and queue flags fields to
4362 * enforce sequential consistency in SMP environments.
4363 */
4364
4365 /* Bits that represent the work item states. At least nine of the
4366 * combinations are distinct valid stable states.
4367 */
4368 K_WORK_RUNNING_BIT = 0,
4369 K_WORK_CANCELING_BIT = 1,
4370 K_WORK_QUEUED_BIT = 2,
4371 K_WORK_DELAYED_BIT = 3,
4372 K_WORK_FLUSHING_BIT = 4,
4373
4374 K_WORK_MASK = BIT(K_WORK_DELAYED_BIT) | BIT(K_WORK_QUEUED_BIT)
4375 | BIT(K_WORK_RUNNING_BIT) | BIT(K_WORK_CANCELING_BIT) | BIT(K_WORK_FLUSHING_BIT),
4376
4377 /* Static work flags */
4378 K_WORK_DELAYABLE_BIT = 8,
4379 K_WORK_DELAYABLE = BIT(K_WORK_DELAYABLE_BIT),
4380
4381 /* Dynamic work queue flags */
4382 K_WORK_QUEUE_STARTED_BIT = 0,
4383 K_WORK_QUEUE_STARTED = BIT(K_WORK_QUEUE_STARTED_BIT),
4384 K_WORK_QUEUE_BUSY_BIT = 1,
4385 K_WORK_QUEUE_BUSY = BIT(K_WORK_QUEUE_BUSY_BIT),
4386 K_WORK_QUEUE_DRAIN_BIT = 2,
4387 K_WORK_QUEUE_DRAIN = BIT(K_WORK_QUEUE_DRAIN_BIT),
4388 K_WORK_QUEUE_PLUGGED_BIT = 3,
4389 K_WORK_QUEUE_PLUGGED = BIT(K_WORK_QUEUE_PLUGGED_BIT),
4390 K_WORK_QUEUE_STOP_BIT = 4,
4391 K_WORK_QUEUE_STOP = BIT(K_WORK_QUEUE_STOP_BIT),
4392
4393 /* Static work queue flags */
4394 K_WORK_QUEUE_NO_YIELD_BIT = 8,
4395 K_WORK_QUEUE_NO_YIELD = BIT(K_WORK_QUEUE_NO_YIELD_BIT),
4396
4400 /* Transient work flags */
4401
4407 K_WORK_RUNNING = BIT(K_WORK_RUNNING_BIT),
4408
4413 K_WORK_CANCELING = BIT(K_WORK_CANCELING_BIT),
4414
4420 K_WORK_QUEUED = BIT(K_WORK_QUEUED_BIT),
4421
4427 K_WORK_DELAYED = BIT(K_WORK_DELAYED_BIT),
4428
4433 K_WORK_FLUSHING = BIT(K_WORK_FLUSHING_BIT),
4434};
4435
4437struct k_work {
4438 /* All fields are protected by the work module spinlock. No fields
4439 * are to be accessed except through kernel API.
4440 */
4441
4442 /* Node to link into k_work_q pending list. */
4444
4445 /* The function to be invoked by the work queue thread. */
4447
4448 /* The queue on which the work item was last submitted. */
4450
4451 /* State of the work item.
4452 *
4453 * The item can be DELAYED, QUEUED, and RUNNING simultaneously.
4454 *
4455 * It can be RUNNING and CANCELING simultaneously.
4456 */
4458};
4459
4460#define Z_WORK_INITIALIZER(work_handler) { \
4461 .handler = (work_handler), \
4462}
4463
4466 /* The work item. */
4467 struct k_work work;
4468
4469 /* Timeout used to submit work after a delay. */
4470 struct _timeout timeout;
4471
4472 /* The queue to which the work should be submitted. */
4474};
4475
4476#define Z_WORK_DELAYABLE_INITIALIZER(work_handler) { \
4477 .work = { \
4478 .handler = (work_handler), \
4479 .flags = K_WORK_DELAYABLE, \
4480 }, \
4481}
4482
4499#define K_WORK_DELAYABLE_DEFINE(work, work_handler) \
4500 struct k_work_delayable work \
4501 = Z_WORK_DELAYABLE_INITIALIZER(work_handler)
4502
4506
4507/* Record used to wait for work to flush.
4508 *
4509 * The work item is inserted into the queue that will process (or is
4510 * processing) the item, and will be processed as soon as the item
4511 * completes. When the flusher is processed the semaphore will be
4512 * signaled, releasing the thread waiting for the flush.
4513 */
4514struct z_work_flusher {
4515 struct k_work work;
4516 struct k_sem sem;
4517};
4518
4519/* Record used to wait for work to complete a cancellation.
4520 *
4521 * The work item is inserted into a global queue of pending cancels.
4522 * When a cancelling work item goes idle any matching waiters are
4523 * removed from pending_cancels and are woken.
4524 */
4525struct z_work_canceller {
4526 sys_snode_t node;
4527 struct k_work *work;
4528 struct k_sem sem;
4529};
4530
4534
4549 union {
4550 struct z_work_flusher flusher;
4551 struct z_work_canceller canceller;
4552 };
4553};
4554
4566 const char *name;
4567
4581
4586
4596};
4597
4599struct k_work_q {
4600 /* The thread that animates the work. */
4602
4603 /* The thread ID that animates the work. This may be an external thread
4604 * if k_work_queue_run() is used.
4605 */
4607
4608 /* All the following fields must be accessed only while the
4609 * work module spinlock is held.
4610 */
4611
4612 /* List of k_work items to be worked. */
4614
4615 /* Wait queue for idle work thread. */
4616 _wait_q_t notifyq;
4617
4618 /* Wait queue for threads waiting for the queue to drain. */
4619 _wait_q_t drainq;
4620
4621 /* Flags describing queue state. */
4623
4624#if defined(CONFIG_WORKQUEUE_WORK_TIMEOUT)
4625 struct _timeout work_timeout_record;
4626 struct k_work *work;
4627 k_timeout_t work_timeout;
4628#endif /* defined(CONFIG_WORKQUEUE_WORK_TIMEOUT) */
4629};
4630
4631/* Provide the implementation for inline functions declared above */
4632
4633static inline bool k_work_is_pending(const struct k_work *work)
4634{
4635 return k_work_busy_get(work) != 0;
4636}
4637
4638static inline struct k_work_delayable *
4643
4645 const struct k_work_delayable *dwork)
4646{
4647 return k_work_delayable_busy_get(dwork) != 0;
4648}
4649
4651 const struct k_work_delayable *dwork)
4652{
4653 return z_timeout_expires(&dwork->timeout);
4654}
4655
4657 const struct k_work_delayable *dwork)
4658{
4659 return z_timeout_remaining(&dwork->timeout);
4660}
4661
4663{
4664 return queue->thread_id;
4665}
4666
4668
4669struct k_work_user;
4670
4675
4685typedef void (*k_work_user_handler_t)(struct k_work_user *work);
4686
4690
4691struct k_work_user_q {
4692 struct k_queue queue;
4693 struct k_thread thread;
4694};
4695
4696enum {
4697 K_WORK_USER_STATE_PENDING, /* Work item pending state */
4698};
4699
4700struct k_work_user {
4701 void *_reserved; /* Used by k_queue implementation. */
4702 k_work_user_handler_t handler;
4704};
4705
4709
4710#if defined(__cplusplus) && ((__cplusplus - 0) < 202002L)
4711#define Z_WORK_USER_INITIALIZER(work_handler) { NULL, work_handler, 0 }
4712#else
4713#define Z_WORK_USER_INITIALIZER(work_handler) \
4714 { \
4715 ._reserved = NULL, \
4716 .handler = (work_handler), \
4717 .flags = 0 \
4718 }
4719#endif
4720
4732#define K_WORK_USER_DEFINE(work, work_handler) \
4733 struct k_work_user work = Z_WORK_USER_INITIALIZER(work_handler)
4734
4744static inline void k_work_user_init(struct k_work_user *work,
4745 k_work_user_handler_t handler)
4746{
4747 *work = (struct k_work_user)Z_WORK_USER_INITIALIZER(handler);
4748}
4749
4766static inline bool k_work_user_is_pending(struct k_work_user *work)
4767{
4768 return atomic_test_bit(&work->flags, K_WORK_USER_STATE_PENDING);
4769}
4770
4789static inline int k_work_user_submit_to_queue(struct k_work_user_q *work_q,
4790 struct k_work_user *work)
4791{
4792 int ret = -EBUSY;
4793
4794 if (!atomic_test_and_set_bit(&work->flags,
4795 K_WORK_USER_STATE_PENDING)) {
