Nucleo L4R5ZI

Overview

The Nucleo L4R5ZI board features an ARM Cortex-M4 based STM32L4R5ZI MCU with a wide range of connectivity support and configurations. Here are some highlights of the Nucleo L4R5ZI board:

  • STM32 microcontroller in LQFP144 package

  • Two types of extension resources:

    • Arduino Uno V3 connectivity

    • ST morpho extension pin headers for full access to all STM32 I/Os

  • On-board ST-LINK/V2-1 debugger/programmer with SWD connector

  • Flexible board power supply:

    • USB VBUS or external source(3.3V, 5V, 7 - 12V)

    • Power management access point

  • Three User LEDs: LD1 (Green), LD2 (Blue), LD3 (Red)

  • Two push-buttons: USER and RESET

More information about the board can be found at the Nucleo L4R5ZI website.

Hardware

The STM32L4R5ZI SoC provides the following hardware IPs:

  • Ultra-low-power with FlexPowerControl (down to 130 nA Standby mode and 100 uA/MHz run mode)

  • Core: ARM® 32-bit Cortex®-M4 CPU with FPU, adaptive real-time accelerator (ART Accelerator) allowing 0-wait-state execution from Flash memory, frequency up to 120 MHz, MPU, 150 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions

  • Clock Sources:

    • 4 to 48 MHz crystal oscillator

    • 32 kHz crystal oscillator for RTC (LSE)

    • Internal 16 MHz factory-trimmed RC ( ±1%)

    • Internal low-power 32 kHz RC ( ±5%)

    • Internal multispeed 100 kHz to 48 MHz oscillator, auto-trimmed by LSE (better than ±0.25 % accuracy)

    • Internal 48 MHz with clock recovery

    • 3 PLLs for system clock, USB, audio, ADC

  • RTC with HW calendar, alarms and calibration

  • Up to 24 capacitive sensing channels: support touchkey, linear and rotary touch sensors

  • Advanced graphics features

    • Chrom-ART Accelerator™ (DMA2D) for enhanced graphic content creation

    • Chrom-GRC™ (GFXMMU) allowing up to 20% of graphic resources optimization

    • MIPI® DSI Host controller with two DSI lanes running at up to 500 Mbits/s each

    • LCD-TFT controller

  • 16x timers

    • 2 x 16-bit advanced motor-control

    • 2 x 32-bit and 5 x 16-bit general purpose

    • 2x 16-bit basic

    • 2x low-power 16-bit timers (available in Stop mode)

    • 2x watchdogs

    • SysTick timer

  • Up to 136 fast I/Os, most 5 V-tolerant, up to 14 I/Os with independent supply down to 1.08 V

  • Memories

    • 2-Mbyte Flash, 2 banks read-while-write, proprietary code readout protection

    • 640 Kbytes of SRAM including 64 Kbytes with hardware parity check

    • External memory interface for static memories supporting SRAM, PSRAM, NOR, NAND and FRAM memories

    • 2 x OctoSPI memory interface

  • 4x digital filters for sigma delta modulator

  • Rich analog peripherals (independent supply)

    • 12-bit ADC 5 Msps, up to 16-bit with hardware oversampling, 200 μA/Msps

    • 2x 12-bit DAC, low-power sample and hold

    • 2x operational amplifiers with built-in PGA

    • 2x ultra-low-power comparators

  • 20x communication interfaces

    • USB OTG 2.0 full-speed, LPM and BCD

    • 2x SAIs (serial audio interface)

    • 4x I2C FM+(1 Mbit/s), SMBus/PMBus

    • 6x USARTs (ISO 7816, LIN, IrDA, modem)

    • 3x SPIs (5x SPIs with the dual OctoSPI)

    • CAN (2.0B Active) and SDMMC

  • 14-channel DMA controller

  • True random number generator

  • CRC calculation unit, 96-bit unique ID

  • 8- to 14-bit camera interface up to 32 MHz (black and white) or 10 MHz (color)

  • Development support: serial wire debug (SWD), JTAG, Embedded Trace Macrocell (ETM)

More information about STM32L4R5ZI can be found here:

Supported Features

The nucleo_l4r5zi board supports the hardware features listed below.

on-chip / on-board
Feature integrated in the SoC / present on the board.
2 / 2
Number of instances that are enabled / disabled.
Click on the label to see the first instance of this feature in the board/SoC DTS files.
vnd,foo
Compatible string for the Devicetree binding matching the feature.
Click on the link to view the binding documentation.

