Nucleo G0B1RE
Overview
The Nucleo G0B1RE board features an ARM Cortex-M0+ based STM32G0B1RE MCU with a wide range of connectivity support and configurations. Here are some highlights of the Nucleo G0B1RE board:
STM32 microcontroller in QFP64 package
Board connectors:
Arduino Uno V3 connectivity
ST morpho extension pin headers for full access to all STM32 I/Os
On-board ST-LINK/V2-1 debugger/programmer with SWD connector
Flexible board power supply:
5V_USB_STLK from ST-Link USB connector
VIN (7 - 12V) from ARDUINO connector or ST morpho connector
E5V from ST morpho connector
5V_USB_CHG from ST-LINK USB connector
3.3V on ARDUINO connector or ST morpho connector
Three LEDs: USB communication (LD1), user LED (LD4), power LED (LD3)
Two push-buttons: USER and RESET
32.768 kHz crystal oscillator
More information about the board can be found at the Nucleo G0B1RE website [1].
Hardware
Nucleo G0B1RE provides the following hardware components:
STM32G0B1RE in LQFP64 package
ARM 32-bit Cortex-M0+ CPU
64 MHz max CPU frequency
Voltage range from 1.7 V to 3.6 V
512 KB Flash
144 kB SRAM
32-bit timers(1)
16-bit timers(11)
watchdogs(2)
systick(1)
Calendar RTC with alarm and periodic wakeup
I2C(3)
USART(6)
LPUART(2)
32 Mbit/s SPI(3) multiplexed with I2S(2)
HDMI_CEC(1)
USB 2.0 FS device (crystal-less) and host controller(1)
USB Type-C Power Delivery controller
CAN FD(2)
GPIO (up to 94) with external interrupt capability
Tamper Pins(3)
12-bit ADC with 16 channels
12-bit DAC with 2 channels(2)
Analog Comparator(3)
12-channel DMA
More information about STM32G0B1RE can be found here:
Supported Features
The nucleo_g0b1re
board supports the hardware features listed below.
- on-chip / on-board
- Feature integrated in the SoC / present on the board.
- 2 / 2
-
Number of instances that are enabled / disabled.
Click on the label to see the first instance of this feature in the board/SoC DTS files. -
vnd,foo
-
Compatible string for the Devicetree binding matching the feature.
Click on the link to view the binding documentation.
nucleo_g0b1re/stm32g0b1xx
target
Type |
Location |
Description |
Compatible |
---|---|---|---|
CPU |
on-chip |
ARM Cortex-M0+ CPU1 |
|
ADC |
on-chip |
STM32 ADC1 |
|
CAN |
on-chip |
STM32 FDCAN CAN FD controller2 |
|
Clock control |
on-chip |
STM32F0/G0 RCC (Reset and Clock controller)1 |
|
on-chip |
STM32 HSE Clock1 |
||
on-chip |
STM32G0 HSI Clock1 |
||
on-chip |
STM32 LSE Clock1 |
||
on-chip |
Generic fixed-rate clock provider1 |
||
on-chip |
STM32G0 main PLL1 |
||
on-chip |
STM32 HSI48 Clock1 |
||
Counter |
on-chip |
STM32 counters8 |
|
DAC |
on-chip |
STM32 family DAC1 |
|
DMA |
on-chip |
STM32 DMA controller (V2)2 |
|
on-chip |
STM32 DMAMUX controller1 |
||
Flash controller |
on-chip |
STM32 Family flash controller1 |
|
GPIO & Headers |
on-chip |
STM32 GPIO Controller6 |
|
on-board |
GPIO pins exposed on Arduino Uno (R3) headers1 |
||
on-board |
GPIO pins exposed on ST Morpho connector1 |
||
I2C |
on-chip |
||
Input |
on-board |
Group of GPIO-bound input keys1 |
|
Interrupt controller |
on-chip |
ARMv6-M NVIC (Nested Vectored Interrupt Controller) controller1 |
|
on-chip |
STM32G0 External Interrupt Controller1 |
||
LED |
on-board |
Group of GPIO-controlled LEDs1 |
|
Memory controller |
on-chip |
STM32 Battery Backed RAM1 |
|
MTD |
on-chip |
STM32 flash memory1 |
|
on-board |
Fixed partitions of a flash (or other non-volatile storage) memory1 |
||
PHY |
on-chip |
This binding is to be used by all the usb transceivers which are built-in with USB IP1 |
|
Pin control |
on-chip |
STM32 Pin controller1 |
|
PWM |
on-chip |
||
Reset controller |
on-chip |
STM32 Reset and Clock Control (RCC) Controller1 |
|
RTC |
on-chip |
STM32 RTC1 |
|
Sensors |
on-chip |
STM32 family TEMP node for production calibrated sensors with two calibration temperatures1 |
|
on-chip |
STM32 VREF+1 |
||
on-chip |
STM32 VBAT1 |
||
Serial controller |
on-chip |
||
on-chip |
STM32 LPUART2 |
||
SMbus |
on-chip |
STM32 SMBus controller3 |
|
SPI |
on-chip |
||
SRAM |
on-chip |
Generic on-chip SRAM description1 |
|
USB Type-C Port Controller |
on-chip |
STM32 USB Type-C / Power Delivery2 |
|
Timer |
on-chip |
ARMv6-M System Tick1 |
|
on-chip |
STM32 low-power timer (LPTIM)1 |
||
on-chip |
|||
USB |
on-chip |
STM32 USB controller1 |
|
Watchdog |
on-chip |
STM32 watchdog1 |
|
on-chip |
STM32 system window watchdog1 |
Connections and IOs
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down), or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs.
Default Zephyr Peripheral Mapping:
UART_1 TX/RX : PC4/PC5
UART_2 TX/RX : PA2/PA3 (ST-Link Virtual Port Com)
I2C1 SCL/SDA : PB8/PB9 (Arduino I2C)
I2C2 SCL/SDA : PA11/PA12
SPI1 NSS/SCK/MISO/MOSI : PB0/PA5/PA6/PA7 (Arduino SPI)
SPI2 NSS/SCK/MISO/MOSI : PB12/PB13/PB14/PB15
USER_PB : PC13
LD4 : PA5
PWM : PA6
ADC1 IN0 : PA0
ADC1 IN1 : PA1
DAC1_OUT1 : PA4
FDCAN1 RX/TX: PA11/PA12
FDCAN2 RX/TX: PB0/PB1
For more details please refer to STM32 Nucleo-64 board User Manual [3].
Programming and Debugging
Nucleo G0B1RE board includes an ST-LINK/V2-1 embedded debug tool interface.
Applications for the nucleo_g0b1re
board configuration can be built and
flashed in the usual way (see Building an Application and
Run an Application for more details).
Flashing
The board is configured to be flashed using west STM32CubeProgrammer [5] runner, so its installation is required.
Alternatively, OpenOCD, JLink, or pyOCD can also be used to flash the board using
the --runner
(or -r
) option:
$ west flash --runner openocd
$ west flash --runner jlink
$ west flash --runner pyocd
For STM32G0 support pyocd needs additional target information, which can be installed by adding “pack” support with the following pyocd command:
$ pyocd pack --update
$ pyocd pack --install stm32g0
Flashing an application to Nucleo G0B1RE
Here is an example for the Blinky application.
# From the root of the zephyr repository
west build -b nucleo_g0b1re samples/basic/blinky
west flash
You will see the LED blinking every second.
Debugging
You can debug an application in the usual way. Here is an example for the Hello World application.
# From the root of the zephyr repository
west build -b nucleo_g0b1re samples/hello_world
west debug