4796 ret = k_queue_alloc_append(&work_q->queue, work);
4797
4798 /* Couldn't insert into the queue. Clear the pending bit
4799 * so the work item can be submitted again
4800 */
4801 if (ret != 0) {
4802 atomic_clear_bit(&work->flags,
4803 K_WORK_USER_STATE_PENDING);
4804 }
4805 }
4806
4807 return ret;
4808}
4809
4829void k_work_user_queue_start(struct k_work_user_q *work_q,
4830 k_thread_stack_t *stack,
4831 size_t stack_size, int prio,
4832 const char *name);
4833
4844static inline k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
4845{
4846 return &work_q->thread;
4847}
4848
4850
4854
4855struct k_work_poll {
4856 struct k_work work;
4857 struct k_work_q *workq;
4858 struct z_poller poller;
4859 struct k_poll_event *events;
4860 int num_events;
4861 k_work_handler_t real_handler;
4862 struct _timeout timeout;
4863 int poll_result;
4864};
4865
4869
4874
4886#define K_WORK_DEFINE(work, work_handler) \
4887 struct k_work work = Z_WORK_INITIALIZER(work_handler)
4888
4898void k_work_poll_init(struct k_work_poll *work,
4899 k_work_handler_t handler);
4900
4936 struct k_work_poll *work,
4937 struct k_poll_event *events,
4938 int num_events,
4939 k_timeout_t timeout);
4940
4972int k_work_poll_submit(struct k_work_poll *work,
4973 struct k_poll_event *events,
4974 int num_events,
4975 k_timeout_t timeout);
4976
4991int k_work_poll_cancel(struct k_work_poll *work);
4992
4994
5000
5004struct k_msgq {
5006 _wait_q_t wait_q;
5010 size_t msg_size;
5023
5024 Z_DECL_POLL_EVENT
5025
5028
5030
5031#ifdef CONFIG_OBJ_CORE_MSGQ
5032 struct k_obj_core obj_core;
5033#endif
5034};
5035
5038
5039
5040#define Z_MSGQ_INITIALIZER(obj, q_buffer, q_msg_size, q_max_msgs) \
5041 { \
5042 .wait_q = Z_WAIT_Q_INIT(&obj.wait_q), \
5043 .lock = {}, \
5044 .msg_size = q_msg_size, \
5045 .max_msgs = q_max_msgs, \
5046 .buffer_start = q_buffer, \
5047 .buffer_end = q_buffer + (q_max_msgs * q_msg_size), \
5048 .read_ptr = q_buffer, \
5049 .write_ptr = q_buffer, \
5050 .used_msgs = 0, \
5051 Z_POLL_EVENT_OBJ_INIT(obj) \
5052 .flags = 0, \
5053 }
5054
5058
5059
5060#define K_MSGQ_FLAG_ALLOC BIT(0)
5061
5073
5074
5093#define K_MSGQ_DEFINE(q_name, q_msg_size, q_max_msgs, q_align) \
5094 static char __noinit __aligned(q_align) \
5095 _k_fifo_buf_##q_name[(q_max_msgs) * (q_msg_size)]; \
5096 STRUCT_SECTION_ITERABLE(k_msgq, q_name) = \
5097 Z_MSGQ_INITIALIZER(q_name, _k_fifo_buf_##q_name, \
5098 (q_msg_size), (q_max_msgs))
5099
5114void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size,
5115 uint32_t max_msgs);
5116
5136__syscall int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size,
5137 uint32_t max_msgs);
5138
5149int k_msgq_cleanup(struct k_msgq *msgq);
5150
5171__syscall int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout);
5172
5197__syscall int k_msgq_put_front(struct k_msgq *msgq, const void *data);
5198
5219__syscall int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout);
5220
5235__syscall int k_msgq_peek(struct k_msgq *msgq, void *data);
5236
5253__syscall int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx);
5254
5264__syscall void k_msgq_purge(struct k_msgq *msgq);
5265
5276__syscall uint32_t k_msgq_num_free_get(struct k_msgq *msgq);
5277
5286__syscall void k_msgq_get_attrs(struct k_msgq *msgq,
5287 struct k_msgq_attrs *attrs);
5288
5289
5290static inline uint32_t z_impl_k_msgq_num_free_get(struct k_msgq *msgq)
5291{
5292 return msgq->max_msgs - msgq->used_msgs;
5293}
5294
5304__syscall uint32_t k_msgq_num_used_get(struct k_msgq *msgq);
5305
5306static inline uint32_t z_impl_k_msgq_num_used_get(struct k_msgq *msgq)
5307{
5308 return msgq->used_msgs;
5309}
5310
5312
5318
5325 size_t size;
5329 void *tx_data;
5335 k_tid_t _syncing_thread;
5336#if (CONFIG_NUM_MBOX_ASYNC_MSGS > 0)
5338 struct k_sem *_async_sem;
5339#endif
5340};
5341
5345struct k_mbox {
5347 _wait_q_t tx_msg_queue;
5349 _wait_q_t rx_msg_queue;
5351
5353
5354#ifdef CONFIG_OBJ_CORE_MAILBOX
5355 struct k_obj_core obj_core;
5356#endif
5357};
5358
5361
5362#define Z_MBOX_INITIALIZER(obj) \
5363 { \
5364 .tx_msg_queue = Z_WAIT_Q_INIT(&obj.tx_msg_queue), \
5365 .rx_msg_queue = Z_WAIT_Q_INIT(&obj.rx_msg_queue), \
5366 }
5367
5371
5381#define K_MBOX_DEFINE(name) \
5382 STRUCT_SECTION_ITERABLE(k_mbox, name) = \
5383 Z_MBOX_INITIALIZER(name) \
5384
5385
5392void k_mbox_init(struct k_mbox *mbox);
5393
5413int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
5414 k_timeout_t timeout);
5415
5429void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg,
5430 struct k_sem *sem);
5431
5449int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg,
5450 void *buffer, k_timeout_t timeout);
5451
5465void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer);
5466
5468
5474
5484__syscall void k_pipe_init(struct k_pipe *pipe, uint8_t *buffer, size_t buffer_size);
5485
5490
5491struct k_pipe {
5492 size_t waiting;
5495 _wait_q_t data;
5496 _wait_q_t space;
5498
5499 Z_DECL_POLL_EVENT
5500#ifdef CONFIG_OBJ_CORE_PIPE
5501 struct k_obj_core obj_core;
5502#endif
5504};
5505
5509#define Z_PIPE_INITIALIZER(obj, pipe_buffer, pipe_buffer_size) \
5510{ \
5511 .waiting = 0, \
5512 .buf = RING_BUF_INIT(pipe_buffer, pipe_buffer_size), \
5513 .data = Z_WAIT_Q_INIT(&obj.data), \
5514 .space = Z_WAIT_Q_INIT(&obj.space), \
5515 .flags = PIPE_FLAG_OPEN, \
5516 Z_POLL_EVENT_OBJ_INIT(obj) \
5517}
5521
5535#define K_PIPE_DEFINE(name, pipe_buffer_size, pipe_align) \
5536 static unsigned char __noinit __aligned(pipe_align) \
5537 _k_pipe_buf_##name[pipe_buffer_size]; \
5538 STRUCT_SECTION_ITERABLE(k_pipe, name) = \
5539 Z_PIPE_INITIALIZER(name, _k_pipe_buf_##name, pipe_buffer_size)
5540
5541
5558__syscall int k_pipe_write(struct k_pipe *pipe, const uint8_t *data, size_t len,
5559 k_timeout_t timeout);
5560
5576__syscall int k_pipe_read(struct k_pipe *pipe, uint8_t *data, size_t len,
5577 k_timeout_t timeout);
5578
5588__syscall void k_pipe_reset(struct k_pipe *pipe);
5589
5598__syscall void k_pipe_close(struct k_pipe *pipe);
5600
5604struct k_mem_slab_info {
5605 uint32_t num_blocks;
5606 size_t block_size;
5607 uint32_t num_used;
5608#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5609 uint32_t max_used;
5610#endif
5611};
5612
5613struct k_mem_slab {
5614 _wait_q_t wait_q;
5615 struct k_spinlock lock;
5616 char *buffer;
5617 char *free_list;
5618 struct k_mem_slab_info info;
5619
5621
5622#ifdef CONFIG_OBJ_CORE_MEM_SLAB
5623 struct k_obj_core obj_core;
5624#endif
5625};
5626
5627#define Z_MEM_SLAB_INITIALIZER(_slab, _slab_buffer, _slab_block_size, \
5628 _slab_num_blocks) \
5629 { \
5630 .wait_q = Z_WAIT_Q_INIT(&(_slab).wait_q), \
5631 .lock = {}, \
5632 .buffer = _slab_buffer, \
5633 .free_list = NULL, \
