MIMXRT1180-EVK

Overview

The dual core i.MX RT1180 runs on the Cortex-M33 core at 240 MHz and on the Cortex-M7 at 792 MHz. The i.MX RT1180 MCU offers support over a wide temperature range and is qualified for consumer, industrial and automotive markets.

Hardware

  • MIMXRT1189CVM8B MCU

    • 240MHz Cortex-M33 & 792Mhz Cortex-M7

    • 1.5MB SRAM with 512KB of TCM for Cortex-M7 and 256KB of TCM for Cortex-M4

  • Memory

    • 512 Mbit SDRAM

    • 128 Mbit QSPI Flash

    • 512 Mbit HYPER RAM

    • TF socket for SD card

  • Ethernet

    • 1000 Mbit/s Ethernet PHY

  • USB

    • 2* USB 2.0 OTG connector

  • Audio

    • 3.5 mm audio stereo headphone jack

    • Board-mounted microphone

    • Left and right speaker out connectors

  • Power

    • 5 V DC jack

  • Debug

    • JTAG 20-pin connector

    • MCU-Link with DAPLink

  • Expansion port

    • Arduino interface

  • CAN bus connector

For more information about the MIMXRT1180 SoC and MIMXRT1180-EVK board, see these references:

External Memory

This platform has the following external memories:

Device

Controller

Status

W9825G6KH

SEMC

Enabled via device configuration data block, which sets up SEMC at boot time

W25Q128JWSIQ

FLEXSPI

Enabled via flash configurationn block, which sets up FLEXSPI at boot time.

Supported Features

NXP considers the MIMXRT1180-EVK as the superset board for the i.MX RT118x family of MCUs. This board is a focus for NXP’s Full Platform Support for Zephyr, to better enable the entire RT118x family. NXP prioritizes enabling this board with new support for Zephyr features. The mimxrt1180_evk board configuration supports the following hardware features:

Interface

Controller

Driver/Component

NVIC

on-chip

nested vector interrupt controller

SYSTICK

on-chip

systick

GPIO

on-chip

gpio

GPT

on-chip

counter

QTMR

on-chip

counter

UART

on-chip

serial port-polling; serial port-interrupt

I2C

on-chip

i2c

ACMP

on-chip

sensor

ADC

on-chip

adc

NETC

on-chip

ethernet, mdio

CAN

on-chip

can

LPTMR

on-chip

counter

FLEXSPI

on-chip

flash programming

The default configuration can be found in the defconfig file: boards/nxp/mimxrt1180_evk/mimxrt1180_evk_mimxrt1189_cm33_defconfig

Other hardware features are not currently supported by the port.

Connections and I/Os

The MIMXRT1180 SoC has six pairs of pinmux/gpio controllers.

Name

Function

Usage

GPIO_AON_04

GPIO

SW8

GPIO_AD_27

GPIO

LED

GPIO_AON_08

LPUART1_TX

UART Console

GPIO_AON_09

LPUART1_RX

UART Console

System Clock

The MIMXRT1180 SoC is configured to use SysTick as the system clock source, running at 240MHz. When targeting the M7 core, SysTick will also be used, running at 792MHz

Serial Port

The MIMXRT1180 SoC has 12 UARTs. One is configured for the console and the remaining are not used.

Ethernet

NETC driver supports to manage the Physical Station Interface (PSI).

Programming and Debugging

Build and flash applications as usual (see Building an Application and Run an Application for more details).

Configuring a Debug Probe

A debug probe is used for both flashing and debugging the board. This board is configured by default to use the MCU-Link CMSIS-DAP Onboard Debug Probe, however the pyOCD Debug Host Tools do not yet support programming the external flashes on this board so you must reconfigure the board for one of the following debug probes instead.

Using Linkserver

Please ensure used linkserver above V1.5.30 and jumper JP5 uninstalled.

When debugging cm33 core, need to ensure the SW5 on “0100” mode. When debugging cm7 core, need to ensure the SW5 on “0001” mode. (Only support run cm7 image when debugging due to default boot core on board is cm33 core)

Configuring a Console

Regardless of your choice in debug probe, we will use the MCU-Link microcontroller as a usb-to-serial adapter for the serial console. Check that jumpers JP5 and JP3 are on (they are on by default when boards ship from the factory) to connect UART signals to the MCU-Link microcontroller.

Connect a USB cable from your PC to J53.

Use the following settings with your serial terminal of choice (minicom, putty, etc.):

  • Speed: 115200

  • Data: 8 bits

  • Parity: None

  • Stop bits: 1

Flashing

Here is an example for the Hello World application on cm33 core.

Before power on the board, make sure SW5 is set to 0100b

# From the root of the zephyr repository
west build -b mimxrt1180_evk/mimxrt1189/cm33 samples/hello_world
west flash

Power off the board, then power on the board and open a serial terminal, reset the board (press the SW3 button), and you should see the following message in the terminal:

***** Booting Zephyr OS v3.7.0-xxx-xxxxxxxxxxxxx *****
Hello World! mimxrt1180_evk/mimxrt1189/cm33

Debugging

Here is an example for the Hello World application.

# From the root of the zephyr repository
west build -b mimxrt1180_evk/mimxrt1189/cm33 samples/hello_world
west debug

Open a serial terminal, step through the application in your debugger, and you should see the following message in the terminal:

***** Booting Zephyr OS v3.7.0-xxx-xxxxxxxxxxxxx *****
Hello World! mimxrt1180_evk/mimxrt1189/cm33