The latest development version of this page may be more current than this released 3.7.0 version.

NXP i.MX8MM EVK

Overview

i.MX8M Mini LPDDR4 EVK board is based on NXP i.MX8M Mini applications processor, composed of a quad Cortex®-A53 cluster and a single Cortex®-M4 core. Zephyr OS is ported to run on the Cortex®-A53 core.

  • Board features:

    • RAM: 2GB LPDDR4

    • Storage:

      • SanDisk 16GB eMMC5.1

      • Micron 32MB QSPI NOR

      • microSD Socket

    • Wireless:

      • WiFi: 2.4/5GHz IEEE 802.11b/g/n

      • Bluetooth: v4.1

    • USB:

      • OTG - 2x type C

    • Ethernet

    • PCI-E M.2

    • Connectors:

      • 40-Pin Dual Row Header

    • LEDs:

      • 1x Power status LED

      • 1x UART LED

    • Debug

      • JTAG 20-pin connector

      • MicroUSB for UART debug, two COM ports for A53 and M4

More information about the board can be found at the NXP website.

Supported Features

The Zephyr imx8mm_evk board for Cortex-A53 configuration supports the following hardware features:

Interface

Controller

Driver/Component

GIC-v3

on-chip

interrupt controller

ARM TIMER

on-chip

system clock

UART

on-chip

serial port

The Zephyr imx8mm_evk board for Cortex-M4 supports the following hardware features:

Interface

Controller

Driver/Component

NVIC

on-chip

nested vector interrupt controller

SYSTICK

on-chip

systick

CLOCK

on-chip

clock_control

PINMUX

on-chip

pinmux

UART

on-chip

serial port-polling; serial port-interrupt

GPIO

on-chip

GPIO output GPIO input

The default configuration can be found in the defconfig file: boards/nxp/imx8mm_evk/imx8mm_evk_mimx8mm6_m4_defconfig

It is recommended to disable peripherals used by the M4 core on the Linux host.

Other hardware features are not currently supported by the port.

Devices

System Clock

This board configuration uses a system clock frequency of 8 MHz.

The M4 Core is configured to run at a 400 MHz clock speed.

Serial Port

This board configuration uses a single serial communication channel with the CPU’s UART4. This is used for the M4 and A53 core targets.

Programming and Debugging (A53)

Copy the compiled zephyr.bin to the first FAT partition of the SD card and plug the SD card into the board. Power it up and stop the u-boot execution at prompt.

Use U-Boot to load and kick zephyr.bin:

fatload mmc 1:1 0x93c00000 zephyr.bin; dcache flush; icache flush; dcache off; icache off; go 0x93c00000

Or kick SMP zephyr.bin:

fatload mmc 1:1 0x93c00000 zephyr.bin; dcache flush; icache flush; dcache off; icache off; cpu 2 release 0x93c00000

Use this configuration to run basic Zephyr applications and kernel tests, for example, with the Basic Synchronization sample:

# From the root of the zephyr repository
west build -b imx8mm_evk/mimx8mm6/a53 samples/synchronization
west build -t run

This will build an image with the synchronization sample app, boot it and display the following ram console output:

*** Booting Zephyr OS build zephyr-v3.1.0-3575-g44dd713bd883  ***
thread_a: Hello World from cpu 0 on mimx8mm_evk_a53!
thread_b: Hello World from cpu 0 on mimx8mm_evk_a53!
thread_a: Hello World from cpu 0 on mimx8mm_evk_a53!
thread_b: Hello World from cpu 0 on mimx8mm_evk_a53!
thread_a: Hello World from cpu 0 on mimx8mm_evk_a53!

Use Jailhouse hypervisor, after root cell linux is up:

#jailhouse enable imx8mm.cell
#jailhouse cell create imx8mm-zephyr.cell
#jailhouse cell load 1 zephyr.bin -a 0x93c00000
#jailhouse cell start 1

Programming and Debugging (M4)

The MIMX8MM EVK board doesn’t have QSPI flash for the M4 and it needs to be started by the A53 core. The A53 core is responsible to load the M4 binary application into the RAM, put the M4 in reset, set the M4 Program Counter and Stack Pointer, and get the M4 out of reset. The A53 can perform these steps at bootloader level or after the Linux system has booted.

The M4 can use up to 3 different RAMs. These are the memory mapping for A53 and M4:

Region

Cortex-A53

Cortex-M4 (System Bus)

Cortex-M4 (Code Bus)

Size

OCRAM

0x00900000-0x0093FFFF

0x20200000-0x2023FFFF

0x00900000-0x0093FFFF

256KB

TCMU

0x00800000-0x0081FFFF

0x20000000-0x2001FFFF

128KB

TCML

0x007E0000-0x007FFFFF

0x1FFE0000-0x1FFFFFFF

128KB

OCRAM_S

0x00180000-0x00187FFF

0x20180000-0x20187FFF

0x00180000-0x00187FFF

32KB

For more information about memory mapping see the i.MX 8M Applications Processor Reference Manual (section 2.1.2 and 2.1.3)

At compilation time you have to choose which RAM will be used. This configuration is done in the file boards/nxp/imx8mm_evk/imx8mm_evk_mimx8mm6_m4.dts with “zephyr,flash” (when CONFIG_XIP=y) and “zephyr,sram” properties. The available configurations are:

"zephyr,flash"
- &tcml_code
- &ocram_code
- &ocram_s_code

"zephyr,sram"
- &tcmu_sys
- &ocram_sys
- &ocram_s_sys

Load and run Zephyr on M4 from A53 using u-boot by copying the compiled zephyr.bin to the first FAT partition of the SD card and plug the SD card into the board. Power it up and stop the u-boot execution at prompt.

Load the M4 binary onto the desired memory and start its execution using:

fatload mmc 0:1 0x7e0000 zephyr.bin;bootaux 0x7e0000

Debugging

MIMX8MM EVK board can be debugged by connecting an external JLink JTAG debugger to the J902 debug connector and to the PC. Then the application can be debugged using the usual way.

Here is an example for the Hello World application.

# From the root of the zephyr repository
west build -b imx8mm_evk/mimx8mm6/m4 samples/hello_world
west debug

Open a serial terminal, step through the application in your debugger, and you should see the following message in the terminal:

***** Booting Zephyr OS build zephyr-v2.0.0-1859-g292afe8533c0 *****
Hello World! imx8mm_evk

References