5634 .info = {_slab_num_blocks, _slab_block_size, 0} \
5635 }
5636
5637
5641
5647
5673#define K_MEM_SLAB_DEFINE_IN_SECT(name, in_section, slab_block_size, slab_num_blocks, slab_align) \
5674 BUILD_ASSERT(((slab_block_size) % (slab_align)) == 0, \
5675 "slab_block_size must be a multiple of slab_align"); \
5676 BUILD_ASSERT((((slab_align) & ((slab_align) - 1)) == 0), \
5677 "slab_align must be a power of 2"); \
5678 char in_section __aligned(WB_UP( \
5679 slab_align)) _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5680 STRUCT_SECTION_ITERABLE(k_mem_slab, name) = Z_MEM_SLAB_INITIALIZER( \
5681 name, _k_mem_slab_buf_##name, WB_UP(slab_block_size), slab_num_blocks)
5682
5706#define K_MEM_SLAB_DEFINE(name, slab_block_size, slab_num_blocks, slab_align) \
5707 K_MEM_SLAB_DEFINE_IN_SECT(name, __noinit_named(k_mem_slab_buf_##name), slab_block_size, \
5708 slab_num_blocks, slab_align)
5709
5726#define K_MEM_SLAB_DEFINE_IN_SECT_STATIC(name, in_section, slab_block_size, slab_num_blocks, \
5727 slab_align) \
5728 BUILD_ASSERT(((slab_block_size) % (slab_align)) == 0, \
5729 "slab_block_size must be a multiple of slab_align"); \
5730 BUILD_ASSERT((((slab_align) & ((slab_align) - 1)) == 0), \
5731 "slab_align must be a power of 2"); \
5732 static char in_section __aligned(WB_UP( \
5733 slab_align)) _k_mem_slab_buf_##name[(slab_num_blocks) * WB_UP(slab_block_size)]; \
5734 static STRUCT_SECTION_ITERABLE(k_mem_slab, name) = Z_MEM_SLAB_INITIALIZER( \
5735 name, _k_mem_slab_buf_##name, WB_UP(slab_block_size), slab_num_blocks)
5736
5751#define K_MEM_SLAB_DEFINE_STATIC(name, slab_block_size, slab_num_blocks, slab_align) \
5752 K_MEM_SLAB_DEFINE_IN_SECT_STATIC(name, __noinit_named(k_mem_slab_buf_##name), \
5753 slab_block_size, slab_num_blocks, slab_align)
5754
5776int k_mem_slab_init(struct k_mem_slab *slab, void *buffer,
5777 size_t block_size, uint32_t num_blocks);
5778
5801int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem,
5802 k_timeout_t timeout);
5803
5815void k_mem_slab_free(struct k_mem_slab *slab, void *mem);
5816
5829static inline uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
5830{
5831 return slab->info.num_used;
5832}
5833
5846static inline uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
5847{
5848#ifdef CONFIG_MEM_SLAB_TRACE_MAX_UTILIZATION
5849 return slab->info.max_used;
5850#else
5851 ARG_UNUSED(slab);
5852 return 0;
5853#endif
5854}
5855
5868static inline uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
5869{
5870 return slab->info.num_blocks - slab->info.num_used;
5871}
5872
5886
5887int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats);
5888
5902int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab);
5903
5905
5910
5911/* kernel synchronized heap struct */
5912
5913struct k_heap {
5915 _wait_q_t wait_q;
5917};
5918
5932void k_heap_init(struct k_heap *h, void *mem,
5933 size_t bytes) __attribute_nonnull(1);
5934
5955void *k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes,
5956 k_timeout_t timeout) __attribute_nonnull(1);
5957
5979void *k_heap_alloc(struct k_heap *h, size_t bytes,
5980 k_timeout_t timeout) __attribute_nonnull(1);
5981
6004void *k_heap_calloc(struct k_heap *h, size_t num, size_t size, k_timeout_t timeout)
6005 __attribute_nonnull(1);
6006
6030void *k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
6031 __attribute_nonnull(1);
6032
6043void k_heap_free(struct k_heap *h, void *mem) __attribute_nonnull(1);
6044
6045/* Minimum heap sizes needed to return a successful 1-byte allocation.
6046 * Assumes a chunk aligned (8 byte) memory buffer.
6047 */
6048#ifdef CONFIG_SYS_HEAP_RUNTIME_STATS
6049#define Z_HEAP_MIN_SIZE ((sizeof(void *) > 4) ? 80 : 52)
6050#else
6051#define Z_HEAP_MIN_SIZE ((sizeof(void *) > 4) ? 56 : 44)
6052#endif /* CONFIG_SYS_HEAP_RUNTIME_STATS */
6053
6070#define Z_HEAP_DEFINE_IN_SECT(name, bytes, in_section) \
6071 char in_section \
6072 __aligned(8) /* CHUNK_UNIT */ \
6073 kheap_##name[MAX(bytes, Z_HEAP_MIN_SIZE)]; \
6074 STRUCT_SECTION_ITERABLE(k_heap, name) = { \
6075 .heap = { \
6076 .init_mem = kheap_##name, \
6077 .init_bytes = MAX(bytes, Z_HEAP_MIN_SIZE), \
6078 }, \
6079 }
6080
6095#define K_HEAP_DEFINE(name, bytes) \
6096 Z_HEAP_DEFINE_IN_SECT(name, bytes, \
6097 __noinit_named(kheap_buf_##name))
6098
6113#define K_HEAP_DEFINE_NOCACHE(name, bytes) \
6114 Z_HEAP_DEFINE_IN_SECT(name, bytes, __nocache)
6115
6125int k_heap_array_get(struct k_heap **heap);
6126
6130
6137
6156void *k_aligned_alloc(size_t align, size_t size);
6157
6169void *k_malloc(size_t size);
6170
6181void k_free(void *ptr);
6182
6194void *k_calloc(size_t nmemb, size_t size);
6195
6213void *k_realloc(void *ptr, size_t size);
6214
6216
6217/* polling API - PRIVATE */
6218
6219#ifdef CONFIG_POLL
6220#define _INIT_OBJ_POLL_EVENT(obj) do { (obj)->poll_event = NULL; } while (false)
6221#else
6222#define _INIT_OBJ_POLL_EVENT(obj) do { } while (false)
6223#endif
6224
6225/* private - types bit positions */
6226enum _poll_types_bits {
6227 /* can be used to ignore an event */
6228 _POLL_TYPE_IGNORE,
6229
6230 /* to be signaled by k_poll_signal_raise() */
6231 _POLL_TYPE_SIGNAL,
6232
6233 /* semaphore availability */
6234 _POLL_TYPE_SEM_AVAILABLE,
6235
6236 /* queue/FIFO/LIFO data availability */
6237 _POLL_TYPE_DATA_AVAILABLE,
6238
6239 /* msgq data availability */
6240 _POLL_TYPE_MSGQ_DATA_AVAILABLE,
6241
6242 /* pipe data availability */
6243 _POLL_TYPE_PIPE_DATA_AVAILABLE,
6244
6245 _POLL_NUM_TYPES
6246};
6247
6248#define Z_POLL_TYPE_BIT(type) (1U << ((type) - 1U))
6249
6250/* private - states bit positions */
6251enum _poll_states_bits {
6252 /* default state when creating event */
6253 _POLL_STATE_NOT_READY,
6254
6255 /* signaled by k_poll_signal_raise() */
6256 _POLL_STATE_SIGNALED,
6257
6258 /* semaphore is available */
6259 _POLL_STATE_SEM_AVAILABLE,
6260
6261 /* data is available to read on queue/FIFO/LIFO */
6262 _POLL_STATE_DATA_AVAILABLE,
6263
6264 /* queue/FIFO/LIFO wait was cancelled */
6265 _POLL_STATE_CANCELLED,
6266
6267 /* data is available to read on a message queue */
6268 _POLL_STATE_MSGQ_DATA_AVAILABLE,
6269
6270 /* data is available to read from a pipe */
6271 _POLL_STATE_PIPE_DATA_AVAILABLE,
6272
6273 _POLL_NUM_STATES
6274};
6275
6276#define Z_POLL_STATE_BIT(state) (1U << ((state) - 1U))
6277
6278#define _POLL_EVENT_NUM_UNUSED_BITS \
6279 (32 - (0 \
6280 + 8 /* tag */ \
6281 + _POLL_NUM_TYPES \
6282 + _POLL_NUM_STATES \
6283 + 1 /* modes */ \
6284 ))
6285
6286/* end of polling API - PRIVATE */
6287
6288
6296
6297/* Public polling API */
6298
6299/* public - values for k_poll_event.type bitfield */
6300#define K_POLL_TYPE_IGNORE 0