nucleo_l4r5zi/stm32l4r5xx target

Type

Location

Description

Compatible

CPU

on-chip

ARM Cortex-M4F CPU1

arm,cortex-m4f

ADC

on-chip

STM32 ADC1 1

st,stm32-adc

CAN

on-chip

STM32 CAN controller1

st,stm32-bxcan

Clock control

on-chip

STM32 RCC (Reset and Clock controller)1

st,stm32-rcc

on-chip

STM32 HSE Clock1

st,stm32-hse-clock

on-chip

Generic fixed-rate clock provider3

fixed-clock

on-chip

STM32 MSI Clock1

st,stm32-msi-clock

on-chip

STM32 LSE Clock1

st,stm32-lse-clock

on-chip

STM32L4/L5 main PLL1

st,stm32l4-pll-clock

on-chip

STM32 Microcontroller Clock Output (MCO)1

st,stm32-clock-mco

Counter

on-chip

STM32 counters9

st,stm32-counter

DAC

on-chip

STM32 family DAC1

st,stm32-dac

DMA

on-chip

STM32 DMA controller (V2)2

st,stm32-dma-v2

on-chip

STM32 DMAMUX controller1

st,stm32-dmamux

Flash controller

on-chip

STM32 Family flash controller1

st,stm32-flash-controller

GPIO & Headers

on-chip

STM32 GPIO Controller9

st,stm32-gpio

on-board

GPIO pins exposed on Arduino Uno (R3) headers1

arduino-header-r3

I2C

on-chip

STM32 I2C V2 controller1 3

st,stm32-i2c-v2

Input

on-board

Group of GPIO-bound input keys1

gpio-keys

Interrupt controller

on-chip

ARMv7-M NVIC (Nested Vectored Interrupt Controller)1

arm,v7m-nvic

on-chip

STM32 External Interrupt Controller1

st,stm32-exti

LED

on-board

Group of GPIO-controlled LEDs1

gpio-leds

on-board

Group of PWM-controlled LEDs1

pwm-leds

Memory controller

on-chip

STM32 Battery Backed RAM1

st,stm32-bbram

MMC

on-chip

STM32 SDMMC Disk Access1

st,stm32-sdmmc

MTD

on-chip

STM32 flash memory1

st,stm32-nv-flash

on-board

Fixed partitions of a flash (or other non-volatile storage) memory1

fixed-partitions

OCTOSPI

on-chip

STM32 OSPI Controller2

st,stm32-ospi

PHY

on-chip

This binding is to be used by all the usb transceivers which are built-in with USB IP1

usb-nop-xceiv

Pin control

on-chip

STM32 Pin controller1

st,stm32-pinctrl

Power management

on-chip

STM32 power controller1

st,stm32-pwr

PWM

on-chip

STM32 PWM1 9

st,stm32-pwm

Reset controller

on-chip

STM32 Reset and Clock Control (RCC) Controller1

st,stm32-rcc-rctl

RNG

on-chip

STM32 Random Number Generator1

st,stm32-rng

RTC

on-chip

STM32 RTC1

st,stm32-rtc

Sensors

on-chip

STM32 family TEMP node for production calibrated sensors with two calibration temperatures1

st,stm32-temp-cal

on-chip

STM32 VREF+1

st,stm32-vref

on-chip

STM32 VBAT1

st,stm32-vbat

Serial controller

on-chip

STM32 USART3

st,stm32-usart

on-chip

STM32 LPUART1

st,stm32-lpuart

on-chip

STM32 UART2

st,stm32-uart

SMbus

on-chip

STM32 SMBus controller4

st,stm32-smbus

SPI

on-chip

STM32 SPI controller with embedded Rx and Tx FIFOs3

st,stm32-spi-fifo

SRAM

on-chip

Generic on-chip SRAM description1

mmio-sram

Timer

on-chip

ARMv7-M System Tick1

arm,armv7m-systick

on-chip

STM32 timers2 9

st,stm32-timers

on-chip

STM32 low-power timer (LPTIM)2

st,stm32-lptim

USB

on-chip

STM32 OTGFS controller1

st,stm32-otgfs

Watchdog

on-chip

STM32 watchdog1

st,stm32-watchdog

on-chip

STM32 system window watchdog1

st,stm32-window-watchdog

Connections and IOs

Nucleo L4R5ZI Board has 8 GPIO controllers. These controllers are responsible for pin muxing, input/output, pull-up, etc.

Available pins:

Nucleo L4R5ZI Arduino connectors

For more details please refer to STM32 Nucleo-144 board User Manual.

Default Zephyr Peripheral Mapping:

  • UART_1_TX : PA9

  • UART_1_RX : PA10

  • UART_2_TX : PA2

  • UART_2_RX : PA3

  • UART_3_TX : PB10

  • UART_3_RX : PB11

  • I2C_1_SCL : PB6

  • I2C_1_SDA : PB7

  • SPI_1_NSS : PD14

  • SPI_1_SCK : PA5

  • SPI_1_MISO : PA6

  • SPI_1_MOSI : PA7

  • SPI_2_NSS : PB12

  • SPI_2_SCK : PB13

  • SPI_2_MISO : PB14

  • SPI_2_MOSI : PB15

  • SPI_3_NSS : PB12

  • SPI_3_SCK : PC10

  • SPI_3_MISO : PC11

  • SPI_3_MOSI : PC12

  • PWM_2_CH1 : PA0

  • USER_PB : PC13

  • LD1 : PC7

  • LD2 : PB7

  • LD3 : PB14

  • USB DM : PA11

  • USB DP : PA12

  • ADC1 : PC0

System Clock

Nucleo L4R5ZI System Clock could be driven by internal or external oscillator, as well as main PLL clock. By default, the System clock is driven by the PLL clock at 80MHz, driven by a 16MHz high speed internal oscillator. The clock can be boosted to 120MHz if boost mode is selected.

Serial Port

Nucleo L4R5ZI board has 5 U(S)ARTs. The Zephyr console output is assigned to UART2. Default settings are 115200 8N1.

Network interface

Ethernet over USB is configured as the default network interface (EEM)

Programming and Debugging

The NUCLEO-L4R5ZI board includes a ST-LINK/V2 embedded debug tool interface.

Flashing

The board is configured to be flashed using west STM32CubeProgrammer runner, so its installation is required.

Alternatively, OpenOCD or JLink can also be used to flash the board using the --runner (or -r) option:

$ west flash --runner openocd
$ west flash --runner jlink

Flashing an application to Nucleo L4R4ZI

Connect the Nucleo L4R5ZI to your host computer using the USB port. Then build and flash an application.

Here is an example for the Hello World application.

Run a serial host program to connect with your Nucleo board:

$ minicom -D /dev/ttyACM0

Then build and flash the application.

# From the root of the zephyr repository
west build -b nucleo_l4r5zi samples/hello_world
west flash

You should see the following message on the console:

Hello World! arm