6301#define K_POLL_TYPE_SIGNAL Z_POLL_TYPE_BIT(_POLL_TYPE_SIGNAL)
6302#define K_POLL_TYPE_SEM_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_SEM_AVAILABLE)
6303#define K_POLL_TYPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_DATA_AVAILABLE)
6304#define K_POLL_TYPE_FIFO_DATA_AVAILABLE K_POLL_TYPE_DATA_AVAILABLE
6305#define K_POLL_TYPE_MSGQ_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_MSGQ_DATA_AVAILABLE)
6306#define K_POLL_TYPE_PIPE_DATA_AVAILABLE Z_POLL_TYPE_BIT(_POLL_TYPE_PIPE_DATA_AVAILABLE)
6307
6308/* public - polling modes */
6310 /* polling thread does not take ownership of objects when available */
6312
6314};
6315
6316/* public - values for k_poll_event.state bitfield */
6317#define K_POLL_STATE_NOT_READY 0
6318#define K_POLL_STATE_SIGNALED Z_POLL_STATE_BIT(_POLL_STATE_SIGNALED)
6319#define K_POLL_STATE_SEM_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_SEM_AVAILABLE)
6320#define K_POLL_STATE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_DATA_AVAILABLE)
6321#define K_POLL_STATE_FIFO_DATA_AVAILABLE K_POLL_STATE_DATA_AVAILABLE
6322#define K_POLL_STATE_MSGQ_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_MSGQ_DATA_AVAILABLE)
6323#define K_POLL_STATE_PIPE_DATA_AVAILABLE Z_POLL_STATE_BIT(_POLL_STATE_PIPE_DATA_AVAILABLE)
6324#define K_POLL_STATE_CANCELLED Z_POLL_STATE_BIT(_POLL_STATE_CANCELLED)
6325
6326/* public - poll signal object */
6330
6335 unsigned int signaled;
6336
6339};
6340
6341#define K_POLL_SIGNAL_INITIALIZER(obj) \
6342 { \
6343 .poll_events = SYS_DLIST_STATIC_INIT(&obj.poll_events), \
6344 .signaled = 0, \
6345 .result = 0, \
6346 }
6347
6353 sys_dnode_t _node;
6354
6356 struct z_poller *poller;
6357
6360
6362 uint32_t type:_POLL_NUM_TYPES;
6363
6365 uint32_t state:_POLL_NUM_STATES;
6366
6369
6371 uint32_t unused:_POLL_EVENT_NUM_UNUSED_BITS;
6372
6374 union {
6375 /* The typed_* fields below are used by K_POLL_EVENT_*INITIALIZER() macros to ensure
6376 * type safety of polled objects.
6377 */
6385 };
6386};
6387
6388#define K_POLL_EVENT_INITIALIZER(_event_type, _event_mode, _event_obj) \
6389 { \
6390 .poller = NULL, \
6391 .type = _event_type, \
6392 .state = K_POLL_STATE_NOT_READY, \
6393 .mode = _event_mode, \
6394 .unused = 0, \
6395 { \
6396 .typed_##_event_type = _event_obj, \
6397 }, \
6398 }
6399
6400#define K_POLL_EVENT_STATIC_INITIALIZER(_event_type, _event_mode, _event_obj, \
6401 event_tag) \
6402 { \
6403 .tag = event_tag, \
6404 .type = _event_type, \
6405 .state = K_POLL_STATE_NOT_READY, \
6406 .mode = _event_mode, \
6407 .unused = 0, \
6408 { \
6409 .typed_##_event_type = _event_obj, \
6410 }, \
6411 }
6412
6427
6428void k_poll_event_init(struct k_poll_event *event, uint32_t type,
6429 int mode, void *obj);
6430
6473
6474__syscall int k_poll(struct k_poll_event *events, int num_events,
6475 k_timeout_t timeout);
6476
6484
6485__syscall void k_poll_signal_init(struct k_poll_signal *sig);
6486
6492__syscall void k_poll_signal_reset(struct k_poll_signal *sig);
6493
6504__syscall void k_poll_signal_check(struct k_poll_signal *sig,
6505 unsigned int *signaled, int *result);
6506
6530
6531__syscall int k_poll_signal_raise(struct k_poll_signal *sig, int result);
6532
6534
6553static inline void k_cpu_idle(void)
6554{
6555 arch_cpu_idle();
6556}
6557
6572static inline void k_cpu_atomic_idle(unsigned int key)
6573{
6575}
6576
6580
6585#ifdef ARCH_EXCEPT
6586/* This architecture has direct support for triggering a CPU exception */
6587#define z_except_reason(reason) ARCH_EXCEPT(reason)
6588#else
6589
6590#if !defined(CONFIG_ASSERT_NO_FILE_INFO)
6591#define __EXCEPT_LOC() __ASSERT_PRINT("@ %s:%d\n", __FILE__, __LINE__)
6592#else
6593#define __EXCEPT_LOC()
6594#endif
6595
6596/* NOTE: This is the implementation for arches that do not implement
6597 * ARCH_EXCEPT() to generate a real CPU exception.
6598 *
6599 * We won't have a real exception frame to determine the PC value when
6600 * the oops occurred, so print file and line number before we jump into
6601 * the fatal error handler.
6602 */
6603#define z_except_reason(reason) do { \
6604 __EXCEPT_LOC(); \
6605 z_fatal_error(reason, NULL); \
6606 } while (false)
6607
6608#endif /* _ARCH__EXCEPT */
6612
6624#define k_oops() z_except_reason(K_ERR_KERNEL_OOPS)
6625
6634#define k_panic() z_except_reason(K_ERR_KERNEL_PANIC)
6635
6639
6640/*
6641 * private APIs that are utilized by one or more public APIs
6642 */
6643
6647void z_timer_expiration_handler(struct _timeout *timeout);
6651
6652#ifdef CONFIG_PRINTK
6660__syscall void k_str_out(char *c, size_t n);
6661#endif
6662
6668
6689__syscall int k_float_disable(struct k_thread *thread);
6690
6729__syscall int k_float_enable(struct k_thread *thread, unsigned int options);
6730
6734
6744
6752
6761
6772
6783
6792
6801
6802#ifdef __cplusplus
6803}
6804#endif
6805
6806#include <zephyr/tracing/tracing.h>
6807#include <zephyr/syscalls/kernel.h>
6808
6809#endif /* !_ASMLANGUAGE */
6810
6811#endif /* ZEPHYR_INCLUDE_KERNEL_H_ */
static uint32_t arch_k_cycle_get_32(void)
Definition misc.h:26
static uint64_t arch_k_cycle_get_64(void)
Definition misc.h:33
void(* k_thread_entry_t)(void *p1, void *p2, void *p3)
Thread entry point function type.
Definition arch_interface.h:48
struct z_thread_stack_element k_thread_stack_t
Typedef of struct z_thread_stack_element.
Definition arch_interface.h:46
long atomic_t
Definition atomic_types.h:15
System error numbers.
void arch_cpu_atomic_idle(unsigned int key)
Atomically re-enable interrupts and enter low power mode.
void arch_cpu_idle(void)
Power save idle routine.
static _Bool atomic_test_and_set_bit(atomic_t *target, int bit)
Atomically set a bit and test it.
Definition atomic.h:172
static _Bool atomic_test_bit(const atomic_t *target, int bit)
Atomically get and test a bit.
Definition atomic.h:129
static void atomic_clear_bit(atomic_t *target, int bit)
Atomically clear a bit.
Definition atomic.h:193
static uint32_t k_cycle_get_32(void)
Read the hardware clock.
Definition kernel.h:2155
#define K_NO_WAIT
Generate null timeout delay.
Definition kernel.h:1556
int64_t k_uptime_ticks(void)
Get system uptime, in system ticks.
static uint32_t k_uptime_get_32(void)
Get system uptime (32-bit version).
Definition kernel.h:2107
uint32_t k_ticks_t
Tick precision used in timeout APIs.
Definition clock.h:48
static int64_t k_uptime_delta(int64_t *reftime)
Get elapsed time.
Definition kernel.h:2136
static uint32_t k_uptime_seconds(void)
Get system uptime in seconds.
Definition kernel.h:2120
static uint64_t k_cycle_get_64(void)
Read the 64-bit hardware clock.
Definition kernel.h:2170
static int64_t k_uptime_get(void)
Get system uptime.
Definition kernel.h:2083
int k_condvar_signal(struct k_condvar *condvar)
Signals one thread that is pending on the condition variable.
int k_condvar_wait(struct k_condvar *condvar, struct k_mutex *mutex, k_timeout_t timeout)
Waits on the condition variable releasing the mutex lock.
int k_condvar_init(struct k_condvar *condvar)
Initialize a condition variable.
int k_condvar_broadcast(struct k_condvar *condvar)
Unblock all threads that are pending on the condition variable.
static void k_cpu_idle(void)
Make the CPU idle.
Definition kernel.h:6553
static void k_cpu_atomic_idle(unsigned int key)
Make the CPU idle in an atomic fashion.
Definition kernel.h:6572
struct _dnode sys_dnode_t
Doubly-linked list node structure.
Definition dlist.h:54
struct _dnode sys_dlist_t
Doubly-linked list structure.
Definition dlist.h:50
static void sys_dnode_init(sys_dnode_t *node)
initialize node to its state when not in a list
Definition dlist.h:219
uint32_t k_event_wait(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events.
uint32_t k_event_set_masked(struct k_event *event, uint32_t events, uint32_t events_mask)
Set or clear the events in an event object.
uint32_t k_event_wait_all_safe(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events (safe version).
static uint32_t k_event_test(struct k_event *event, uint32_t events_mask)
Test the events currently tracked in the event object.
Definition kernel.h:2786
uint32_t k_event_wait_safe(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for any of the specified events (safe version).
uint32_t k_event_set(struct k_event *event, uint32_t events)
Set the events in an event object.
uint32_t k_event_post(struct k_event *event, uint32_t events)
Post one or more events to an event object.
void k_event_init(struct k_event *event)
Initialize an event object.
uint32_t k_event_clear(struct k_event *event, uint32_t events)
Clear the events in an event object.
uint32_t k_event_wait_all(struct k_event *event, uint32_t events, bool reset, k_timeout_t timeout)
Wait for all of the specified events.
static bool sys_sflist_is_empty(const sys_sflist_t *list)
Test if the given list is empty.
Definition sflist.h:336
struct _sflist sys_sflist_t
Flagged single-linked list structure.
Definition sflist.h:54
int k_float_disable(struct k_thread *thread)
Disable preservation of floating point context information.
int k_float_enable(struct k_thread *thread, unsigned int options)
Enable preservation of floating point context information.
int k_futex_wait(struct k_futex *futex, int expected, k_timeout_t timeout)
Pend the current thread on a futex.
int k_futex_wake(struct k_futex *futex, bool wake_all)
Wake one/all threads pending on a futex.
void * k_heap_alloc(struct k_heap *h, size_t bytes, k_timeout_t timeout)
Allocate memory from a k_heap.
int k_heap_array_get(struct k_heap **heap)
Get the array of statically defined heaps.
void * k_heap_calloc(struct k_heap *h, size_t num, size_t size, k_timeout_t timeout)
Allocate and initialize memory for an array of objects from a k_heap.
void k_heap_free(struct k_heap *h, void *mem)
Free memory allocated by k_heap_alloc().
void k_free(void *ptr)
Free memory allocated from heap.
void * k_realloc(void *ptr, size_t size)
Expand the size of an existing allocation.
void k_heap_init(struct k_heap *h, void *mem, size_t bytes)
Initialize a k_heap.
void * k_malloc(size_t size)
Allocate memory from the heap.
void * k_heap_realloc(struct k_heap *h, void *ptr, size_t bytes, k_timeout_t timeout)
Reallocate memory from a k_heap.
void * k_calloc(size_t nmemb, size_t size)
Allocate memory from heap, array style.
void * k_aligned_alloc(size_t align, size_t size)
Allocate memory from the heap with a specified alignment.
void * k_heap_aligned_alloc(struct k_heap *h, size_t align, size_t bytes, k_timeout_t timeout)
Allocate aligned memory from a k_heap.
bool k_is_in_isr(void)
Determine if code is running at interrupt level.
int k_is_preempt_thread(void)
Determine if code is running in a preemptible thread.
int k_mbox_get(struct k_mbox *mbox, struct k_mbox_msg *rx_msg, void *buffer, k_timeout_t timeout)
Receive a mailbox message.
void k_mbox_data_get(struct k_mbox_msg *rx_msg, void *buffer)
Retrieve mailbox message data into a buffer.
void k_mbox_init(struct k_mbox *mbox)
Initialize a mailbox.
int k_mbox_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, k_timeout_t timeout)
Send a mailbox message in a synchronous manner.
void k_mbox_async_put(struct k_mbox *mbox, struct k_mbox_msg *tx_msg, struct k_sem *sem)
Send a mailbox message in an asynchronous manner.
int k_mem_slab_init(struct k_mem_slab *slab, void *buffer, size_t block_size, uint32_t num_blocks)
Initialize a memory slab.
void k_mem_slab_free(struct k_mem_slab *slab, void *mem)
Free memory allocated from a memory slab.
int k_mem_slab_runtime_stats_get(struct k_mem_slab *slab, struct sys_memory_stats *stats)
Get the memory stats for a memory slab.
int k_mem_slab_runtime_stats_reset_max(struct k_mem_slab *slab)
Reset the maximum memory usage for a slab.
int k_mem_slab_alloc(struct k_mem_slab *slab, void **mem, k_timeout_t timeout)
Allocate memory from a memory slab.
static uint32_t k_mem_slab_num_used_get(struct k_mem_slab *slab)
Get the number of used blocks in a memory slab.
Definition kernel.h:5829
static uint32_t k_mem_slab_max_used_get(struct k_mem_slab *slab)
Get the number of maximum used blocks so far in a memory slab.
Definition kernel.h:5846
static uint32_t k_mem_slab_num_free_get(struct k_mem_slab *slab)
Get the number of unused blocks in a memory slab.
Definition kernel.h:5868
int k_msgq_peek(struct k_msgq *msgq, void *data)
Peek/read a message from a message queue.
uint32_t k_msgq_num_used_get(struct k_msgq *msgq)
Get the number of messages in a message queue.
void k_msgq_init(struct k_msgq *msgq, char *buffer, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put(struct k_msgq *msgq, const void *data, k_timeout_t timeout)
Send a message to the end of a message queue.
int k_msgq_peek_at(struct k_msgq *msgq, void *data, uint32_t idx)
Peek/read a message from a message queue at the specified index.
uint32_t k_msgq_num_free_get(struct k_msgq *msgq)
Get the amount of free space in a message queue.
void k_msgq_get_attrs(struct k_msgq *msgq, struct k_msgq_attrs *attrs)
Get basic attributes of a message queue.
void k_msgq_purge(struct k_msgq *msgq)
Purge a message queue.
int k_msgq_alloc_init(struct k_msgq *msgq, size_t msg_size, uint32_t max_msgs)
Initialize a message queue.
int k_msgq_put_front(struct k_msgq *msgq, const void *data)
Send a message to the front of a message queue.
int k_msgq_get(struct k_msgq *msgq, void *data, k_timeout_t timeout)
Receive a message from a message queue.
int k_msgq_cleanup(struct k_msgq *msgq)
Release allocated buffer for a queue.
int k_mutex_unlock(struct k_mutex *mutex)
Unlock a mutex.
int k_mutex_init(struct k_mutex *mutex)
Initialize a mutex.
int k_mutex_lock(struct k_mutex *mutex, k_timeout_t timeout)
Lock a mutex.
int k_pipe_write(struct k_pipe *pipe, const uint8_t *data, size_t len, k_timeout_t timeout)
Write data to a pipe.
void k_pipe_close(struct k_pipe *pipe)
Close a pipe.
void k_pipe_reset(struct k_pipe *pipe)
Reset a pipe This routine resets the pipe, discarding any unread data and unblocking any threads wait...
void k_pipe_init(struct k_pipe *pipe, uint8_t *buffer, size_t buffer_size)
initialize a pipe
pipe_flags
Definition kernel.h:5486
int k_pipe_read(struct k_pipe *pipe, uint8_t *data, size_t len, k_timeout_t timeout)
Read data from a pipe This routine reads up to len bytes of data from pipe.
@ PIPE_FLAG_RESET
Definition kernel.h:5488
@ PIPE_FLAG_OPEN
Definition kernel.h:5487
void k_poll_signal_reset(struct k_poll_signal *sig)
Reset a poll signal object's state to unsignaled.
k_poll_modes
Definition kernel.h:6309
void k_poll_signal_check(struct k_poll_signal *sig, unsigned int *signaled, int *result)
Fetch the signaled state and result value of a poll signal.
void k_poll_event_init(struct k_poll_event *event, uint32_t type, int mode, void *obj)
Initialize one struct k_poll_event instance.
int k_poll(struct k_poll_event *events, int num_events, k_timeout_t timeout)
Wait for one or many of multiple poll events to occur.
int k_poll_signal_raise(struct k_poll_signal *sig, int result)
Signal a poll signal object.
void k_poll_signal_init(struct k_poll_signal *sig)
Initialize a poll signal object.
@ K_POLL_MODE_NOTIFY_ONLY
Definition kernel.h:6311
@ K_POLL_NUM_MODES
Definition kernel.h:6313
void k_queue_init(struct k_queue *queue)
Initialize a queue.
void * k_queue_get(struct k_queue *queue, k_timeout_t timeout)
Get an element from a queue.
void * k_queue_peek_tail(struct k_queue *queue)
Peek element at the tail of queue.
bool k_queue_unique_append(struct k_queue *queue, void *data)
Append an element to a queue only if it's not present already.
bool k_queue_remove(struct k_queue *queue, void *data)
Remove an element from a queue.
int k_queue_merge_slist(struct k_queue *queue, sys_slist_t *list)
Atomically add a list of elements to a queue.
int32_t k_queue_alloc_append(struct k_queue *queue, void *data)
Append an element to a queue.
void k_queue_cancel_wait(struct k_queue *queue)
Cancel waiting on a queue.
void * k_queue_peek_head(struct k_queue *queue)
Peek element at the head of queue.
void k_queue_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
int k_queue_append_list(struct k_queue *queue, void *head, void *tail)
Atomically append a list of elements to a queue.
void k_queue_append(struct k_queue *queue, void *data)
Append an element to the end of a queue.
int32_t k_queue_alloc_prepend(struct k_queue *queue, void *data)
Prepend an element to a queue.
void k_queue_insert(struct k_queue *queue, void *prev, void *data)
Inserts an element to a queue.
int k_queue_is_empty(struct k_queue *queue)
Query a queue to see if it has data available.
void k_sem_reset(struct k_sem *sem)
Resets a semaphore's count to zero.
unsigned int k_sem_count_get(struct k_sem *sem)
Get a semaphore's count.
void k_sem_give(struct k_sem *sem)
Give a semaphore.
int k_sem_take(struct k_sem *sem, k_timeout_t timeout)
Take a semaphore.
int k_sem_init(struct k_sem *sem, unsigned int initial_count, unsigned int limit)
Initialize a semaphore.
struct _slist sys_slist_t
Single-linked list structure.
Definition slist.h:49
struct _snode sys_snode_t
Single-linked list node structure.
Definition slist.h:39
int k_stack_pop(struct k_stack *stack, stack_data_t *data, k_timeout_t timeout)
Pop an element from a stack.
void k_stack_init(struct k_stack *stack, stack_data_t *buffer, uint32_t num_entries)
Initialize a stack.
int k_stack_cleanup(struct k_stack *stack)
Release a stack's allocated buffer.
int k_stack_push(struct k_stack *stack, stack_data_t data)
Push an element onto a stack.
int32_t k_stack_alloc_init(struct k_stack *stack, uint32_t num_entries)
Initialize a stack.
#define SYS_PORT_TRACING_TRACKING_FIELD(type)
Field added to kernel objects so they are tracked.
Definition tracing_macros.h:375
#define IS_ENABLED(config_macro)
Check for macro definition in compiler-visible expressions.
Definition util_macro.h:148
#define BIT(n)
Unsigned integer with bit position n set (signed in assembly language).
Definition util_macro.h:44
#define CONTAINER_OF(ptr, type, field)
Get a pointer to a structure containing the element.
Definition util.h:281
#define EBUSY
Mount device busy.
Definition errno.h:54
int k_thread_name_copy(k_tid_t thread, char *buf, size_t size)
Copy the thread name into a supplied buffer.
void k_yield(void)
Yield the current thread.
const char * k_thread_state_str(k_tid_t thread_id, char *buf, size_t buf_size)
Get thread state string.
void k_thread_resume(k_tid_t thread)
Resume a suspended thread.
void * k_thread_custom_data_get(void)
Get current thread's custom data.
void k_thread_abort(k_tid_t thread)
Abort a thread.
int k_thread_name_set(k_tid_t thread, const char *str)
Set current thread name.
void k_thread_priority_set(k_tid_t thread, int prio)
Set a thread's priority.
void k_thread_absolute_deadline_set(k_tid_t thread, int deadline)
Set absolute deadline expiration time for scheduler.
int k_thread_cpu_mask_enable(k_tid_t thread, int cpu)
Enable thread to run on specified CPU.
void k_thread_foreach_unlocked(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system without locking.
bool k_can_yield(void)
Check whether it is possible to yield in the current context.
int k_thread_priority_get(k_tid_t thread)
Get a thread's priority.
static void k_thread_heap_assign(struct k_thread *thread, struct k_heap *heap)
Assign a resource memory pool to a thread.
Definition kernel.h:506
FUNC_NORETURN void k_thread_user_mode_enter(k_thread_entry_t entry, void *p1, void *p2, void *p3)
Drop a thread's privileges permanently to user mode.
int k_thread_join(struct k_thread *thread, k_timeout_t timeout)
Sleep until a thread exits.
k_ticks_t k_thread_timeout_remaining_ticks(const struct k_thread *thread)
Get time remaining before a thread wakes up, in system ticks.
void k_thread_custom_data_set(void *value)
Set current thread's custom data.
int32_t k_sleep(k_timeout_t timeout)
Put the current thread to sleep.
void k_sched_lock(void)
Lock the scheduler.
static int32_t k_msleep(int32_t ms)
Put the current thread to sleep.
Definition kernel.h:702
void k_busy_wait(uint32_t usec_to_wait)
Cause the current thread to busy wait.
void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, k_thread_timeslice_fn_t expired, void *data)
Set thread time slice.
static void k_thread_runtime_stats_longest_frame_reset(__maybe_unused struct k_thread *thread)
Resets thread longest frame usage data for specified thread.
Definition kernel.h:120
void k_thread_suspend(k_tid_t thread)
Suspend a thread.
void k_sched_unlock(void)
Unlock the scheduler.
static __attribute_const__ k_tid_t k_current_get(void)
Get thread ID of the current thread.
Definition kernel.h:836
int k_thread_cpu_mask_clear(k_tid_t thread)
Sets all CPU enable masks to zero.
void k_thread_foreach_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in running on specified cpu.
void k_sched_time_slice_set(int32_t slice, int prio)
Set time-slicing period and scope.
int k_thread_cpu_mask_disable(k_tid_t thread, int cpu)
Prevent thread to run on specified CPU.
void k_wakeup(k_tid_t thread)
Wake up a sleeping thread.
int k_thread_stack_free(k_thread_stack_t *stack)
Free a dynamically allocated thread stack.
k_ticks_t k_thread_timeout_expires_ticks(const struct k_thread *thread)
Get time when a thread wakes up, in system ticks.
__attribute_const__ k_tid_t k_sched_current_thread_query(void)
Query thread ID of the current thread.
static void k_thread_start(k_tid_t thread)
Start an inactive thread.
Definition kernel.h:1306
k_tid_t k_thread_create(struct k_thread *new_thread, k_thread_stack_t *stack, size_t stack_size, k_thread_entry_t entry, void *p1, void *p2, void *p3, int prio, uint32_t options, k_timeout_t delay)
Create a thread.
void k_reschedule(void)
Invoke the scheduler.
void k_thread_deadline_set(k_tid_t thread, int deadline)
Set relative deadline expiration time for scheduler.
void k_thread_foreach_unlocked_filter_by_cpu(unsigned int cpu, k_thread_user_cb_t user_cb, void *user_data)
Iterate over the threads in running on current cpu without locking.
const char * k_thread_name_get(k_tid_t thread)
Get thread name.
void k_thread_foreach(k_thread_user_cb_t user_cb, void *user_data)
Iterate over all the threads in the system.
static bool k_is_pre_kernel(void)
Test whether startup is in the before-main-task phase.
Definition kernel.h:803
int k_thread_cpu_pin(k_tid_t thread, int cpu)
Pin a thread to a CPU.
int32_t k_usleep(int32_t us)
Put the current thread to sleep with microsecond resolution.
int k_thread_cpu_mask_enable_all(k_tid_t thread)
Sets all CPU enable masks to one.
void(* k_thread_user_cb_t)(const struct k_thread *thread, void *user_data)
Definition kernel.h:127
k_thread_stack_t * k_thread_stack_alloc(size_t size, int flags)
Dynamically allocate a thread stack.
k_ticks_t k_timer_expires_ticks(const struct k_timer *timer)
Get next expiration time of a timer, in system ticks.
void(* k_timer_stop_t)(struct k_timer *timer)
Timer stop function type.
Definition kernel.h:1858
k_ticks_t k_timer_remaining_ticks(const struct k_timer *timer)
Get time remaining before a timer next expires, in system ticks.
void * k_timer_user_data_get(const struct k_timer *timer)
Retrieve the user-specific data from a timer.
void(* k_timer_expiry_t)(struct k_timer *timer)
Timer expiry function type.
Definition kernel.h:1842
void k_timer_init(struct k_timer *timer, k_timer_expiry_t expiry_fn, k_timer_stop_t stop_fn)
Initialize a timer.
void k_timer_start(struct k_timer *timer, k_timeout_t duration, k_timeout_t period)
Start a timer.
static uint32_t k_timer_remaining_get(struct k_timer *timer)
Get time remaining before a timer next expires.
Definition kernel.h:2007
uint32_t k_timer_status_sync(struct k_timer *timer)
Synchronize thread to timer expiration.
void k_timer_stop(struct k_timer *timer)
Stop a timer.
uint32_t k_timer_status_get(struct k_timer *timer)
Read timer status.
void k_timer_user_data_set(struct k_timer *timer, void *user_data)
Associate user-specific data with a timer.
#define k_ticks_to_ms_floor32(t)
Convert ticks to milliseconds.
Definition time_units.h:1707
#define k_ticks_to_sec_floor32(t)
Convert ticks to seconds.
Definition time_units.h:1611
#define k_ticks_to_ms_floor64(t)
Convert ticks to milliseconds.
Definition time_units.h:1723
int k_work_poll_submit_to_queue(struct k_work_q *work_q, struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item.
static k_tid_t k_work_queue_thread_get(struct k_work_q *queue)
Access the thread that animates a work queue.
Definition kernel.h:4662
static bool k_work_is_pending(const struct k_work *work)
Test whether a work item is currently pending.
Definition kernel.h:4633
int k_work_queue_drain(struct k_work_q *queue, bool plug)
Wait until the work queue has drained, optionally plugging it.
static k_ticks_t k_work_delayable_expires_get(const struct k_work_delayable *dwork)
Get the absolute tick count at which a scheduled delayable work will be submitted.
Definition kernel.h:4650
int k_work_schedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to a queue after a delay.
int k_work_delayable_busy_get(const struct k_work_delayable *dwork)
Busy state flags from the delayable work item.
int k_work_queue_stop(struct k_work_q *queue, k_timeout_t timeout)
Stop a work queue.
void k_work_init_delayable(struct k_work_delayable *dwork, k_work_handler_t handler)
Initialize a delayable work structure.
int k_work_poll_cancel(struct k_work_poll *work)
Cancel a triggered work item.
void k_work_user_queue_start(struct k_work_user_q *work_q, k_thread_stack_t *stack, size_t stack_size, int prio, const char *name)
Start a workqueue in user mode.
void k_work_poll_init(struct k_work_poll *work, k_work_handler_t handler)
Initialize a triggered work item.
int k_work_cancel(struct k_work *work)
Cancel a work item.
static int k_work_user_submit_to_queue(struct k_work_user_q *work_q, struct k_work_user *work)
Submit a work item to a user mode workqueue.
Definition kernel.h:4789
int k_work_submit_to_queue(struct k_work_q *queue, struct k_work *work)
Submit a work item to a queue.
static bool k_work_user_is_pending(struct k_work_user *work)
Check if a userspace work item is pending.
Definition kernel.h:4766
void(* k_work_handler_t)(struct k_work *work)
The signature for a work item handler function.
Definition kernel.h:3805
int k_work_schedule(struct k_work_delayable *dwork, k_timeout_t delay)
Submit an idle work item to the system work queue after a delay.
static bool k_work_delayable_is_pending(const struct k_work_delayable *dwork)
Test whether a delayed work item is currently pending.
Definition kernel.h:4644
bool k_work_cancel_delayable_sync(struct k_work_delayable *dwork, struct k_work_sync *sync)
Cancel delayable work and wait.
int k_work_cancel_delayable(struct k_work_delayable *dwork)
Cancel delayable work.
static void k_work_user_init(struct k_work_user *work, k_work_user_handler_t handler)
Initialize a userspace work item.
Definition kernel.h:4744
int k_work_queue_unplug(struct k_work_q *queue)
Release a work queue to accept new submissions.
int k_work_reschedule(struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to the system work queue after a delay.
void(* k_work_user_handler_t)(struct k_work_user *work)
Work item handler function type for user work queues.
Definition kernel.h:4685
bool k_work_cancel_sync(struct k_work *work, struct k_work_sync *sync)
Cancel a work item and wait for it to complete.
static k_tid_t k_work_user_queue_thread_get(struct k_work_user_q *work_q)
Access the user mode thread that animates a work queue.
Definition kernel.h:4844
int k_work_busy_get(const struct k_work *work)
Busy state flags from the work item.
static struct k_work_delayable * k_work_delayable_from_work(struct k_work *work)
Get the parent delayable work structure from a work pointer.
Definition kernel.h:4639
static k_ticks_t k_work_delayable_remaining_get(const struct k_work_delayable *dwork)
Get the number of ticks until a scheduled delayable work will be submitted.
Definition kernel.h:4656
bool k_work_flush(struct k_work *work, struct k_work_sync *sync)
Wait for last-submitted instance to complete.
int k_work_reschedule_for_queue(struct k_work_q *queue, struct k_work_delayable *dwork, k_timeout_t delay)
Reschedule a work item to a queue after a delay.
void k_work_queue_run(struct k_work_q *queue, const struct k_work_queue_config *cfg)
Run work queue using calling thread.
int k_work_submit(struct k_work *work)
Submit a work item to the system queue.
bool k_work_flush_delayable(struct k_work_delayable *dwork, struct k_work_sync *sync)
Flush delayable work.
int k_work_poll_submit(struct k_work_poll *work, struct k_poll_event *events, int num_events, k_timeout_t timeout)
Submit a triggered work item to the system workqueue.
void k_work_queue_init(struct k_work_q *queue)
Initialize a work queue structure.
void k_work_queue_start(struct k_work_q *queue, k_thread_stack_t *stack, size_t stack_size, int prio, const struct k_work_queue_config *cfg)
Initialize a work queue.
void k_work_init(struct k_work *work, k_work_handler_t handler)
Initialize a (non-delayable) work structure.
@ K_WORK_CANCELING
Flag indicating a work item that is being canceled.
Definition kernel.h:4413
@ K_WORK_QUEUED
Flag indicating a work item that has been submitted to a queue but has not started running.
Definition kernel.h:4420
@ K_WORK_DELAYED
Flag indicating a delayed work item that is scheduled for submission to a queue.
Definition kernel.h:4427
@ K_WORK_RUNNING
Flag indicating a work item that is running under a work queue thread.
Definition kernel.h:4407
@ K_WORK_FLUSHING
Flag indicating a synced work item that is being flushed.
Definition kernel.h:4433
#define BUILD_ASSERT(EXPR, MSG...)
Definition llvm.h:51
struct k_thread * k_tid_t
Definition thread.h:379
struct k_thread_runtime_stats k_thread_runtime_stats_t
void k_sys_runtime_stats_disable(void)
Disable gathering of system runtime statistics.
int k_thread_runtime_stats_enable(k_tid_t thread)
Enable gathering of runtime statistics for specified thread.
int k_ipi_work_add(struct k_ipi_work *work, uint32_t cpu_bitmask, k_ipi_func_t func)
Add an IPI work item to the IPI work queue.
void k_sys_runtime_stats_enable(void)
Enable gathering of system runtime statistics.
int k_thread_runtime_stats_get(k_tid_t thread, k_thread_runtime_stats_t *stats)
Get the runtime statistics of a thread.
void k_ipi_work_signal(void)
Signal that there is one or more IPI work items to process.
int k_ipi_work_wait(struct k_ipi_work *work, k_timeout_t timeout)
Wait until the IPI work item has been processed by all targeted CPUs.
execution_context_types
Definition kernel.h:91
@ K_ISR
Definition kernel.h:92
@ K_COOP_THREAD
Definition kernel.h:93
@ K_PREEMPT_THREAD
Definition kernel.h:94
void(* k_ipi_func_t)(struct k_ipi_work *work)
Definition kernel.h:3689
int k_thread_runtime_stats_all_get(k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads.
static void k_ipi_work_init(struct k_ipi_work *work)
Initialize the specified IPI work item.
Definition kernel.h:3716
int k_thread_runtime_stats_disable(k_tid_t thread)
Disable gathering of runtime statistics for specified thread.
int k_thread_runtime_stats_cpu_get(int cpu, k_thread_runtime_stats_t *stats)
Get the runtime statistics of all threads on specified cpu.
Header files included by kernel.h.
void(* k_thread_timeslice_fn_t)(struct k_thread *thread, void *data)
Definition kernel_structs.h:313
Memory Statistics.
flags
Definition parser.h:97
state
Definition parser_state.h:29
__UINT32_TYPE__ uint32_t
Definition stdint.h:90
__INTPTR_TYPE__ intptr_t
Definition stdint.h:104
__INT32_TYPE__ int32_t
Definition stdint.h:74
__UINT64_TYPE__ uint64_t
Definition stdint.h:91
__UINT8_TYPE__ uint8_t
Definition stdint.h:88
__UINTPTR_TYPE__ uintptr_t
Definition stdint.h:105
__INT64_TYPE__ int64_t
Definition stdint.h:75
Definition kernel.h:3448
_wait_q_t wait_q
Definition kernel.h:3449
Event Structure.
Definition kernel.h:2563
Definition kernel.h:2806
futex structure
Definition kernel.h:2477
atomic_t val
Definition kernel.h:2478
Definition kernel.h:5913
struct k_spinlock lock
Definition kernel.h:5916
struct sys_heap heap
Definition kernel.h:5914
_wait_q_t wait_q
Definition kernel.h:5915
IPI work item structure.
Definition kernel.h:3697
Definition kernel.h:3047
Mailbox Message Structure.
Definition kernel.h:5323
k_tid_t tx_target_thread
target thread id
Definition kernel.h:5333
void * tx_data
sender's message data buffer
Definition kernel.h:5329
k_tid_t rx_source_thread
source thread id
Definition kernel.h:5331
uint32_t info
application-defined information value
Definition kernel.h:5327
size_t size
size of message (in bytes)
Definition kernel.h:5325
Mailbox Structure.
Definition kernel.h:5345
_wait_q_t tx_msg_queue
Transmit messages queue.
Definition kernel.h:5347
struct k_spinlock lock
Definition kernel.h:5350
_wait_q_t rx_msg_queue
Receive message queue.
Definition kernel.h:5349
Memory Domain.
Definition mem_domain.h:80
Memory Partition.
Definition mem_domain.h:55
Message Queue Attributes.
Definition kernel.h:5065
uint32_t used_msgs
Used messages.
Definition kernel.h:5071
size_t msg_size
Message Size.
Definition kernel.h:5067
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:5069
Message Queue Structure.
Definition kernel.h:5004
size_t msg_size
Message size.
Definition kernel.h:5010
char * read_ptr
Read pointer.
Definition kernel.h:5018
uint32_t used_msgs
Number of used messages.
Definition kernel.h:5022
char * buffer_end
End of message buffer.
Definition kernel.h:5016
struct k_spinlock lock
Lock.
Definition kernel.h:5008
char * write_ptr
Write pointer.
Definition kernel.h:5020
char * buffer_start
Start of message buffer.
Definition kernel.h:5014
uint8_t flags
Message queue.
Definition kernel.h:5027
_wait_q_t wait_q
Message queue wait queue.
Definition kernel.h:5006
uint32_t max_msgs
Maximal number of messages.
Definition kernel.h:5012
Mutex Structure.
Definition kernel.h:3336
uint32_t lock_count
Current lock count.
Definition kernel.h:3343
_wait_q_t wait_q
Mutex wait queue.
Definition kernel.h:3338
int owner_orig_prio
Original thread priority.
Definition kernel.h:3346
struct k_thread * owner
Mutex owner.
Definition kernel.h:3340
Object core structure.
Definition obj_core.h:121
Definition kernel.h:5491
uint8_t flags
Definition kernel.h:5497
struct ring_buf buf
Definition kernel.h:5493
_wait_q_t data
Definition kernel.h:5495
_wait_q_t space
Definition kernel.h:5496
struct k_spinlock lock
Definition kernel.h:5494
size_t waiting
Definition kernel.h:5492
Poll Event.
Definition kernel.h:6351
struct k_msgq * typed_K_POLL_TYPE_MSGQ_DATA_AVAILABLE
Definition kernel.h:6383
void * typed_K_POLL_TYPE_IGNORE
Definition kernel.h:6378
struct k_poll_signal * signal
Definition kernel.h:6379
struct k_pipe * pipe
Definition kernel.h:6384
uint32_t tag
optional user-specified tag, opaque, untouched by the API
Definition kernel.h:6359
struct k_fifo * fifo
Definition kernel.h:6381
struct k_msgq * msgq
Definition kernel.h:6383
struct k_queue * queue
Definition kernel.h:6382
uint32_t unused
unused bits in 32-bit word
Definition kernel.h:6371
struct k_pipe * typed_K_POLL_TYPE_PIPE_DATA_AVAILABLE
Definition kernel.h:6384
uint32_t type
bitfield of event types (bitwise-ORed K_POLL_TYPE_xxx values)
Definition kernel.h:6362
struct k_sem * sem
Definition kernel.h:6380
struct k_queue * typed_K_POLL_TYPE_DATA_AVAILABLE
Definition kernel.h:6382
struct k_sem * typed_K_POLL_TYPE_SEM_AVAILABLE
Definition kernel.h:6380
uint32_t state
bitfield of event states (bitwise-ORed K_POLL_STATE_xxx values)
Definition kernel.h:6365
uint32_t mode
mode of operation, from enum k_poll_modes
Definition kernel.h:6368
struct z_poller * poller
PRIVATE - DO NOT TOUCH.
Definition kernel.h:6356
struct k_poll_signal * typed_K_POLL_TYPE_SIGNAL
Definition kernel.h:6379
void * obj
Definition kernel.h:6378
struct k_fifo * typed_K_POLL_TYPE_FIFO_DATA_AVAILABLE
Definition kernel.h:6381
Definition kernel.h:6327
sys_dlist_t poll_events
PRIVATE - DO NOT TOUCH.
Definition kernel.h:6329
int result
custom result value passed to k_poll_signal_raise() if needed
Definition kernel.h:6338
unsigned int signaled
1 if the event has been signaled, 0 otherwise.
Definition kernel.h:6335
Definition kernel.h:2185
struct k_spinlock lock
Definition kernel.h:2187
_wait_q_t wait_q
Definition kernel.h:2188
sys_sflist_t data_q
Definition kernel.h:2186
Semaphore structure.
Definition kernel.h:3541
Kernel Spin Lock.
Definition spinlock.h:45
Thread Structure.
Definition thread.h:263
struct _thread_base base
Definition thread.h:265
struct k_heap * resource_pool
resource pool
Definition thread.h:353
struct __thread_entry entry
thread entry and parameters description
Definition thread.h:292
Kernel timeout type.
Definition clock.h:65
Kernel timer structure.
Definition kernel.h:1764
A structure used to submit work after a delay.
Definition kernel.h:4465
struct _timeout timeout
Definition kernel.h:4470
struct k_work_q * queue
Definition kernel.h:4473
struct k_work work
Definition kernel.h:4467
A structure used to hold work until it can be processed.
Definition kernel.h:4599
sys_slist_t pending
Definition kernel.h:4613
_wait_q_t drainq
Definition kernel.h:4619
k_tid_t thread_id
Definition kernel.h:4606
_wait_q_t notifyq
Definition kernel.h:4616
uint32_t flags
Definition kernel.h:4622
struct k_thread thread
Definition kernel.h:4601
A structure holding optional configuration items for a work queue.
Definition kernel.h:4561
const char * name
The name to be given to the work queue thread.
Definition kernel.h:4566
uint32_t work_timeout_ms
Controls whether work queue monitors work timeouts.
Definition kernel.h:4595
bool essential
Control whether the work queue thread should be marked as essential thread.
Definition kernel.h:4585
bool no_yield
Control whether the work queue thread should yield between items.
Definition kernel.h:4580
A structure holding internal state for a pending synchronous operation on a work item or queue.
Definition kernel.h:4548
struct z_work_canceller canceller
Definition kernel.h:4551
struct z_work_flusher flusher
Definition kernel.h:4550
A structure used to submit work.
Definition kernel.h:4437
k_work_handler_t handler
Definition kernel.h:4446
uint32_t flags
Definition kernel.h:4457
struct k_work_q * queue
Definition kernel.h:4449
sys_snode_t node
Definition kernel.h:4443
A structure to represent a ring buffer.
Definition ring_buffer.h:50
Definition sys_heap.h:57
Definition mem_stats.h:24
static __pinned_func bool k_is_user_context(void)
Indicate whether the CPU is currently in user mode.
Definition syscall.h:115
Macros to abstract toolchain specific capabilities.
Main header file for tracing subsystem API.
Header file for tracing macros.